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Abstract: Satellite remote sensing of vegetation at regional to global scales is undertaken at
considerable variations in solar zenith angle (SZA) across space and time, yet the extent to which
these SZA variations matter for the retrieval of phenology remains largely unknown. Here we
examined the effect of seasonal and spatial variations in SZA on retrieving vegetation phenology from
time series of the Normalized Difference Vegetation Index (NDVI) and Enhanced Vegetation Index
(EVI) across a study area in southeastern Australia encompassing forest, woodland, and grassland
sites. The vegetation indices (VI) data span two years and are from the Advanced Himawari
Imager (AHI), which is onboard the Japanese Himawari-8 geostationary satellite. The semi-empirical
RossThick-LiSparse-Reciprocal (RTLSR) bidirectional reflectance distribution function (BRDF) model
was inverted for each spectral band on a daily basis using 10-minute reflectances acquired by H-8 AHI
at different sun-view geometries for each site. The inverted RTLSR model was then used to forward
calculate surface reflectance at three constant SZAs (20◦, 40◦, 60◦) and one seasonally varying SZA
(local solar noon), all normalised to nadir view. Time series of NDVI and EVI adjusted to different
SZAs at nadir view were then computed, from which phenological metrics such as start and end
of growing season were retrieved. Results showed that NDVI sensitivity to SZA was on average
nearly five times greater than EVI sensitivity. VI sensitivity to SZA also varied among sites (biome
types) and phenological stages, with NDVI sensitivity being higher during the minimum greenness
period than during the peak greenness period. Seasonal SZA variations altered the temporal profiles
of both NDVI and EVI, with more pronounced differences in magnitude among NDVI time series
normalised to different SZAs. When using VI time series that allowed SZA to vary at local solar
noon, the uncertainties in estimating start, peak, end, and length of growing season introduced by
local solar noon varying SZA VI time series, were 7.5, 3.7, 6.5, and 11.3 days for NDVI, and 10.4,
11.9, 6.5, and 8.4 days for EVI respectively, compared to VI time series normalised to a constant SZA.
Furthermore, the stronger SZA dependency of NDVI compared with EVI, resulted in up to two
times higher uncertainty in estimating annual integrated VI, a commonly used remote-sensing proxy
for vegetation productivity. Since commonly used satellite products are not generally normalised
to a constant sun-angle across space and time, future studies to assess the sun-angle effects on
satellite applications in agriculture, ecology, environment, and carbon science are urgently needed.
Measurements taken by new-generation geostationary (GEO) satellites offer an important opportunity
to refine this assessment at finer temporal scales. In addition, studies are needed to evaluate the
suitability of different BRDF models for normalising sun-angle across a broad spectrum of vegetation
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structure, phenological stages and geographic locations. Only through continuous investigations on
how sun-angle variations affect spatiotemporal vegetation dynamics and what is the best strategy to
deal with it, can we achieve a more quantitative remote sensing of true signals of vegetation change
across the entire globe and through time.

Keywords: geostationary land application; BRDF; vegetation index; phenology;
vegetation productivity

1. Introduction

Resolving accurate vegetation dynamics not confounded by varying atmosphere condition,
soil background, and sun-view geometry have been a long-running and prominent pursuit of the
remote-sensing community [1–8]. Satellite applications at regional to global scale involve considerate
variations in sun-angle across space and time [9–11], yet to date the spatiotemporal sun-angle variations
have not been explicitly considered in the majority of satellite vegetation applications. For instance,
the widely used MODerate Resolution Imaging Spectroradiometer (MODIS) surface reflectance
(MOD09) [12], vegetation indices product (MOD13) [13] do not correct both view and illumination
geometry, and the MCD43 nadir bidirectional reflectance distribution function (BRDF) adjusted
reflectance (NBAR) product normalised to nadir view angle, still allows for sun-angle to vary at local
solar noon across time [14].

Sun-angle variation can alter surface reflectance and vegetation indices (VIs) [15–21], especially
for three-dimensionally complex vegetated surfaces such as forest and woodland [22]. In the meantime,
for any given location observational sun-angle of commonly used spaceborne sensors such as Landsat,
MODIS, and Advanced Very High Resolution Radiometer (AVHRR) can vary considerably across
time [9,10]. Likewise, for any given time sun-angle can also vary across space as a function of latitude.
For instance, the solar zenith angle (SZA), the angle between the zenith and the center of the Sun’s
disc, can vary from around 70◦ in winter to around 30◦ in summer over mid-latitude in Northern
Hemisphere (40 ◦N) for Landsat acquisition [10]. A similar degree of variation in SZA across time also
applies to the National Aeronautics and Space Administration’s (NASA) Earth Observation System
(EOS)-Terra acquisition [9], National Oceanic and Atmospheric Administration (NOAA)’s AVHRR [23],
the new Suomi National Polar-Orbiting Partnership (Suomi-NPP)-Visible Infrared Imaging Radiometer
Suite (VIIRS) [24], together with all other sensors onboard low-Earth-orbiting (LEO) satellites. However,
to date we still do not know much about the extent of the uncertainty caused by sun-angle variation on
surface reflectance and VIs and how this will be propagated to the retrieval of vegetation parameters,
nor do we know if an optimal sun-angle correction approach, and also a universal “best” sun-angle
exists, across a broad spectrum of vegetation structural classes and latitudes. These knowledge gaps
need to be confronted and filled by the remote-sensing community in order for the users in various
sectors to more confidently use satellite measurements in their vegetation applications.

Retrieving vegetation phenology from time series of satellite measured vegetation indices is a
scientific application that is particularly sensitive to spatiotemporal sun-angle variations. This is
because seasonal variations in “true” vegetation signals are confounded by seasonal variations in
sun-angle, e.g., vegetation in a temperate forest is greenest during the summer when the SZA is small
and is lowest during the winter when the SZA is large [5]. As such, seasonal sun-angle variations can
bring in uncertainties to the retrieval of phenological metrics [5,25–28]. Using MODIS observations,
Bhandari et al. reported that seasonal viewing and illumination geometry effects can produce notable
variations in the Normalized Difference Vegetation Index (NDVI) amplitude value and phase shift
in both NDVI and the Enhanced Vegetation Index (EVI) over Australian woodland and open forest
sites [25]. Similarly, Ma et al. found that seasonal sun-angle variation alone can cause more than
2 weeks of uncertainty in estimating phenological transitional dates using MODIS NDVI over tropical
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savannas [28]. Recently, scientific discussions on dry season Amazon rainforest greenup further
stressed the importance of considering sun-angle effect as satellite data has been a pillar of global
change research [11,29–32].

