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Abstract: Offshore of many coastal regions, the ocean surface wind varies in speed and direction
throughout the day, owing to forcing from land/sea temperature differences and orographic ef-
fects. Far offshore, both diurnal and semidiurnal wind vector variability has been noted in the
Tropical Atmosphere Ocean-TRIangle Trans-Ocean buoy Network (TAO-TRITON) mooring data
in the tropical Pacific Ocean. In this manuscript, the tropical diurnal wind variability is examined
with microwave radiometer-derived winds from the Tropical Rainfall Measuring Mission (TRMM)
and the Global Precipitation Measurement (GPM), merged with RapidScat and other scatterometer
data. Since the relationship between wind speed and its zonal and meridional components is non-
linear, this manuscript describes an observationally based methodology to merge the radiometer
and scatterometer-based wind estimates as a function of observation time, to generate a multi-year
dataset of diurnal wind variability. Compared to TAO-TRITON mooring array data, the merged
satellite-derived wind components fairly well replicate the semidiurnal zonal wind variability over
the tropical Pacific but generally show more variability in the meridional wind components. The
meridional component agrees with the associated mooring location data in some locations better
than others, or it shows no clear dominant diurnal or semidiurnal mode. Similar discrepancies are
noted between two forecast model reanalysis products. It is hypothesized that the discrepancies
amongst the meridional winds are due to interactions between surface convergence and convective
precipitation over tropical ocean basins.

Keywords: ocean; wind; tropical; diurnal; RapidScat; TRMM; GPM; scatterometer; radiometer;
microwave

1. Introduction

Over many oceanic regions, the surface wind varies in speed and direction throughout
the day, owing to meteorological forcing such as coastal land/sea temperature differences
and orographic effects [1–4]. In addition to these near-land effects, diurnal variability
in tropical oceanic convective precipitation, far from continents, has been noted from
analysis of Tropical Rainfall Measuring Mission (TRMM) data [5–7], indicating an early
morning maximum. Over the intertropical convergence zone (ITCZ), mooring data from
the Tropical Atmosphere Ocean-TRIangle Trans-Ocean buoy Network (TAO-TRITON) [8]
reveal both diurnal and semidiurnal wind vector variability [9,10]. To date, relatively few
observational (satellite-based) investigations have been undertaken that attempt to estimate
these daily modes of ocean surface wind variability (hereafter, the term daily refers to all
variations within a 24-h period, and diurnal and semidiurnal will refer to the first and
second harmonics of the daily cycle, respectively). Such an observational capability would
be useful to understand the mechanisms linking convective precipitation to the diurnal
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cycle of surface wind and wind convergence [11,12]. More specific to linking winds and
convective precipitation are the dynamically important quantities of time-mean surface
divergence and vorticity, which can be computed from the zonal (u) and meridional (v)
wind components estimated by scatterometers [13,14]. Moreover, coupling oceanic wind
modes with independent satellite-based precipitation structure would provide a unique
evaluation of climate models. The ability of a climate model to represent the joint daily
modes of variability of wind and precipitation over the ocean provides a test of the physical
convective parameterizations used in the model [15,16].

Just as the TRMM represented the first opportunity to sample the diurnal variability
of tropical precipitation, the deployment of the RapidScat scatterometer onboard the Inter-
national Space Station (ISS) in 2014 represented the first opportunity to sample the diurnal
variability of ocean surface winds [17]. This is due to the non-sun-synchronous nature of
the TRMM and ISS orbits, i.e., the observation is asynchronous (i.e., not tied to particular
local solar viewing angles, but rather precesses over several months’ time). As presented
in Table 1, the data record of satellite-based ocean surface wind observations consists of
a diverse collection of both sun-synchronous orbiting satellites, such as the long period
of Defense Meteorological Satellite (DMSP) platforms, and asynchronous (e.g., RapidScat,
TRMM, GPM) orbiting satellite platforms. Other than the Coriolis-WindSat polarime-
ter [18], wind-speed-only (w) measurements are available from the passive microwave
(MW) radiometers and wind vectors (u, v) available from the scatterometers [19].

Table 1. Source and time period of satellite-derived ocean winds used in this investigation 1. Bold font indicates sensors
with a windspeed-only capability. DSMP LTAN drift is noted.

