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Abstract: Biodiversity conservation is important for the protection of ecosystems. One key task for
sustainable biodiversity conservation is to effectively preserve species’ habitats. However, for various
reasons, many of these habitats have been reduced or destroyed in recent decades. To deal with this
problem, it is necessary to effectively identify potential habitats based on habitat suitability analysis
and preserve them. Various techniques for habitat suitability estimation have been proposed to date,
but they have had limited success due to limitations in the data and models used. In this paper, we
propose a novel scheme for assessing habitat suitability based on a two-stage ensemble approach.
In the first stage, we construct a deep neural network (DNN) model to predict habitat suitability
based on observations and environmental data. In the second stage, we develop an ensemble model
using various habitat suitability estimation methods based on observations, environmental data, and
the results of the DNN from the first stage. For reliable estimation of habitat suitability, we utilize
various crowdsourced databases. Using observational and environmental data for four amphibian
species and seven bird species in South Korea, we demonstrate that our scheme provides a more
accurate estimation of habitat suitability compared to previous other approaches. For instance, our
scheme achieves a true skill statistic (TSS) score of 0.886, which is higher than other approaches
(TSS = 0.725 ± 0.010).
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1. Introduction

For decades, the importance of biodiversity conservation has been emphasized globally because
high biodiversity offers a variety of natural services that support sustainable human living [1]. Despite
this importance, ecosystem services have rapidly declined for a variety of reasons, such as indiscriminate
resource development, rapid urban expansion, and global climate change. The loss of biodiversity can
have adverse consequences on the ecosystem because of the complex interactions that exist among
species [2,3]. To maintain biodiversity levels, ecologists have devised and applied various methods to
protect habitats by analyzing the characteristics of target species and their habitats [4,5].

Habitat suitability models, also known as species distribution models (SDMs), environmental
niche models (ENMs), and predictive habitat distribution models, have been used to predict the
habitat of target species based on various environmental factors, such as temperature, precipitation,
seasonality, and terrain [2,3,6]. Habitat suitability models can be used to assess not only the relationship
among various environmental factors, such as global climatic conditions, landscape information, and
species habitats, but also landscape management and the conservation of endangered species [6–9].
With the development of remote sensing technology, the performance of habitat suitability models
has improved significantly. Until a few decades ago, the prediction of habitat suitability for particular
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species over a wide range of areas with reasonable accuracy was very challenging. This is because
remote sensing technology at that time had several limitations, including high costs, poor spatial
resolution, complicated digital maps at scales larger than remote sensing images, and human error
during interpretation analysis. Recently, state-of-the-art remote sensing technologies have overcome
previous data-processing issues, making it possible to obtain reliable temporal and spatial data for
factors such as land cover and the climate and to subsequently construct inference models for habitat
suitability that can cover very small to large areas.

Based on remote sensing data, several ecological researchers have attempted to construct effective
habitat suitability models using a profile, statistical, and machine learning methods (Table 1). The surface
range envelope (SRE) model, a profile approach, has been used to estimate habitat suitability [7–9].
Araújo et al. [7] introduced a series of surface envelop models based on the associations between
climatic variables and the distributions of species to determine suitable conditions for the maintenance
of a viable population. Heikkinen et al. [8] presented several critical methodological issues that may
lead to uncertainty in predictions based on bioclimatic modeling. They concluded that bioclimatic
envelop models have several advantages, one of which is that the modeling results are simple and easy
to understand.

Statistical methods, such as flexible discriminant analysis (FDA), the multivariate adaptive
regression spline (MARS), and the generalized linear model (GLM), investigate multiple linear
relationships between species distributions and environmental layers. Statistical methods all have
advantages and disadvantages, so various statistical methods are often employed together to improve
habitat suitability estimation [10–14]. To determine the potential habitat and distribution of species,
Elith et al. [10] presented a practical guide that included how to efficiently use statistical methods.
They compared 16 modeling methods, including the MARS and GLM, using 226 species from six
regions of the world. They found that the GLM, and BIOCLIM outperformed the other profile and
statistical modeling methods. Leathwick et al. [11] utilized two statistical modeling methods, the
generalized additive model (GAM) and MARS, to analyze the relationships between the distributions
of 15 freshwater fish species and the corresponding environment. They reported that the MARS model
performed strongly with low-prevalence species and that it could be used to analyze a large dataset.