Despite the progress made so far, commonly used data for assessing sun-angle effects are taken
by LEO satellites, which can only revisit a location 1–2 times per day (e.g., EOS-Terra/Aqua-MODIS,
NOAA-AVHRR) or every 16 days (e.g., Landsat). The use of LEO data for assessing sun-angle effects
is associated with an important constraint due to limited angular sampling within each day by the
LEO satellites. Therefore, assumptions of stable surface anisotropy over a certain period (e.g., 16 days)
have to be made to be able to have enough cloud-free observations for BRDF model inversion and
sun-view geometry normalisation [14]. This limitation imposes three constraints on using LEO data for
assessing sun-angle effects. First, within such a short period there is only a rather restricted variation in
sun-angle for any given location which means extrapolation has to be made beyond the observational
range. Second, cloud coverage may further reduce the number of clear observations within such a
short period, causing a less reliable model inversion due to a smaller degree of freedom. Lastly, even if
enough cloud-free observations can be acquired, over regions such as global drylands where rapid
surface change can occur with rainfall-induced vegetation growth, the assumption of stable anisotropy
within an 8-day time window may not necessarily be adequately satisfied. The limitation of using LEO
for assessing and normalising the sun-angle effect may be relieved by using the measurements taken
by geostationary (GEO) satellites, which provide sub-daily reflectance acquired at a large range of
sun-angle conditions from sunrise to sunset, from which a BRDF model can be inverted on a daily
basis [33].

With the development in sensor technologies and increasing computational power available
to users, GEO satellites, which have been traditionally used for the atmosphere and ocean science,
are now gaining attention in land applications [34–45]. Over the past few years a new generation
of GEO satellites have been launched, including Himawari-8 (Japan), FengYun (FY)-4A (China),
and Geostationary Operational Environmental Satellite (GOES)-16 (USA), all with high radiometric
and temporal resolutions. For instance, the Japanese Himawari-8 (H-8) geostationary satellite,
launched in 2014, carries an Advanced Himawari Imager (AHI) that have spectral bands similar to
MODIS [46]. H-8 AHI scans the full disk at 10-minutes intervals and generate 144 images each day,
covering the entire sun-angle variations from sunrise to sunset. The data from H-8 AHI, therefore,
offer unprecedented opportunities to assess sun-angle effect on remote sensing of vegetation dynamics
at finer temporal scales.

The overarching aim of this study was to gain a better understanding of sun-angle influences on
time series of vegetation indices and the retrieved phenological metrics using H-8 AHI measurements.
Specifically, the objectives are to quantify the sensitivity of commonly used vegetation indices to
sun-angle variations in different biome types and phenological stages and further assess the seasonal
sun-angle effect on the temporal profiles of VIs and retrieved phenological metrics.

2. Data and Method

2.1. Study Area

We focused on a sub-region in southeastern Australia (SE Australia) (145.5◦E–152◦E, 33◦S–36◦S,
Figure 1). There is a strong rainfall gradient with mean annual precipitation (MAP) declines from more
than 1500 mm over the eastern coastal region to less than 400 mm over the western dryland agricultural
region (Figure 1). There is a corresponding transition of vegetation from forest and woodland in the
east, to pastures and cropland in the west, mostly rainfed (Figure 1).



Remote Sens. 2020, 12, 1339 4 of 23

Remote Sens. 2020, 12, x FOR PEER REVIEW 4 of 23 

 

 
Figure 1. Spatial extent of the Southeastern Australia (SE Australia) study area. The panel (a) shows 
the spatial extent of the SE Australia study area over the Australian continent (image source: Google 
Earth). The red triangles on panel (b) indicate the locations of the three local sites. Background of 
panel (b) is the map of Australian Dynamic Land Cover Map (v2.1), provided by Geosciences 
Australia. Panels c–e are the photographs showing ground-view of each local site (image credit: TERN, 
https://www.ozflux.com). 

Within the SE Australia study area, three well-characterised local sites were selected, 
representing different biome types and rainfall regimes: Tumbarumba (Eucalyptus forest, mean 
annual precipitation, MAP = 1924 mm), Cumberland Plains (Eucalyptus woodland, MAP = 806 mm), 
and Yanco (pasture, MAP = 472 mm) (Figure 1 and Table 1). The spatial extent of each site was 3 km 
× 3 km corresponding to the 3 × 3 pixels window to extract H-8 AHI time series for each site. These 
sites were used to investigate the sun-angle influence on vegetation indices and phenology at the site 
level. 

Table 1. Summary of vegetation types and climatology of the three local sites, MAP is mean annual 
precipitation; MAT is mean annual temperature.  

Site Longitude (°E) Latitude (°S) Elevation (m) Vegetation Type MAP* 
(mm yr-1) 

MAT* 
(°C) 

Tumbarumba 148.1517 35.6566 1249 Eucalyptus forest 1924.2 9.6 
Cumberland Plains 150.7236 33.6153 54 Eucalyptus woodlands 806.3 18.1 

Yanco 146.2907 34.9893 128 Pasture 472.1 17.3 
* cited from [47] 

2.2. Himawari-8 Advanced Himawari Imager Data 

Himawari-8 is a Japanese geostationary satellite launched on 7 October 2014 and is positioned 
above 140.7°E and 0.02°S [47]. The AHI on board the H-8 satellite scans the Asia-Pacific region every 
10 minutes at spatial resolution 500 m for the Red band (channel 3, 640 nm) and 1000 m for the Blue 
(channel 1, 470 nm) and near infrared (NIR, channel 4, 860 nm) bands, respectively. The data from 
Red band were averaged over 2 × 2 pixels to match the resolution of the other bands. Nearly two 
years of 10-minutes H-8 AHI surface reflectance data were processed from March 2016 to December 
2017 by the Australian Bureau of Meteorology (BoM) using the multi-angle implementation of 

Figure 1. Spatial extent of the Southeastern Australia (SE Australia) study area. The panel (a) shows
the spatial extent of the SE Australia study area over the Australian continent (image source: Google
Earth). The red triangles on panel (b) indicate the locations of the three local sites. Background
of panel (b) is the map of Australian Dynamic Land Cover Map (v2.1), provided by Geosciences
Australia. Panels c–e are the photographs showing ground-view of each local site (image credit: TERN,
https://www.ozflux.com).

Within the SE Australia study area, three well-characterised local sites were selected, representing
different biome types and rainfall regimes: Tumbarumba (Eucalyptus forest, mean annual precipitation,
MAP = 1924 mm), Cumberland Plains (Eucalyptus woodland, MAP = 806 mm), and Yanco (pasture,
MAP = 472 mm) (Figure 1 and Table 1). The spatial extent of each site was 3 km × 3 km corresponding
to the 3 × 3 pixels window to extract H-8 AHI time series for each site. These sites were used to
investigate the sun-angle influence on vegetation indices and phenology at the site level.