Satellite Sensor Source Posted Resolution (km) Period Covered LTAN

SeaWinds SeaWinds RSS 25 04/2003–10/2003 2230
QuikSCAT SeaWinds RSS 25 04/2003–11/2009 0600
QuikSCAT

(nonspinning) SeaWinds PO.DAAC 12.5 2010–2017 (intermittent) 0600

ISS RapidScat PO.DAAC 12.5 10/2014–09/2016 variable
Coriolis WindSat RSS 25 04/2003–02/2017 1800

Oceansat-2 OSCAT PO.DAAC 12.5 01/2010–02/2014 1200
MetOp-A ASCAT RSS 25 04/2007–02/2017 2130
MetOp-B ASCAT RSS 25 11/2012–02/2017 2130

DMSP F-16 SSMIS RSS 25 01/2004–02/2017 2015-1600
DMSP F-17 SSMIS RSS 25 12/2006–02/2017 1730-1830

Aqua AMSR-E RSS 25 04/2003–10/2011 1330
GCOM-W AMSR-2 RSS 25 07/2012–02/2017 1330

TRMM TMI RSS 25 04/2003–12/2014 variable
GPM GMI RSS 25 03/2014–02/2017 variable

1 DMSP = Defense Meteorological Satellite Program, ISS = International Space Station, GCOM-W = Global Change Observing Mission
for Water, TRMM = Tropical Rainfall Measuring Mission, GPM = Global Precipitation Measurement, AMSR-E = Advanced Microwave
Scanning Radiometer for EOS, SSMIS = Special Sensor Microwave Imager Sounder, TMI = TRMM Microwave Imager, GMI = GPM
Microwave Imager, ASCAT = Advanced Scatterometer, OSCAT = Oceansat-2 Scatterometer, LTAN = Local Time of Ascending Node.

Prior to RapidScat, there had been relatively few satellite-based investigations under-
taken that attempted to estimate the daily modes of ocean surface wind variability. The
best known of these is the brief seven-month “tandem period” in 2003, overlapping the
Seawinds scatterometer onboard the Advanced Earth Observation Satellite (ADEOS-2) and
the QuikSCAT satellite, which provided four (u, v) observations per day, nearly equally
spaced in time, enabling estimation of the diurnal mode. These data triggered several
studies of the diurnal ocean surface wind vector variability [11,20,21] and timing of oceanic
convergence [22]. Owing to the brief period, these data are indicative of the underlying
meteorology during that particular year and likely to be insufficient in regions of strong
synoptic variability. The 2010–2014 and 2017–current periods provide overlaps between
the OceanSat Ku-band scatterometers operated by the Indian Space Research Organization
(ISRO) and the C-band Advanced Scatterometer (ASCAT) operated by EUMETSAT, but the
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diurnal sampling is from a less optimal local time spacing (0000/1200 local for OceanSat-2,
0930/2230 for the EUMETSAT MetOp platforms). Since 2017, the eight-satellite Cyclone
Global Navigation Satellite System (CYGNSS) has been providing ocean surface wind
speeds at bistatic specular reflection points, which are traced out along the ocean surface
depending upon the locations of the transmitting Global Positioning System (GPS) space-
craft [23]. Unlike GPM, whose (subpoint) local observing time repeats every 46 days at
the equator, the time and location of the CYGNSS observations occur randomly due to the
asynchronous nature of the CYGNSS and Global Positioning System (GPS) satellite orbits.
The capability of CYGNSS and ASCAT to capture the diurnal wind patterns noted in earlier
studies was studied by [24]. However, the few methods that have attempted to merge the
longer-term record of multiple wind speed and wind vector observations [25,26] are not of
a temporal and spatial scale appropriate for both diurnal and semidiurnal wind analysis.

Since the relationship between wind speed and its (u, v) components is nonlinear, this
manuscript describes an observationally based methodology to merge the MW radiometer
and scatterometer-based wind estimates as a function of observation time, to generate
a multi-year dataset of diurnal wind variability. Section 2 describes the analysis used
to derive the diurnal and semidiurnal wind components when a sufficient number of
satellite observations are available on any given day. Section 3 compares the results of
these analyses to the diurnal wind modes revealed from the TAO-TRITON moorings in the
tropical Pacific and a similar analysis from two forecast model reanalyses over the same
region. After discussion in Section 4, the manuscript concludes in Section 5 with possible
explanations for discrepancies between models and observations.

2. Data Sources and Method

In this section, the sources and characteristics of the data are presented. The method-
ology used to assign a wind direction to the wind-speed-only observations is described.

2.1. Satellite, Mooring and Model Data Sources

Sources of satellite-derived winds are listed in Table 1. All MW radiometer-based wind
datasets were obtained from the extensive satellite-derived winds archive produced and
distributed by Remote Sensing Systems (RSS). After 2009, QuikSCAT data were collected
during intermittent periods in a staring (non-spinning) mode to enable calibration of other
scatterometers. RapidScat and non-spinning QuikSCAT data were obtained from the NASA
Physical Oceanography Distributed Active Archive Center (PO.DAAC). This effort will
utilize the recent Level-2 wind products developed for TMI [27], intercalibrated with other
MW radiometers [19].