Recently, habitat suitability modeling has been conducted using machine-learning methods, such
as the generalized boosting model (GBM), maximum entropy (MAXENT), and random forest (RF).
These machine-learning methods have been reported to produce more accurate predictions than profile
and statistical methods [15–27]. For instance, Phillips et al. [15] utilized various machine-learning
methods for the habitat modeling of ocean sunfish species. They used observations of ocean sunfishes
and a number of environmental variables to conduct species distribution modeling using MARS,
the SRE model, classification tree analysis (CTA), FDA, RF, and GLM. Reiss et al. [16] predicted the
distribution of benthic species in the North Sea. They compared nine different methods: the support
vector machine (SVM), GLM, GAM, GBM, MAXENT, FDA, BIOCLIM, and MARS. In their experiments,
the machine-learning methods MAXENT, GBM, and RF produced a better predictive performance
than the profile and statistical methods. Guisan et al. [17] employed various machine learning-based
prediction methods to determine a suitable model for species habitats using remote sensing data. They
examined multiple steps in predictive modeling by considering the conceptual model and its statistical
formulation and calibration. Phillips et al. [18] employed maximum entropy-based modeling to predict
the habitat of the Bradypus variegatus. They used two remote-sensed datasets, climate, and elevation
that were derived from the Intergovernmental Panel on Climate Change (IPCC) and the United States
Geological Survey (USGS), respectively. They evaluated the effectiveness of the model by comparing
it to a rule-set-based genetic algorithm. Heikkinen et al. [19] conducted species habitat modeling
for endangered butterfly species and predicted the distribution of Apollo butterflies using various
machine-learning methods such as GLM, GAM, CTA, a shallow neural network (SNN), MARS, and
boosted regression tree (BRT). They concluded that statistical analysis and machine-learning methods
were useful for conservation planning and protecting endangered species.
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Table 1. Overview of habitat suitability modeling techniques.

Models Descriptions References Category

SRE Profiling technique that uses the environmental conditions of locations of occurrence
data to profile the environments where a species can be found.

Araújo et al. [7],
Heikkinen et al. [8],

Thuiller et al. [9]
Profile

FDA Classification technique based on a mixture of linear regression models. Hastie et al. [14] Statistical regression

GLM
Parametric regression technique based on a random component, a systematic

component, and a link function describing a relation between the former the random
and systematic component.

Elith et al. [10],
Zuur et al. [12] Statistical regression

MARS Non-parametric regression technique that builds multiple linear regression models
across the range of predictor values.

Elith et al. [10],
Leathwick et al. [11],
Friedman et al. [13],

Statistical regression

GBM Machine learning technique based on the combinations of decision tree algorithms and
boosting methods.

Thomaes et al. [20],
De’Ath et al. [21] Machine learning

CTA Machine learning technique that is a supervised non-parametric statistical classification
approach based on binary recursive partitioning techniques

Breiman et al. [22],
De’ath G et al. [23] Machine learning

SNN Machine learning technique based on non-linear mapping structures inspired on the
biological system of the brain.

D’heygere et al. [24],
Fukuda et al. [25] Machine learning

RF Machine learning technique using bootstrap aggregation to create a set of decision trees.
Phillips et al. [17],

Breiman L et al. [26],
Cutler DR et al. [27]

Machine learning

MAXENT Machine learning technique using the principle of maximum entropy to make a
prediction from incomplete knowledge.

Phillips et al. [15],
Reiss et al. [16] Machine learning
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More recently, habitat modeling based on deep neural networks (DNNs) has been investigated in
ecological research [28–31]. In general, DNNs provide more accurate predictions in terms of identifying
potential habitats for target species than conventional models such as GLM, GAM, MARS, and BRT. This
is because DNNs can automatically extract features and learn complex non-linearities from extracted
features [32]. For instance, Rademaker et al. [28] determined the niches of wild and domesticated
ungulate species using modeling schemes based on a DNN. They focused on the applicability of
the DNN and employed it in habitat estimation modeling. In their experiment, they showed that
DNN could effectively identify potential habitats using sufficient observational data. Botella et al. [29]
proposed a deep-learning approach for SDM. They applied a convolution neural network (CNN) and
DNN to overcome the shortcomings of the traditional SDM. To evaluate its performance, they used
part of the GBIF dataset and 46 environmental layers, including climate, digital elevation, and land
cover. They subsequently found that both models performed better than traditional models such as
the GAM and MAXENT.