Table 1. Summary of vegetation types and climatology of the three local sites, MAP is mean annual
precipitation; MAT is mean annual temperature.

Site Longitude (◦E) Latitude (◦S) Elevation (m) Vegetation Type MAP *
(mm yr−1) MAT *(◦C)

Tumbarumba 148.1517 35.6566 1249 Eucalyptus forest 1924.2 9.6

Cumberland Plains 150.7236 33.6153 54 Eucalyptus
woodlands 806.3 18.1

Yanco 146.2907 34.9893 128 Pasture 472.1 17.3

* cited from [47].

2.2. Himawari-8 Advanced Himawari Imager Data

Himawari-8 is a Japanese geostationary satellite launched on 7 October 2014 and is positioned
above 140.7◦E and 0.02◦S [47]. The AHI on board the H-8 satellite scans the Asia-Pacific region every
10 minutes at spatial resolution 500 m for the Red band (channel 3, 640 nm) and 1000 m for the Blue
(channel 1, 470 nm) and near infrared (NIR, channel 4, 860 nm) bands, respectively. The data from Red
band were averaged over 2 × 2 pixels to match the resolution of the other bands. Nearly two years of

https://www.ozflux.com
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10-minutes H-8 AHI surface reflectance data were processed from March 2016 to December 2017 by
the Australian Bureau of Meteorology (BoM) using the multi-angle implementation of atmospheric
correction (MAIAC) algorithm [48]. The MAIAC was originally developed for MODIS to retrieve
aerosol and perform atmospheric correction over the land surface [49] and has shown to be suitable for
the processing of H-8 AHI data as well [42]. It should be noted that the MAIAC code we used in this
study for the H-8 AHI data is still under development in order to optimise its performance, although
we do not expect that future code adjustment should have significant impacts on the results of this
study. For the selected local sites, 10-minute measurements within a 3×3 pixels window (9 km2) of H-8
AHI data were extracted across the two years of study period. As the three study sites were chosen
with the consideration of homogeneity in vegetation cover types, the 3 km × 3 km window should
sufficiently account for the geolocation error of H-8 AHI, which was reported to be 150 m (north-south)
× 500 m (east-west) [50]. Figure 2 shows a workflow diagram indicating major steps involved in H-8
data preprocessing, BRDF modelling (Sec. 2.3), and phenology retrieval (Sec. 2.5).
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Figure 2. Workflow diagram of Japanese Himawari-8 (H-8) Advanced Himawari Imager (AHI) data
preprocessing, bidirectional reflectance distribution function (BRDF) modelling, and phenological
metrics retrieval.

Figure 3 shows an example H-8 AHI sun-view geometry at one of the three local sites. H-8 AHI
observes the same target always from a fixed angle, resulting in fixed view zenith angle and view
azimuth angles for each pixel. For the three sites we selected, the view zenith angles (VZAs) are 42.28◦

for Tumbarumba, 40.72◦ for Cumberland Plains, and 41.13◦ for Yanco. In contrast to the fixed view
angles, the solar zenith angle (SZA) and solar azimuth angle (SAA) of each individual H-8 observation
can vary diurnally from sunrise to sunset (Figure 3B,C).

2.3. Bidirectional Reflectance Distribution Function (BRDF) Modelling

The surface reflectance can be described using a bidirectional reflectance distribution function
(BRDF), which is a function of solar zenith angle, view zenith angle, and both solar azimuth angle and
view azimuth angle, with respect to a reference direction [51]. BRDF can be used to standardise surface
reflectance taken from varying sun-view geometries to a common geometry to facilitate quantitative
comparisons [52]. BRDF is determined by land surface structure and optical properties such as
shadow-casting, soil condition, mutual view shadowing, and the spatial distribution of vegetation
elements [53].
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Figure 3. (A) Diagram of an example H-8 AHI sun-view geometry at Tumbarumba site; (B) Diurnal
variation in solar zenith angle (SZA) of 10-min H8 AHI observations on 10th of December 2017 at three
local sites; (C) seasonal variation in solar noon SZA at three local sites from 1st of July to 30th of June.

In this study, the semi-empirical RossThick-LiSparse Reciprocal (RTLSR) BRDF model [53,54]
was used to normalise H-8 AHI surface reflectance to nadir view and different solar zenith angles.
The RTLSR model has been used as the standard model for the MCD43 BRDF/NBAR/Albedo product [55].
The utility of the RTLSR model for normalising surface reflectance anisotropy of H-8 geostationary
data has also been tested [42,56]. The RTLSR model takes the form given by [57],

R(θs,θv,φs,φv, Λ) = fiso + fvol(Λ)Kvol(θs,θv,φs,φv) + fgeo(Λ)Kgeo(θs,θv,φs,φv) (1)

where R(θs, θv, φs, φs, Λ) is the BRDF in waveband Λ; θs is solar zenith angle (SZA); θv is VZA; φs is
solar azimuth angle (SAA); φv is view azimuth angle (VAA); Λ is waveband of width ∆λ; f iso(Λ) is
isotropic parameter of BRDF at waveband Λ; Kvol is the RossThick volume scattering kernel; Kgeo is
the Li-Sparse-Reciprocal geometric scattering kernel. Full mathematical expressions of Kvol and Kgeo

can be found in [53,57,58].
The inset of Figure 2 shows the major steps taken for running the RTLSR model first in

“inversion-mode” and subsequently in “forward mode”. The inversion mode takes the 10-min
H-8 surface reflectance and observational Sun-view geometry for any given pixel to invert the three
model parameters, f iso, f vol, and f geo, on a daily basis using multiple linear regression. The BRDF
of Equation (1) was assumed to be the same as the measured reflectance from the H-8 AHI sensor.
We imposed a lower limit for the model parameters so that all inversions that resulted in negative
model parameters (f iso, f vol, and f geo) were excluded from the analysis. We did not impose an upper
limit on the three parameters but, instead, assessed the goodness of fit for model inversion to ensure
that the observations can be predicted using the fitted model parameters within a predefined error
threshold. In addition, the sufficient amount of input observations from H-8 AHI to fit the model
allowed a high degree of freedom during the multiple linear regression and the three free parameters,
therefore, can be inverted successfully on a daily basis. Before running the inversion, quality flags of
H-8 AHI data were used to preserve only good quality observations as the model input. Observations
taken when SZA is greater than 70◦ (very low sun), which usually occurred in early morning or late
afternoon, were also abandoned as larger SZA means a longer path of sunlight travelling through the
atmosphere and causes the atmospheric correction model to be less effective.