Importantly, the datasets were screened for the presence of rain and intercalibrated
to the TMI reference sensor, such that the overall relative bias compared to wind speeds
derived from the other individual sensors in Table 1 was less than 0.1 m s−1 [27]. Figure 1
shows individual wind speed histograms (derived from all±15-min coincidences, identical
data counts and essentially identical observation times) between TRMM and QuikSCAT
during two different years (2003 and 2008), under rain-free conditions. For speeds less than
15 m s−1, there is no significant bias. On average, for wind speeds > 15 m s−1, QuikSCAT is
biased slightly low relative to TMI. It is noted that wind speeds in this high range are two
orders of magnitude or fewer in number than the predominant winds in the 5–10 m s−1

range and occur more frequently outside of the tropical Pacific Ocean domain (8S-8N)
investigated here.
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Figure 1. Individual wind speed histograms resulting from all 15-min coincidences between TRMM and QuikSCAT during
(a) 2003 and (b) 2008, under rain-free conditions.

Data from the TAO-TRITON global tropical moored buoy array [8] were obtained
from the Global Tropical Moored Buoy Array archive at the Pacific Marine Environmental
Laboratory (PMEL). TAO-TRITON moorings are located along eight longitudes in the
tropical Pacific between 170E and 95W longitude, at seven latitudes (8S, 5S, 2S, 0N, 2N,
5N, 8N) for most moorings. For each day that mooring data were available between 2003
and 2017, the high-quality (10-min sampling) data were time-averaged to hourly and
aggregated into 24 local time bins.

Ocean surface wind data from two forecast model reanalyses were examined for
comparison with the mooring array daily wind components. These are the ERA-Interim
(ERA-I) global atmospheric reanalysis produced by the European Centre for Medium-
Range Weather Forecasts (ECMWF) [28] and the Modern-Era Retrospective Analysis for
Research and Applications, Version 2 (MERRA2) reanalysis produced by the NASA Global
Modeling and Assimilation Office (GMAO) [29]. These data are available at 3-hourly
intervals. For each day that these model data are available between 2003 and 2017, the
surface winds from the MERRA2 and ERA-I reanalysis grid box closest to the TAO-TRITON
mooring array locations are located (8 local time bins per day).

2.2. Vector Reconstruction Methodology

Previous studies [20,30] have noted that the daily wind pattern near coastal regions
follows a near-elliptical variability. Assume that there are n wind vector estimates from n
satellite passes, all of them during a given day and over a given location. This number varies
depending upon the time of year, location and the particular satellites being considered.

Figure 2 shows that during 2010 (top panel) near the equator, the sun-synchronous
OceanSat-2 (violet symbols) and ASCAT (blue symbols) scatterometers and the WindSat
MW polarimeter (orange symbols) were operating, and n could reach values of 6 for some
locations on some days, if the location was captured by all three instruments during the
ascending and descending portions of their orbits. During 2015 (lower panel), ocean vector
observations were available from ASCAT, WindSat and also the asynchronous RapidScat
(red symbols). Approximately every 30 days, the RapidScat observing time would repeat,
and when its observations occurred near 12–15 local time, they filled in an otherwise
lengthy revisit time gap between ASCAT and WindSat.



Remote Sens. 2021, 13, 141 5 of 19

Figure 2. Time series of the local time of observation for a location at the equator, for the collection of
wind radiometers and scatterometers (Table 1) available during 2010 (a) and 2015 (b).

If n = 3 or 4, the desired diurnal coefficients (a0, a1, a2 ) and (b0, b1, b2 ) can be defined
such that 

u1
v1
...

un
vn

=


a0 + a1 cos(2πt1/24) + a2 sin(2πt1/24)
b0 + b1 cos(2πt1/24) + b2 sin(2πt1/24)

...
a0 + a1 cos(2πtn/24) + a2 sin(2πtn/24)
b0 + b1 cos(2πtn/24) + b2 sin(2πtn/24)

 (1)

where (t1, t2, . . . ..tn) are the local times in hours of the n observations, and equality is
only required up to the uncertainty in each of the instantaneous wind estimates. Defin-
ing U = (u1, u2, . . . .un)

T and V = (v1, v2, . . . .v)T and separating the unknowns into
→
x = (a0, a1, a2 )

T and
→
y = (b0, b1, b2 )

T , then (1) can be rewritten as a system of two

separate equations,
→
U = [A]

→
x and

→
V = [A]

→
y , where

[A] =

 1 cos(2πt1/24) sin(2πt1/24)
...