However, despite the versatility of DNNs [30–35], a DNN-based habitat model trained on a
small observational dataset for a species has been shown to produce inferior estimations to traditional
machine-learning models, such as MAXENT and RF. Thus, constructing an accurate habitat suitability
model is challenging because obtaining observational data is difficult [28]. Collecting sufficient
observational data is particularly crucial when constructing habitat suitability models for endangered
species. To overcome these problems, in this paper, we propose a novel two-stage based ensemble
model called TSEM for the development of an effective habitat suitability model using an ensemble of
various habitat suitability estimation techniques and DNN. Our TSEM was trained and tested on the
crowdsourced datasets composed of volunteers’ observation data. Strictly speaking, the observation
data may indicate where the species actually lives or where the observations were made. As a result,
the estimation results of our model could have similar characteristics. To improve the performance
of habitat suitability models, we focus on three major issues, which are the main contributions of
this paper.

• Using crowdsourcing databases [36–39] and a diverse range of environmental data, we employ
data pre-processing to generate framed data, which consist of observation data for the target
species and related environmental data.

• We propose a two-stage modeling scheme. In the first stage, we construct a DNN model using
framed data. Then, we build an ensemble model using a diverse range of habitat suitability
estimation methods and the results of the DNN model in the first stage to improve estimation
performance in the second stage.

• We compare our ensemble model with other estimation models based on a variety of evaluation
metrics and statistical analysis and verify the superiority of our model.

The rest of this paper is organized as follows. We first introduce the steps required to construct
the TSEM in Section 2. Then, we present several experiments conducted to evaluate the performance
of our proposed model and visualize the results using a map-overlay function in Section 3. Finally, we
summarize the major findings and provide directions in Section 4.

2. Materials and Methods

2.1. Overview of Two-Stage Habitat Suitability Estimation Model

We describe in detail our two-stage habitat suitability estimation model with the overall structure
(Figure 1). Observational, global climatic [40], and Korean land cover data [41] were initially collected
to configure the independent variables for our model. In the first stage of the model, we constructed a
DNN model as a sub-model. Next, a stacking ensemble-based estimation model was constructed using
the results of the DNN sub-model as input to improve estimation performance. Finally, the habitat
suitability results and other widely used evaluation metrics, including area under the curve (AUC),
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sensitivity, specificity, the kappa statistic, and the TSS were visualized for a performance comparison
between the TSEM and previously reported models [42–47].
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2.2. Dataset Construction

In general, the performance of a DNN-based estimation model depends on the quality and size
of the dataset used for training. To construct our dataset, we first reviewed several crowdsourced
databases that contain global observations of various species, selected 11 target species that were
primarily found in South Korea, and then collected observational data for these species. These
species are all considered conservation targets in Korean wildlife conservation projects. We listed the
target species and their number of observations, as reported in the global biodiversity information
facility (GBIF), VertNet, biodiversity information serving our nation (BISON), and Naturing databases
(Table 2). Species habitats are closely related to the climate and land conditions [42–47]. Therefore,
to construct a valid habitat model, we collected various layers of environment information from
Worldclim Bioclimatic [40] and a land cover dataset for South Korea [41], which are both widely used for
ecological modeling. The land cover dataset for South Korea was generated using Korea multi-purpose
satellite No. 2, also known as KOMPSAT No. 2 or Arirang 2, and satellite pour l’observation de
la terre 5 (SPOT 5) remote sensing images from 2009. KOMPSAT No. 2, which is equipped with a
1-m high-resolution multi-spectral camera (MSC), has orbited Earth approximately 46,800 times in
nine years, capturing approximately 75,400 high-quality satellite images of Korea, while SPOT 5 can
capture satellite images with a coverage of 60 km × 60 km and a resolution of 5 m. Compared to
the GlobCover, the land cover dataset for South Korea provides more detailed information due to
its higher resolution. Because this land cover dataset consists of categorical variables, we converted
them into proximity distance layers, which have continuous values. Proximity distance for land cover
layers is regarded as crucial for modeling because the unique survival traits of species and their habitat
characteristics are closely related. Indeed, several studies have improved the performance of habitat
suitability estimation models by considering the distance between the environmental layers and species
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observations. For this reason, we also employed proximity distance as an input variable. In total, we
used 41 environmental layers as input variables for our habitat suitability modeling (Table 3).

Table 2. Target species and their observations.

Target Species
(Scientific Name) Image IUCN

Red List
Number of Observations

in South Korea Suitable Habitats

Streptopelia
orientalis
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Table 3. List of input variables.