The goodness of fit for model inversion was evaluated by the coefficient of determination adjusted
for the degree of freedom (adjusted R2), while the accuracy of the model inversion was assessed by the
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root-mean-square error (RMSE) associated with inversion. Low R2 and high RMSE signal low model
performance and hence low reliability in using the model parameters to adjust reflectance values to
the targeting sun-view geometry. Only inversions that resulted in RMSEs lower than a pre-defined
threshold value were used later in the “forward-mode“. For the three local sites, RMSE for the Red
band ranges from 0 to 0.11 (mean = 0.006 ± 0.007), from 0 to 0.038 (mean = 0.004 ± 0.003) for the Blue
band, and from 0 to 0.09 (mean = 0.017 ± 0.015) for NIR band. Given the fact that different spectral
bands have much different ranges of reflectance values and RMSEs, we used a relative threshold for
each band based on normalised RMSE (nRMSE), computed as RMSE normalised by mean reflectance
of each band, with nRMSE lower than 20% considered as acceptable quality inversion. Preliminary
analysis showed that after excluding the inversions with nRMSE greater than 20%, the mean nRMSEs
across three local sites and across two years were 6.7 ± 5.0%, 8.1 ± 5.4%, and 4.9 ± 4.5%, for Red, Blue,
and NIR bands respectively.

Once the three RTLSR model parameters were reliably inverted for each day, the model was
then operated in the “forward mode” to calculate daily reflectance at the desired Sun-view geometry
(Figure 3). Since the focus of this study is to assess the effect of sun-angle variations on vegetation
indices and phenology retrievals, VZA was, therefore, normalised to zero (i.e., nadir view) and SZA
was normalised to different scenarios. Four SZA scenarios were used, including three constant SZAs:
20◦, 40◦, 60◦, which means that SZA is constant across time for any given site, as well as constant across
sites; one seasonally varying SZA: local solar noon (LSN), which means that SZA is set as the value as
acquired at local solar noon of each day for each site, and hence it varies across time for any given site
and is also different across latitude for any given time (Figure 3C). The LSN scenario is equivalent to
the MODIS MCD43A4 NBAR–Nadir BRDF adjusted reflectance product [59], which also fixes VZA to
nadir but allows SZA to vary across time at local solar noon. The RTLSR model inversion and forward
calculation were carried out for Red, Blue, and NIR reflectances, from which NDVI and EVI at different
SZA configurations can be computed: VIS-20 (SZA = 20◦, VZA = 0◦, RAA = 0◦), VIS-40 (SZA = 40◦,
VZA = 0◦, RAA = 0◦), VIS-60 (SZA = 60◦, VZA = 0◦, RAA = 0◦), and VIS-LSN (SZA = LSN, VZA = 0◦,
RAA = 0◦).

2.4. Vegetation Indices

Phenology retrieval from satellite remote sensing commonly uses time series of vegetation indices
(VIs) [60–64]. VIs are remote-sensing proxies of canopy “greenness”, integrating canopy properties
such as canopy structure, green leaf area, and canopy leaf chlorophyll content [65,66]. The two most
widely used VIs for phenology retrievals are the NDVI and EVI. The EVI was proposed as an optimised
version of NDVI that effectively reduces influences from varying soil background reflectance and
atmospheric conditions [13]. The equations defining NDVI [67] and EVI are:

NDVI =
ρnir − ρred

ρnir + ρred
(2)

EVI = 2.5
ρnir − ρred

ρnir + 6ρred − 7.5ρblue + 1
(3)

where ρnir, ρred and ρblue are reflectances of the near infrared, red, and blue bands, corresponding to
channel 4 (860 nm), channel 3 (640 nm), and channel 1 (470 nm) of the H-8 AHI sensor, respectively [46].

2.5. Phenology Metrics Retrieval Method

The SSA-Pheno (singular spectrum analysis for phenology) algorithm, graphically depicted by
Figure 4, was used to retrieve the phenological metrics from VI time series [68,69]. Six phenological
metrics, including the start of growing season (SGS), peak of growing season (PGS), end of growing
season (EGS), length of growing season (LGS), seasonal maximum VI (VImax) and annual integrated VI
(IntVI), were retrieved from the time series of H-8 AHI NDVI and EVI time series. Phenological metrics
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retrieved from time series of VIs normalised to different SZAs will be indicated using the subscripts,
e.g., SGSS-40 and IntNDVIS-20 means the SGS and IntNDVI retrieved from time series of NDVIS-40.
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Figure 4. Graphical diagram of the SSA-Pheno (singular spectrum analysis for phenology) algorithm
for extracting phenological metrics from VI time series. The top panel (A)shows the H-8 AHI daily
Enhanced Vegetation Index (EVIS-40) time series (grey circles) and SSA-reconstructed (smoothed)
EVIS-40 time series (blue lines) for the three local sites from March 2016 to Dec 2017. The bottom
panel (B) shows the diagram of phenology retrieval from the SSA-reconstructed EVI time series of
Tumbarumba in 2016-2017 year. Six phenological metrics, including start of growing season (SGS),
peak of growing season (PGS), end of growing season (EGS), length of growing season (LGS), seasonal
maximum VI (VImax), and annual integrated VI (IntVI), are labelled on the diagram.

The SSA-Pheno algorithm has been tested over Australia across a wide-range of vegetation types
and has been demonstrated to be a robust and reliable method for extracting phenological metrics from
noisy VI time series [68,69]. The SSA (Singular Spectrum Analysis) is a data-adaptive method that has
been found to be well-suited to the analysis of nonlinear dynamics in geophysical datasets [70–72].
SSA-Pheno detects SGS when VI reached the value equal to the pre-season minimum VI value (or
baseline) plus 10% of the seasonal VI amplitude (seasonal maximum minus pre-season minimum).
Similarly, EGS is detected when VI reaches the values equal to the minimum value after the growing
season plus 10% of seasonal amplitude during the browndown phase (Figure 4). The difference
between EGS and SGS is the LGS and the timing when VI reaches its seasonal maximum is PGS. VImax
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is the seasonal maximum VI and IntVI is the annual integrated VI (with soil background VI subtracted),
both have been used as a remote sensing proxy for vegetation productivity [69,73,74]. Soil background
VI was empirically assigned as 0.15 for NDVI and 0.08 for EVI, respectively.