Variable Name Description Type

BIO_1 Annual mean temperature Continuous
BIO_2 Mean diurnal range Continuous
BIO_3 Isothermality Continuous
BIO_4 Temperature seasonality Continuous
BIO_5 Max. temperature of the warmest month Continuous
BIO_6 Min. temperature of the coldest month Continuous
BIO_7 Temperature annual range Continuous
BIO_8 Mean temperature of the wettest quarter Continuous
BIO_9 Mean temperature of the driest quarter Continuous
BIO_10 Mean temperature of the warmest quarter Continuous
BIO_11 Mean temperature of the coldest quarter Continuous
BIO_12 Annual precipitation Continuous
BIO_13 Precipitation of the wettest month Continuous
BIO_14 Precipitation of the driest month Continuous
BIO_15 Precipitation seasonality Continuous
BIO_16 Precipitation of the wettest quarter Continuous
BIO_17 Precipitation of the driest quarter Continuous
BIO_18 Precipitation of the warmest quarter Continuous
BIO_19 Precipitation of the coldest quarter Continuous

Distance_1 Proximity distance from each cell to a residential area (detached residential and common residential areas) Continuous
Distance_2 Proximity distance from each cell to an industrial area Continuous
Distance_3 Proximity distance from each cell to a commercial area (commercial/business and mixed residential/business areas) Continuous
Distance_4 Proximity distance from each cell to a leisure facility area Continuous
Distance_5 Proximity distance from each cell to a transportation area (airport, harbor, railway, road, and other transportation and communication facilities) Continuous
Distance_6 Proximity distance from each cell to a public facility area (basic environmental, education/administrative, and other public facilities) Continuous
Distance_7 Proximity distance from each cell to paddy fields (land consolidation success and undergoing land consolidation in paddy fields) Continuous
Distance_8 Proximity distance from each cell to dry fields (land consolidation success and undergoing land consolidation in dry fields) Continuous
Distance_9 Proximity distance from each cell to a greenhouse Continuous

Distance_10 Proximity distance from each cell to an orchard Continuous
Distance_11 Proximity distance from each cell to other plantations (pastureland and other plantations) Continuous
Distance_12 Proximity distance from each cell to broadleaf forest Continuous
Distance_13 Proximity distance from each cell to coniferous forest Continuous
Distance_14 Proximity distance from each cell to mixed forest Continuous
Distance_15 Proximity distance from each cell to natural pasture Continuous
Distance_16 Proximity distance from each cell to artificial pasture (golf course, cemetery, and other pastures) Continuous
Distance_17 Proximity distance from each cell to inland wetland Continuous
Distance_18 Proximity distance from each cell to coastal wetland (tidal mudflat and saltern) Continuous
Distance_19 Proximity distance from each cell to naturally barren areas (beaches, riverbanks, and rocks) Continuous
Distance_20 Proximity distance from each cell to artificially barren areas (mining area, playground, and other barrens) Continuous
Distance_21 Proximity distance from each cell to inland water (rivers and lakes) Continuous
Distance_22 Proximity distance from each cell to ocean water Continuous
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2.3. Data Preprocessing

To conduct habitat suitability estimation, preprocessing of the collected observation data and
environmental variables was required, consisting of a number of steps. We carried out this data
preprocessing using Quantum Geographic Information System (QGIS) 3.8.1. We present the steps used
to prepare the training and testing datasets in Figure 2. First, we set the resolution to 3000 × 3000
pixels and cropped the collected layers based on the study area, which corresponded to a rectangle
on the map. For this, we used the World Geodetic System 1984 (WGS84), which is an Earth-centered,
Earth-fixed terrestrial reference system and a geodetic datum. In this system, the entire South Korea
region is represented by the latitude and longitude coordinates (125.000, 38.083), (129.583, 38.083),
(125.000, 33.166), and (129.583, 33.166). Because the bioclimatic and land cover layers (i.e., the classified
land cover in South Korea) are all in a shape (.shp) file format, we converted them into a gridded data
(.grd) file format, which consists of scalar values on a regular rectangular grid, either in longitude or
latitude space.
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Figure 2. The overall preprocessing process for the present study.

We configured each pixel of the raster to have a coverage of approximately 135 m, which produces
900 M grids if we convert the entire South Korean region into a grid space. We then applied min-max
normalization to all variables in the cropped bioclimatic layers. For the preprocessing of the land
cover layer, we first divided it into multiple layers according to the land cover labels and conducted
rasterization. We then calculated the proximity distance based on the separate single rasters and applied
min-max normalization to each distance raster. Finally, we stacked all of the rasters to generate a data
frame that included labeled presence and absence, and that matched the values of the environmental
rasters in the given presence and absence locations.
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2.4. Stage 1: Habitat Suitability Estimation Based on a DNN

Recently, several DNN-based habitat suitability models have been proposed and have performed
well when compared with previous methods [28–30]. Hence, we constructed a DNN model in the
first stage to determine the probability of a species’ presence or absence, with a higher probability of
presence for a species indicating higher habitat suitability. In general, DNNs consist of three types
of layers: an input layer, one or more hidden layers, and an output layer. The input layer receives
input variables, while the hidden layers are involved in hidden feature processing. The output layer
then produces the final prediction. The prediction performance of a DNN model is determined
by the configuration of each layer and the model design. For example, it has been shown that the
learning rate, the optimizer, regularization, and the activation function significantly affect prediction
performance [33]. To obtain the best performance from the DNN model, we carefully determined
the optimal hyperparameters using grid search and considering related research [28]. We used the
GridSearchCV function of the scikit-learn library [48]. The number of repetitions of grid search was
set to infinite, and the number of cross-validations was set to five times. Consequently, when we
constructed our DNN model, we used four hidden layers containing 250, 200, 150, and 100 neurons
(Figure 3). We set the batch size to 75 and the number of epochs to 5000 with early stopping to optimize
model training. To decide the batch size in the training stage, we carefully considered the results of the
grid search. For training optimization, we tested three optimizers, including the stochastic gradient
descent (SGD), root mean square propagation (RMSprop), adaptive moment estimation (ADAM), and
then selected the ADAM as the best optimizer. In addition, we utilized the he-normal (HE) initialization
to sort initial weights for individual inputs in a neuron model. The activation function controls the
non-linearity of individual neurons. We tested five popular activation functions: linear, soft-max,
rectified linear unit (ReLU), tangent, and sigmoid. Through the grid search, we selected ReLU as the
activation function of our training model. The learning rate is a hyper-parameter that controls how
much we are adjusting the weights of our network with respect to the loss gradient. If the learning
rate is set too small, it might take a long time to converge on the performance goal. On the contrary, if
the learning rate is set too large, the average loss will increase. To obtain the optimal learning rate,
we performed a grid search with ADAM as the optimizer and ReLU as the activation function. Our
training model was able to achieve optimal learning efficiency when the learning rate was 0.001.
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The finished DNN model was to generate the probability of both presence and absence for a
species. The more suitable an area was as habitat for a particular species, the closer the probability of
that species’ presence was to 1, while the probability of absence followed the opposite trend.
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2.5. Stage 2: Ensemble-Based Habitat Suitability Estimation

Ensembles of machine-learning techniques have been widely adopted to solve various prediction
problems in past research [43–47]. Compared to one machine-learning model, ensembles can improve
prediction performance by combining several models. In the field of ecological modeling, ensemble
models are widely known as a useful approach for the construction of potential habitat estimation
models [43–47]. Therefore, in the second stage, we developed an ensemble-based habitat suitability
estimation model using the BIOMOD2 package [49] for R programming. We present the overall
construction process for our ensemble model in Stage 2 in Figure 4.
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According to the authors of [28,50], a low number of observations (i.e., n < 100) can degrade the
estimation performance of a habitat model because using very few observations in model construction
leads to overfitting and bias [8–10]. To solve this issue, we used 41 environmental layers and the results
of habitat suitability from the DNN in Stage 1 as input variables for the ensemble model in Stage 2.
This modeling method is known as stacking and can effectively avoid the possibility of overfitting and
bias [51]. We built our ensemble model by combining GLM, GBM, CTA, SNN, FDA, MARS, RF, the
SRE model, and MAXENT and used a weighted-average algorithm, which returns a weighted value for
each model based on selected evaluation scores. Therefore, an accurate estimation model will have a
relatively high weighted value when it combines all of the models. Because the TSS has been proven to
be a reliable evaluation metric when measuring and assessing the performance of habitat models [47],
we used the TSS to calculate the weighted value. Equation (1) was used to calculate the final estimation
using the weighted average value for each model, in which i and j represent the class label for presence
and absence and the number of models, respectively, ŷ indicates the estimated class label, and pi j is
the calculated probability of the jth model. In addition, w j is the weighted value of the jth model,
which was calculated using Equation (2). We evaluated each model using five-fold cross-validation
and obtained the final TSS value as the average of the TSSs generated by the individual models.

ŷ = argmax
i

m∑
j = 1

w j ∗ pi j (1)

w j =
TSS j −Min(TSS)

Max(TSS) −Min(TSS)
(2)

3. Results and Discussion

We evaluated our proposed model and compared its performance with other approaches to habitat
suitability modeling. We first explained the evaluation metrics used to assess the quality of habitat
suitability estimation and then evaluated the performance of our proposed model and other commonly
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used models using these metrics. We also visualized the results for habitat suitability analysis using
map overlays.