2.6. Land-Cover Map

We used the Dynamic Land Cover Dataset (DLCD) from Geoscience Australia and Bureau of
Agricultural and Resources Economics and Sciences (https://ecat.ga.gov.au/geonetwork/srv/eng/catalog.
search#/metadata/83868) [75]. The raw DLCD data is in 250 m spatial resolution, which was resampled
to 1km to analyze with the comparative H-8 AHI data.

2.7. Statistics

The RMSE was calculated to assess the sun-angle variation caused differences in phenological
metrics retrieved from time series of VIs normalised to different SZA scenarios,

RMSE =

√∑n
t=1(x0 − x)2

n
(4)

where x0 is the phenological metrics for any given site from time series of VIS-LSN, and x is the
phenological metrics for any given site from time series of VIS-40, and the n is the number of samples.
To assess the uncertainty relative to sample mean, a normalized RMSE (nRMSE, %), defined as the
ratio between RMSE and the sample mean, was also computed.

The open source R programming language (version 3.6.2) was used for data processing, statistical
analysis, and data visualisation [76], with R packages contributed by the user community (http:
//cran.r-project.org).

3. Results

3.1. Seasonal Profiles of Normalized Difference Vegetation Index (NDVI) and Enhanced Vegetation Index (EVI)
Normalised to Different Solar Zenith Angles (SZAs)

Figure 5 shows the time series of NDVI and EVI normalised to different SZAs. Smaller SZA
resulted in lower NDVI, with the magnitude of NDVIS-LSN was close to that of NDVIS-20 due to the
selection of the lowest SZA within each day to generate the NDVIS-LSN (Figure 5). In comparison,
sun-angle had a much smaller effect on the profiles of EVI (Figure 5). Greater SZA resulted in higher
EVI over the minimum greenness period (the period when EVI declines from highest to the lowest
within a growing season), but this effect was reversed in the peak greenness period (the period when
EVI increases form the lowest to the highest within a growing season) (Figure 5).

3.2. Sensitivity of NDVI and EVI to Sun-Angle Variations

Figure 6 presents the cross-site comparison of the variations of NDVI and EVI in relation to
SZAs over two phenological stages, the peak greenness period and the minimum greenness period.
Sensitivity of VI to change in SZA (i.e., change in VI per degree SZA change) was also computed.
Since NDVI and EVI can have different sensitivities merely because they have different dynamic
range (NDVI tends to have higher value than EVI), and different sites and phenological stages can
also have different VI sensitivity to SZA simply because of the difference in the amount of green
foliage. Therefore, to facilitate the comparisons of VI sensitivity to SZA variations between VIs, among
sites and between phenological stages, normalised VIs were computed by dividing all VIs by their
corresponding VIS-20 at any given site/date. NDVI increased with the increase of SZA, with the lowest
NDVI found when the SZA is the smallest (Figure 6A). By contrast, EVI did not show a single response
to SZA variations between phenological stages, with negative response to the increase in SZA during
the peak greenness period and positive response during the minimum greenness period (Figure 6B).

https://ecat.ga.gov.au/geonetwork/srv/eng/catalog.search#/metadata/83868
https://ecat.ga.gov.au/geonetwork/srv/eng/catalog.search#/metadata/83868
http://cran.r-project.org
http://cran.r-project.org
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Figure 5. Seasonal profiles of BRDF-corrected Normalized Difference Vegetation Index (NDVI) and
Enhanced Vegetation Index (EVI) with different SZAs from 2016 to 2017 for the three local sites. All
NDVIs have been adjusted to the nadir view, with three seasonally constant SZA cases: SZA = 20◦,
SZA = 40◦, SZA = 60◦, and a seasonally varying SZA case: SZA = Solar Noon. The brown and green
arrows indicate the minimum greenness period (when vegetation indices (VIs) are minimum within a
growing season) and the peak greenness period (when VIs are maximum within a growing season)
respectively. Data from this period will be used to assess the sensitivities of VIs to SZA variations in
relation to phenological stages.

During both phenological stages and across all sites (biome types), NDVI exhibited much stronger
dependency to SZA variations than EVI (Figure 6C,D). On average, NDVI sensitivity to SZA was
4.6 (peak greenness period) and 5.1(minimum greenness period) times greater than EVI sensitivity
(Figure 6C,D; Table 2). For NDVI, there was a 75% increase in SZA sensitivity from the peak greenness
to the minimum greenness period, with the highest (130%) increase observed over the Yanco grassland
site (Figure 6C,D). There was also an increasing trend in the difference between NDVI and EVI
sensitivities to SZA from forest (NDVI sensitivity is 2.2 times of EVI sensitivity), woodland (3.6 times),
to pasture (5.4 times) sites (Figure 6C,D; Table 2).

Table 2. Sensitivity of NDVI and EVI to SZA variations for three sites and two phenological stages.
Here both NDVI and EVI has been normalised by VIS-20 so that sensitivities are comparable between
VIs, across sites and between phenological stages.

Site Phenological Stages δNDVI/δSZA δEVI/δSZA

Tumbarumba
Peak Greenness Period 0.0024 −0.0012

Minimum Greenness Period 0.0038 0.0016

Cumberland Plains
Peak Greenness Period 0.0032 −0.0016

Minimum Greenness Period 0.0042 0.0005

Yanco
Peak Greenness Period 0.0034 −0.0003

Minimum Greenness Period 0.0077 0.0017

3.3. Sun-Angle Effect on Vegetation Phenology at Site Level

Figure 7 presents the SSA-reconstructed VI time series normalised to different SZAs.
The phenological transitional dates retrieved from each time series were also labelled on the plot.
Figure 7 clearly shows that the sun-angle effect on individual observations was propagated across time
due to the interaction of seasonal sun-angle variations and vegetation structural change, leading to
alternations in both the shape and magnitude of VI temporal profiles (Figure 7). The effect not only
caused difference between VIS-40 or VIS-60 (seasonally constant SZA cases) and VIS-LSN (seasonally
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varying SZA cases), but also between the two constant SZA cases VIS-40 and VIS-60 (Figure 7). Therefore,
VIs with SZA normalised to local solar noon, which is the common input to many global and regional
phenology products, do not necessarily align with phenology profiles generated from VIs that were
normalised to constant SZA (Figure 7).Remote Sens. 2020, 12, x FOR PEER REVIEW 11 of 23 
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Figure 6. Sensitivity of VIs to SZA variations. (A,B) Changes in NDVI and EVI with variations in SZA
from 20◦ to 60◦ (by every 5◦) during the peak greenness period and the minimum greenness period
respectively, at three local sites; (C,D) Comparison of the sensitivity of NDVI and EVI to changes in SZA
during different phenological stages. For comparison among sites, VI values have been normalised
by VISZA20 for each site. Sensitivity is defined as change in VI per degree change in SZA. Error bars
on the plot indicate 95% confidence interval of the mean and the statistical significance of the slope is
indicated as follows: "***" (p < 0.0001), "*" (p < 0.01), "ns" (non-significant, p > 0.05).\.

Figure 8 presents the cross-site relationships between phenological transitional dates retrieved
from VIS-40 time series (x-axis, used as a reference) and those retrieved from VIS-60 or VIS-LSN time
series (y-axis). Overall, seasonal sun-angle variations introduced non-negligible uncertainties on
phenological transitional dates retrieved from NDVI and EVI. For NDVI, the uncertainties (RMSE)
of using time series of NDVIS-LSN for retrieving SGS, PGS, EGS, and LGS, as compared to the use of
NDVIS-40, were 7.5, 3.7, 6.5, and 11.3 days respectively (Figure 8A–D). The equivalent uncertainties for
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EVI were 10.4, 11.9, 6.5, and 8.4 days (Figure 8E–H). Difference in phenology retrievals between two
constant SZA cases can be also observed (Figure 8).

Remote Sens. 2020, 12, x FOR PEER REVIEW 12 of 23 

 

Table 2. Sensitivity of NDVI and EVI to SZA variations for three sites and two phenological stages. 
Here both NDVI and EVI has been normalised by VIS-20 so that sensitivities are comparable between 
VIs, across sites and between phenological stages. 

Site Phenological Stages 𝛿NDVI / 𝛿SZA 𝛿EVI / 𝛿SZA 

Tumbarumba Peak Greenness Period 0.0024 -0.0012 
Minimum Greenness Period 0.0038 0.0016 

Cumberland Plains Peak Greenness Period 0.0032 -0.0016 
Minimum Greenness Period 0.0042 0.0005 

Yanco Peak Greenness Period 0.0034 -0.0003 
Minimum Greenness Period 0.0077 0.0017 

3.3. Sun-Angle Effect on Vegetation Phenology at Site Level 

Figure 7 presents the SSA-reconstructed VI time series normalised to different SZAs. The 
phenological transitional dates retrieved from each time series were also labelled on the plot. Figure 
7 clearly shows that the sun-angle effect on individual observations was propagated across time due 
to the interaction of seasonal sun-angle variations and vegetation structural change, leading to 
alternations in both the shape and magnitude of VI temporal profiles (Figure 7). The effect not only 
caused difference between VIS-40 or VIS-60 (seasonally constant SZA cases) and VIS-LSN (seasonally 
varying SZA cases), but also between the two constant SZA cases VIS-40 and VIS-60 (Figure 7). Therefore, 
VIs with SZA normalised to local solar noon, which is the common input to many global and regional 
phenology products, do not necessarily align with phenology profiles generated from VIs that were 
normalised to constant SZA (Figure 7). 

 
Figure 7. Time series of NDVI and EVI at different SZAs at three local sites sites. Phenological 
transition dates are indicated on each time series, including the start of growing season (SGS, solid 
circle), the peak of growing season (PGS, solid triangle), and the end of growing season (EGS< solid 
rectangle). 

Figure 8 presents the cross-site relationships between phenological transitional dates retrieved 
from VIS-40 time series (x-axis, used as a reference) and those retrieved from VIS-60 or VIS-LSN time series 
(y-axis). Overall, seasonal sun-angle variations introduced non-negligible uncertainties on 
phenological transitional dates retrieved from NDVI and EVI. For NDVI, the uncertainties (RMSE) 
of using time series of NDVIS-LSN for retrieving SGS, PGS, EGS, and LGS, as compared to the use of 
NDVIS-40, were 7.5, 3.7, 6.5, and 11.3 days respectively (Figure 8A–D). The equivalent uncertainties 

●

●

●

●
●

●

●

●
●

●
●

●
●●

●

Tumbarumba (forest) Cumberland Plains (woodland) Yanco (pasture)

Mar−2016 Sep−2016 Mar−2017 Sep−2017 Mar−2016 Sep−2016 Mar−2017 Sep−2017 Mar−2016 Sep−2016 Mar−2017 Sep−2017

0.3

0.4

0.5

0.6

0.7

0.50

0.55

0.60

0.70

0.75

0.80

0.85

Date

N
DV

I

● SGS PGS EGS ● ● ●SZA = 40 SZA = 60 SZA = Solar Noon

●●●

●

●

●

●

●

●
●

●

●

●

●

●

Tumbarumba (forest) Cumberland Plains (woodland) Yanco (pasture)

Mar−2016 Sep−2016 Mar−2017 Sep−2017 Mar−2016 Sep−2016 Mar−2017 Sep−2017 Mar−2016 Sep−2016 Mar−2017 Sep−2017

0.2

0.3

0.4

0.5

0.6

0.35

0.40

0.45

0.50

0.4

0.5

0.6

0.7

Date

EV
I

● SGS PGS EGS ● ● ●SZA = 40 SZA = 60 SZA = Solar Noon

Figure 7. Time series of NDVI and EVI at different SZAs at three local sites sites. Phenological transition
dates are indicated on each time series, including the start of growing season (SGS, solid circle), the peak
of growing season (PGS, solid triangle), and the end of growing season (EGS< solid rectangle).
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Figure 8. Cross-site comparison between the phenological transitional dates extracted from NDVI and
EVI with different SZA configurations at three local sites. (A–D) SGS, PGS, EGS, and LGS extracted
from NDVI; (E–H) SGS, PGS, EGS, and LGS extracted from EVI. SGS: Start of Growing Season; PGS:
Peak of Growing Season; EGS: End of Growing Season; LGS: Length of Growing Season.
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Figure 9 shows the cross-site comparisons between VImax (seasonal maximum VI) and IntVI
(annual integrated VI), retrieved from time series of VIS-40 (x-axis, used as a reference) and those
retrieved from time series of VIS-60 or VIS-LSN (y-axis). As expected from a positive NDVI response
to the increase in SZA, NDVImaxS-LSN and IntNDVIS-LSN were on average 7% and 12% lower than
NDVImaxS-40 and IntNDVIS-40, respectively (Figure 9A). These uncertainties were smaller for EVI, with
EVImaxS-LSN and IntEVIS-LSN were on average 4% and 2% higher, than EVImaxS-LSN and IntEVIS-LSN

respectively (Figure 9C).
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Figure 9. Cross-site relationship of annual peak VI (VImax) and annual integrated VI (IntVI) computed
from NDVI and EVI with different SZA configurations at three local sites. (A,B) NDVImax and IntNDVI;
(C,D) EVImax and IntEVI.