3.1. Evaluation Metrics

To evaluate the performance of our model, we used five metrics: sensitivity, specificity, the kappa
statistic, AUC, and TSS. These have all been regularly used to assess habitat modeling performance
in ecology [47]. The percentage of correctly predicted sites was excluded as a measure of prediction
accuracy for the proposed model because, even though it is simple to calculate, its usefulness is severely
limited for rare species [19]. To evaluate the estimation results, we used a confusion matrix in which a,
b, c, and d indicate true positive, false positive, false negative, and true negative, respectively (Table 4).
For instance, when the ground truth is the presence and the prediction result from the proposed model
is also the presence, then we counted it as a true positive. Sensitivity, specificity, the kappa statistic,
and TSS were calculated using Equations (3)–(6), respectively, based on this confusion matrix.

Sensitivity =
a

a + c
(3)

Speci f icity =
d

b + d
(4)

Kappa statistic =

(
a + d

n

)
−

(a + c)(a + b) + (b + d)(c + d)
n2

1− (a + c)(a + b) + (b + d)(c + d)
n2

(5)

TSS = sensitivity + specificity − 1 (6)

Table 4. Confusion matrix for the evaluation of our presence–absence model.

Predicted
Observed

Presence Absence

Presence a b
Absence b d

Sensitivity represents the probability that a model will correctly predict the presence of a species,
while specificity measures the probability of a model accurately predicting the absence of a species. TSS
normalizes overall accuracy [47,50]. AUC is widely used to assess the accuracy of habitat suitability
models because it is easy to interpret, thus allowing comparison between models. ROC curves are
frequently used as a single threshold-independent measure for model performance. In previous studies
designed to predict habitat suitability [52–54], models with an AUC greater than 0.8 were considered
valid as predictive models. The kappa statistic is also a common evaluation metric used for habitat
suitability estimation models, but it has been criticized for being heavily dependent on prevalence.
TSS, on the other hand, avoids this problem while offering the advantages of the kappa statistic. In
general, most ecological modeling research uses sensitivity, specificity, the kappa statistic, and TSS
together to analyze the performance of habitat suitability models [51–55]. Thus, we used these five
metrics together to compare their weaknesses, strengths, and commonalities.

3.2. Performance Evaluation

We described the comparison results for the habitat suitability models using the five metrics
discussed in Section 3.1. We compared as many estimation models as possible, including GLM, GBM,
CTA, SNN, FDA, MARS, RF, SRE, DNN, ensemble models not including DNN (EMED), and our
proposed approach. As mentioned above, EMED has demonstrated satisfactory performance in the
previous studies. We constructed the EMED model in the present study using GLM, GBM, CTA, SNN,
FDA, MARS, RF, and SRE. All of these models were trained and tested using the BIOMOD2 package in
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R and were verified using five-fold cross-validation. We used 80% of the species observation as the
training set and 20% as the test set. We present the selected parameters and training strategies for each
model in the following (Table 5).

Table 5. Selected parameters and training strategies for the estimation models.

Estimation Model Selected Parameters and Training Strategies

GLM Quadratic-type regression
Akaike information criterion (AIC) for environmental layer selection

GBM Bernoulli distribution, 2500 trees, 7 depths, 5 terminal nodes, 0.001 learning rate
CTA Categorical classification, Default tree parameter (auto-optimized by BIOMOD2)
SNN Single hidden layer, Auto-optimized neuron size, 200 iterations
FDA Mars method

MARS Simple pricewise linear, 0.001 threshold, Backward pruning method
RF Maximum of 500 trees, Default number of variables at each split (auto-optimized by BIOMOD2), 5 nodes

SRE 0.025 quantile for environmental variable selection

MAXENT Maximum of 200 iterations, Linear and quadratic variables
Default parameters for threshold and hinge (auto-optimized by BIOMOD2)

EMED Assigning weights using TSS evaluation, Weighted average-based model assembly, 0.7 for the ensemble
threshold, Committee averaging

We calculated the estimation performance of various models for target species using five metrics
and present their averages in Table 6. Detailed experimental results, including sensitivity, specificity,
AUC, kappa statistic, and TSS, can be found in the Supplementary Materials (Tables S1–S5). To
objectively assess the estimation results, we show the evaluation criteria of AUC, kappa statistic, and
TSS in Table 7. We can observe that our proposed model showed the best performance, while the DNN
exhibited weak performance because model training was insufficient due to the lack of training data.
Likewise, the SRE model showed a poor performance for the prediction (AUC < 0.6). Even though
the SRE model is intuitive and fast, it does not fully reflect the interactions between environmental
conditions and species distributions in modeling. All other models except the DNN and SRE models
performed reasonably well in terms of predicting the presence of a species. In contrast, in terms of
specificity, DNN was the best performing model. The AUC has long been regarded as the standard
metric for assessing the performance of habitat suitability models. In most cases, TSEM demonstrated
the best estimation performance, while EMED also generated high AUC values, with an average
of 0.972. This demonstrates that the two-stage based ensemble approach can improve estimation
performance. While TSEM performed best for kappa statistic and TSS, SRE was the worst-performing
model. For Hyla japonica, EMED yielded a higher TSS (EMED = 0.786 and TSEM = 0.783) than TSEM
because the DNN model in the first stage produced very poor estimation results. However, for all
other species, our model outperformed the other models. In summary, based on these comparisons,
clearly TSEM is more suitable for deriving ecological insights related to habitat suitability estimation.

To confirm whether the estimation results of our model are valid, we selected Rana huanrenensis
as a visualization case. The visualizations of the results for other target species can be found in
the Supplementary Materials (Figures S1–S10). Rana huanrenensis, also known as the Korean stream
brown frog, lives mainly in Korea and Japan, and its habitats are identified as wetland, forest, and
grassland (Table 2). Due to the low number of confirmed populations of this species, it could be listed
as vulnerable (VN) under the IUCN Red List criterion, but is listed as least concern (LC) based on the
assumption of widespread occurrence, especially in Korea. The Rana huanrenensis lives in valleys in
high montane regions, above 500 m in elevation [56]. This species is mainly observed from March to
April, which is very closely related to the breeding season of this species. Rana huanrenensis breeds in
slow-moving montane streams and rivers, and their eggs are laid in moderately small masses that are
attached to submerged rocks [57]. Indeed, the distribution of observation data for Rana huanrenensis
fits well with their habitat characteristics. We marked the blue points as a training set and yellow
points as a test set. The areas marked in black represent the entire coniferous forest, mixed forest,
and broad-leaved forest (Figure 5). In Figure 6, green indicates suitable species habitats and blue
indicates uninhabitable areas. In evaluating the habitat suitability estimation of Rana huanrenensis,
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TSEM showed a better estimation performance (TSS = 0.949) than other estimation models. Although
EMED and RF performed slightly worse than TSEM (TSS of EMED = 0.819 and TSS of RF = 0.822), these
models showed excellent estimation performance based on evaluation criteria. The distribution of
Rana huanrenensis habitat estimated by TSEM is very similar to the mountainous terrain of South Korea.
The SNN, MARS, GBM, EMED, and RF also showed the distribution of habitat estimations similar to
mountainous terrain. However, we confirmed that the MARS, GBM, EMED, and RF estimated that
the Rana huanrenensis was suitable for habitation in some regions, including residential, industrial,
and commercial areas. The TSEM estimated that the areas of mixed forests, coniferous forests, and
broad-leaved forests were relatively more suitable as the Rana huanrenensis habitat. Even though the
TSEM was trained and tested on crowdsourced datasets of the Rana huanrenensis, the estimation results
matched well with their actual habitats because most of the observation data for the Rana huanrenensis
were near the main habitats such as wetland, montane streams, and forest. We demonstrated that the
habitat suitability results estimated by the TSEM are well-matched when compared with the existing
studies of the Rana huanrenensis habitats [56,57].

Table 6. Performance comparison of estimation models.

Estimation
Model

Evaluation Metrics (Avg.)

Sensitivity Specificity AUC Kappa Statistic TSS

GLM 0.855 0.833 0.888 0.662 0.689
GBM 0.879 0.906 0.950 0.780 0.785
CTA 0.854 0.884 0.901 0.724 0.738
SNN 0.857 0.880 0.920 0.723 0.738
FDA 0.865 0.892 0.938 0.750 0.758

MARS 0.859 0.871 0.927 0.711 0.731
RF 0.885 0.947 0.967 0.838 0.832

SRE 0.567 0.904 0.735 0.499 0.470
MAXENT 0.781 0.816 0.862 0.665 0.658

DNN (Stage 1) 0.757 0.957 0.886 0.753 0.759
EMED 0.905 0.911 0.972 0.862 0.816

TSEM (Stage 2) 0.966 0.920 0.983 0.887 0.886

The highest values are in bold.

Table 7. Evaluation criteria of AUC, kappa statistic and TSS.