As a result of the differential sensitivity of VIs to SZA among sites (biome types), the between-sites
relative differences in VImax or IntVI were altered by the sun-angle effect. For instance, IntNDVIS-40 for
Tumbarumba forest site was on average 151% higher than that of the Yanco pasture site. However,
such differences increased to 174% if using IntNDVIS-LSN (Table 3). This change could be ignored
for EVI, with IntEVIS-40 and IntEVIS-LSN for Tumbarumba forest site were on average 77% and 77%
higher than those of Yanco pasture site respectively. Taking the Tumbarumba and Yanco site pair as an
example, the estimated distortions in proportion of vegetation productivity between any two sites
(or any two pixels), as caused by sun-angle effect alone, was 15% and 0% for IntNDVI and IntEVI,
respectively (Table 3).
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Table 3. Average VImax and IntVI estimated from VI adjusted to different SZA scenarios for three sites.

Site Productivity Metrics SZA Scenarios NDVI EVI

Tumbarumba

VImax

40◦ 0.82 0.66
60◦ 0.86 0.65

Solar Noon 0.77 0.68

IntVI
40◦ 226.54 163.77
60◦ 243.87 162.66

Solar Noon 208.56 164.63

Cumberland Plains

VImax

40◦ 0.59 0.46
60◦ 0.63 0.46

Solar Noon 0.54 0.50

IntVI
40◦ 125.72 105.58
60◦ 140.12 102.62

Solar Noon 111.19 112.42

Yanco

VImax

40◦ 0.57 0.56
60◦ 0.59 0.52

Solar Noon 0.53 0.57

IntVI
40◦ 90.32 92.76
60◦ 101.22 87.47

Solar Noon 76.21 91.63

4. Discussion

In this study we investigated the influence of seasonal sun-angle variations on the temporal VI
profiles and phenology retrievals by coupling measurements taken by H-8 geostationary satellite
and BRDF modelling. Our results showed that NDVI was more sensitive to SZA than EVI, and such
sensitivity varies between biome types and phenological stages. The sun-angle effect that propagated
into the VI time series not only introduced large uncertainties in retrieving phenological transitional
dates, but also led to errors in estimating vegetation productivity. These results call for an urgent
need to take into account sun-angle effects on monitoring vegetation dynamics and phenology using
satellite observations. Our results also demonstrated that the sensors onboard the new generation GEO
satellites, with refined radiometric and spatial resolutions and augmented by a much denser temporal
(angular) sampling than LEO satellites, offer important opportunities to enhance global vegetation
monitoring applications.

4.1. Sun-Angle Dependency of Vegetation Indices (VIs)

Differential sensitivities to sun-angle variations between VIs, over phenological stages, and across
biome types were observed, which highlighted the complexity of the sun-angle effect in the remote
sensing of vegetation. Our findings of a strong sun-angle NDVI dependency was largely consistent to
what was reported in previous studies [16,28,77]. The large SZA sensitivity of NDVI can be attributed
to the fact that NDVI is functionally more related to red band reflectance. Due to its high canopy
absorption, the red reflectance has a low canopy transmittance, resulting in a more prominent shadow
effect, rendering the red reflectance being more sensitive to the changes in Sun (illumination) angle
than NIR reflectance which has a high canopy transmittance.

Overall, NDVI was found to be several times more sensitive to sun-angle variations than EVI.
This result is consistent with previous findings in Australian tropical forests [25] and savannas [28],
but different from what was reported over Amazon tropical forests [26]. Galvão et al. found that
NDVI was not as responsive to sun-angle variations as EVI over Amazon forests [26]. These apparently
conflicting conclusions might be reconciled with the following reasoning. First, it is well-known that
NDVI tends to respond to changes in vegetation biomass in a nonlinear manner and saturate over high
biomass areas [13]. Previous studies have found that there was a decreasing trend in NDVI sensitivity
to sun-angle with the increase in leaf area index [78] or site-average greenness [28], implies that the
muted response of NDVI to sun-angle variations as was observed by [26] was likely due to the fact
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that NDVI was simply saturated over these high biomass areas. Though more careful investigations
are needed to confirm our speculation. Second, the behaviour of NDVI with sun-angle variations was
found to be dependent on the reflectance properties of underlying soil [17], and such soil-induced
effect would be minimal over dense canopies, additionally explained the reduced sensitivity of NDVI
to sun-angle variations over dense Amazonian tropical forests. Nonetheless, these studies highlighted
the need to assess the sun-angle effect on VIs more systematically across a broad spectrum of vegetation
structural classes and geographic regions to draw a general conclusion and more importantly, to reveal
the many underlying factors that dictate the sun-angle dependency of VIs and their relative importance
at different occasions.

4.2. Sun-Angle Effect on Retrievals of Vegetation Phenology and Productivity

It is well-known that sun-angle variations can alter reflectances and VIs, however, it is much
less well known the extent to which such effects would be propagated to the retrievals of vegetation
phenology parameters, primary productivity, among other biophysical and biochemical properties of
vegetation. This is likely because the commonly used LEO satellites can only take 1–2 measurements
within a day (or even less frequent if spatial resolution is higher), limiting their ability to sample a wide
range of sun-angles. Common practice for studying or correcting sun-angle effect on VIs from LEO
involved the use of BRDF models and measurements taken over 8- to 16-day periods, assuming that
surface anisotropy would remain unchanged within that interval of time [11,28,78–80]. An apparent
shortcoming of this approach is that an intrinsic uncertainty is imposed by the model assumptions,
especially for time-sensitive metrics such as phenological transitional dates. Such shortcomings can
be circumvented by the use of measurements from GEO satellites, from which a BRDF model can be
inverted on a daily basis and the assumption of a constant surface anisotropy within several days is
no longer needed. This enabled the assessment of sun-angle effect on phenology retrieval at finer
temporal scales, a major benefit of using GEO.

The sun-angle effect alone caused more than one week of uncertainty in retrieving most
phenological metrics. Our results using H-8 are largely consistent to a recent study using MODIS over
tropical savannas [28] and add more biome types. Furthermore, we showed that the sun-angle effect
can introduce 7% and 10% uncertainty in estimating NDVImax and IntNDVI, and a reduced uncertainty
for EVI. This result has important implications as both the VImax and IntVI have been used extensively
for estimating vegetation primary productivity (or crop yield and rangeland forage production) [81–85],
for land carbon uptake modelling [86,87], and for food security assessment for famine early-warning
systems [88,89]. Our findings therefore stress the need to consider proper corrections of the sun-angle
effect to achieve more reliable use of vegetation indices in a variety of applications.

4.3. Limitations and Future Perspectives

The results from this study confirmed that GEO satellites with their advanced temporal and
angular sampling offer unprecedented opportunities to better quantify the sun-angle effect on the
remote sensing of vegetation dynamics. Nonetheless, several limitations of the existing approach
can still be identified. These limitations call for innovations in satellite data collection strategies and
sun-angle correction algorithms from the remote-sensing community on one hand, and on the other
hand call for user community attention to more carefully examine the relevance of the sun-angle effect
on their specific applications.

The first limitation of using GEO satellites is the under-sampling of view angles. By contrast
with LEO satellites such as EOS-Terra/Aqua which are limited in both view/sun-angle sampling at any
given day, GEO satellites can scan the entire disk more frequently within a day and hence offer much
improved sub-daily sampling of sun-angle. However, this sampling comes with the tradeoff of having
only a single view angle for any given location. A few potential technical pathways to overcome this
limitation can be considered. First, with the assumption of BRDF reciprocity, the RTLSR model can
be inverted by interchanging Sun and view geometry [33], allowing varying Sun angles from GEO
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to be used to fill view angle gaps. Another potential pathway, although it has yet to be tested, is the
combined use of measurements taken by two or more GEO platforms located at different longitudes
which gives at least two view angles for any given location, or even combining the measurements from
GEO and LEO platforms. Of course, the second pathway demands many efforts in inter-calibrating
measurements taken by multiple sensors [90], which is currently a rapidly developing field [91–93].

The second limitation of the existing approach for normalising sun-angle, not limited to this
study, is the reliance on a BRDF model and hence the results obtained have an intrinsic dependency
on the model’s assumptions. Indeed, it is possible to select measurements taken by GEO to form a
time series of reflectance or VI of constant SZA. However, uncertainty would still be introduced into
the time series due to seasonally varying solar azimuth angle, in addition to the spatial variations in
view-geometry. Only for regions that are located directly underneath the GEO platform (e.g., for H-8,
the Papua New Guinea), where time series of VIs with a constant SZA at nadir view angle can be
empirically formed without the reliance on a model. Theoretically speaking, unless there are sufficient
near-nadir measurements for any given location/date, possibly from multiple narrow FOV (field of
view) sensors onboard satellites such as Landsat, from which both solar zenith and azimuth angles can
be fixed across time, otherwise it would be very difficult, if not impossible, to empirically correct the
sun-angle effect. Even with this kind of data, higher latitude would still present a great challenge due
to the very low maximum daily sun-angle in wintertime, forcing the selection of observations made at
large SZA deemed to be less reliable.

Two technical directions can be taken to address the second limitation. First, from an observation
point of view, studies can take advantage of increasingly available GEO data to assess the relative
sensitivity of reflectances and VIs to SZA and RAA variations in relation to biome types and phenological
stages. Conclusions drawn from these studies can be used to make decisions whether constant SZA
or constant RAA is to be targeted (as the two cannot be fixed in the same time). A conceptually
similar approach was proposed recently to match GEO (H-8 AHI) and LEO (Terra MODIS) based on
the criteria of equal SZA or equal RAA [93]. Second, from a modelling point of view, the inversion
of more complicated 3-D radiative-transfer models may become feasible with the combined use of
high-resolution spaceborne light-detection and ranging (LiDAR, e.g., those from NASA’s Global
Ecosystem Dynamics Investigation, or GEDI mission), multi-spectral / multi-angle measurements,
from which a more reliable surface reflectance correction for BRDF effect can be achieved.

The third limitation is the direct ground validation of the BRDF model simulated reflectance.
Indeed, it is a great challenge to obtain ground measurements at different sun-view geometries at the
field size comparable to the size of satellite pixels (e.g., 1km for H-8 AHI). Besides, normalising SZA to
a constant value, e.g., 45◦, implies that for mid-/high-latitude there would essentially be no available
real observations at such a SZA during the winter time (as the sun never reaches those SZAs in the
winter for mid-/high-latitude). Ground-truth measurements would be relatively easier to make by
comparing to high-resolution satellite measurements, but the dilemma here is that a high-resolution
satellite means narrower FOV and hence even less frequent revisits and measurements for BRDF
model inversion.

Given these dilemmas, alternative and indirect validation strategies may be taken to get around
the validation challenge. The first strategy is to take multi-angle measurements using unmanned
aerial vehicles (UAVs) over the relatively homogeneous area to obtain vegetation BRDF [94]. These
measurements can be used to study the sun-view geometry effect on VIs and their temporal dynamics
at small scale directly, but can also be used to compare to VIs normalised to defined sun-view geometry
based on satellite measurements. The second strategy is to use the measurements from rapid developing
global eddy-covariance flux tower networks, from which canopy structure (e.g., photosynthetic
capacity) and function (e.g., Gross Primary Productivity, GPP) can be derived at the footprint size
comparable to the size of moderate spaceborne sensors (e.g., 100 m–1000 m) [95,96]. Satellite and
flux tower measurements have been frequently used for monitoring ecosystem dynamics [96–104].
The attempts of verifying the temporal vegetation dynamics as observed from satellites have also
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been made [32,67,100,105]. Additionally, measurements taken by more cost-effective time-lapse
multispectral phenology-cameras (or phenocam), that now are widely installed on flux towers and
other ecological monitoring sites can also serve as ground verification data [106–110].

Indeed, all the aforementioned challenges in normalising sun-angle variations with satellite
observations originated by the inability of satellites to maneuver to a variety of positions relative to
the sun. Much efforts are urgently needed to refine our understanding of the interactions between
sun-angle variations, vegetation phenology, canopy structure, among many other external factors.
Aside from the methodological development and the increasingly available large amount of data from
space, it is perhaps equally important to reflect back on an early question asked by Middleton in 1992:
“which solar zenith angle was best for acquiring surface reflectance measurements in order to estimate
canopy variables?” [18].

5. Conclusions

Here we evaluated the sun-angle effect on vegetation indices and phenology retrievals from
time series of VIs using H-8 AHI geostationary satellite measurements. Our results revealed that
spatiotemporal sun-angle variations can pose many challenges to resolving vegetation dynamics by
introducing considerable uncertainties in phenological metrics retrievals. Future studies are urgently
needed to assess the relevance of the sun-angle effect on retrievals of biophysical and ecosystem
function variables from remote-sensing measurements. Only through continuous investigations on
how sun-angle variations affect spatiotemporal vegetation dynamics and what is the best strategy to
deal with it, can we achieve a more quantitative remote sensing of true signals of vegetation change
across the entire globe and through time.
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