AUC Kappa Statistic TSS

Excellent ≥ 0.9 ≥ 0.9 ≥ 0.8
Good 0.8− 0.9 0.8− 0.9 0.6− 0.8
Fair 0.6− 0.8 0.7− 0.8 0.4− 0.6

Poor or no predictive ability ≤ 0.6 ≤ 0.6 ≤ 0.4
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3.3. Statistical Evaluation

To demonstrate the superiority of our proposed method, we performed Wilcoxon signed-rank
and Friedman tests [58,59]. The Wilcoxon signed-rank test is a non-parametric statistical hypothesis
test used to compare two related samples [58]. It can be used as an alternative to the t-test when one or
more of the samples are not normally distributed. It establishes a null hypothesis to determine whether
there is a significant difference between the two samples. If the p-value is less than a certain significance
level, the null hypothesis is rejected, and the two samples are assumed to be significantly different.
In the statistical hypothesis testing, the p-value is the probability of obtaining test results at least as
extreme as the results actually observed during the test, assuming that the null hypothesis is correct.
The Friedman test is a multiple comparison test that aims to identify significant differences between
three or more samples [59]. It first ranks each row (block) together, and then considers the values of the
ranks by column. The data are organized into a matrix with B rows (blocks) and T columns (treatments)
with a single operation in each cell of the matrix. To verify the results of these tests, we used AUC, the
kappa statistic, and TSS for each machine-learning method. The results of the Wilcoxon signed-rank
test, for which the significance level was set to 0.05, and the Friedman test are listed in Table 8. Based
on these tests, our proposed method exhibited significantly better prediction performance than the
other machine-learning methods because the p-value was below the significance level in most cases.

Table 8. The results of the Wilcoxon signed-rank and Friedman tests for our proposed method.

Estimation
Models

Wilcoxon Signed-Rank Test (p-Value < 0.05) Friedman Test

AUC Kappa TSS AUC Kappa TSS

GLM 0.00098 0.00098 0.00098

2.236× 10−17 1.446× 10−18 2.236× 10−17

GBM 0.00379 0.00098 0.00384
CTA 0.00384 0.00098 0.00384
SNN 0.00382 0.00098 0.00098
FDA 0.00098 0.00098 0.00382

MARS 0.00381 0.00382 0.00382
RF 0.00379 0.00384 0.00384

SRE 0.00379 0.00098 0.89390
MAXENT 0.00098 0.00098 0.00098

DNN (Stage 1) 0.00098 0.00098 0.00098
EMED 0.00368 0.00382 0.00195

AUC, area under the curve; Kappa, kappa statistic; TSS, true skill statistic.

4. Conclusions

In this study, we focused on a two-stage modeling scheme that can be applied to habitat suitability
estimation for various species. First, we investigated and selected 11 species that are present in South
Korea and regarded as targets for species conservation research. To obtain a sufficient number of
observations for the target species, we extracted observational data for these species from several
crowdsourced databases and added them to our database. Since spatial bias is a well-known problem
in crowdsourced data, we tried to alleviate this bias by using three global datasets and one domestic
dataset. In particular, the domestic dataset, Naturing database, contains data of target species observed
quite evenly across South Korea. We also employed 41 environmental layers that included information
on the global climate and the land cover of South Korea as input variables. To effectively estimate
habitat suitability, we used a DNN model and an ensemble of habitat suitability estimation models
in the first and second stages, respectively. To evaluate the effectiveness of the proposed model, we
compared it with previously employed models and visualized these results using a suitability map
overlay. The experimental results demonstrate that the proposed model has significant potential for
use in estimating habitat suitability.

For model training and testing, we used crowdsourced datasets. This implies that there could be
some bias in the observation data and the estimation results, as mentioned above. Hence, even though
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our model showed better performance than other models, estimation results might indicate where the
observation was made, in other words, the species can be observed. To the best of our knowledge,
it is an inevitable limitation of prediction models based on crowdsourced data. In future work, to
ensure the reliability of our habitat suitability model, we plan to develop a method that can alleviate
the potential biases of crowdsourcing datasets.

Supplementary Materials: The following are available online at http://www.mdpi.com/2072-4292/12/9/1475/s1,
Table S1: Sensitivity comparison; Table S2: Specificity comparison; Table S3: AUC comparison; Table S4: Kappa
statistic comparison; Table S5: TSS comparison; Figure S1: Habitat suitability visualization of Anas platyrhynchos;
Figure S2: Habitat suitability visualization of Anas zonorhyncha; Figure S3: Habitat suitability visualization
of Ardea cinerea; Figure S4: Habitat suitability visualization of Cyanopica cyanus; Figure S5: Habitat suitability
visualization of Hyla japonica; Figure S6: Habitat suitability visualization of Hynobius leechii; Figure S7: Habitat
suitability visualization of Hypsipetes amaurotis; Figure S8: Habitat suitability visualization of Passer montanus;
Figure S9: Habitat suitability visualization of Rana dybowskii; Figure S10: Habitat suitability visualization of
Streptopelia orientalis.
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