...
...

1 cos(2πtn/24) sin(2πtn/24)

 (2)
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If n = 5 or 6, then the system of equations can be expanded such that
→
x = (a0 a1 a2 a3 a4)

T

and
→
y = (b0 b1 b2 b3 b4)

T and [A] becomes a n × 5 matrix,

[A] =

 1 cos(2πt1/24) sin(2πt1/24) cos(4πt1/24) sin(4πt1/24)
...

...
...

1 cos(2πtn/24) sin(2πtn/24) cos(4πtn/24) sin(4πtn/24)

 (3)

In either case, the solution can be written in matrix form as

→
x =

(
AT D−1

u A
)−1

AT D−1
u
→
U (4a)

→
y =

(
AT D−1

v A
)−1

AT D−1
v
→
V (4b)

where Du and Dv are the diagonal n × n matrix carrying the variance of the u and v

measurements, respectively (when n = 3 or 5, [A] is square and (4) reduces to
→
x = [A]−1→U

and
→
y = [A]−1→V). Gille et al. (2005) used this type of formulation during the 2003

QuikSCAT/Seawinds tandem period (n = 4, so Equation (1)) was slightly overdetermined)
to study the sea breeze diurnal variability near coasts. In their case, all data from this
period were mapped onto a 0.25-degree grid and individually solved for each gridpoint,
assuming Du and Dv as identity matrices.

The addition of a wind-speed-only (denoted by w) sensor observation from a passive
MW radiometer brings in an additional observation at times tn+1. For example, during
2010 (Figure 2), the MW radiometer onboard the Aqua satellite filled in the time gap
near 13 UTC, and occasionally the asynchronous TRMM observations would occur near
15 UTC, both filling in missing time gaps. Note that in 2015, after TRMM had ended, both
RapidScat and GPM provided asynchronous observations. Since the relation between
w and (u, v) is nonlinear, the simplest way to incorporate w and avoid nonlinearities
is to turn it into a hypothetical vector observation by discretely sampling all possible
wind directions θ = (0, 1, 2, . . . 359) one degree at a time and, for each case, create the
hypothetical observation at time n + 1, e.g., for n = 3 or 4,

un+1 = w cos θ = a0 + a1 cos(2πtn+1/24) + a2 sin(2πtn+1/24) (5a)

vn+1 = w sin θ = b0 + b1 cos(2πtn+1/24) + b2 sin(2πtn+1/24) (5b)

or for n = 5 or 6,

un+1 = w cos θ = a0 + a1 cos(2πtn+1/24) + a2 sin(2πtn+1/24) + a3 cos(4πtn+1/24) + a4 sin(4πtn+1/24) (6a)

vn+1 = w cos θ = b0 + b1 cos(2πtn+1/24) + b2 sin(2πtn+1/24) + b3 cos(4πtn+1/24) + b4 sin(4πtn+1/24) (6b)

For each value of θ, the residual error E(θ) is calculated and compared with the
observations, e.g., for the case of n = 4,

E(θ) =
4

∑
i=1

(a0 + a1 cos(2πti/24) + a2 sin(2πti/24)− ui)
2 + (b0 + b1 cos(2πti/24) + b2 sin(2πti/24)− vi)

2 (7)

where I = 4 corresponds to the additional windspeed observation, and then retain the
solution for θ which minimizes E(θ) in (7). This simple minimization procedure locates θ to
the nearest degree, sufficient accuracy for this purpose. This formulation can be expanded
to bring in additional wind-speed-only observations at other times, n + 2, n + 3, etc. In
reality, the solution for θ should not physically deviate too far from nearby time (e.g.,
within 3-h) scatterometer-derived wind directions. In this investigation, θ was not allowed
to exceed by more than 60 degrees relative to the direction of the wind direction from either
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of the preceding or following observations. This reduces the computational burden for the
number of search directions when two or more radiometers are included.

The above procedure will only produce meaningful conditions for analysis where the
wind vector and wind speed observations are sufficiently numerous and sampled fairly
equally across the day. For example, if a TRMM overpass time occurs within one hour
of a QuikSCAT observation, it does not contribute much to the total daily sampling, and
any bias between the wind speeds could introduce unrealistic high-amplitude semidiurnal
components. To assign realistic values to the Du and Dv diagonal covariance matrices in (4),
the variance of the u and v observations (σu and σu, respectively) within a surrounding
1-degree box (discussed below) was computed for each of the satellite data types used.

It is important to note that the solution of (4) does not assure evidence of physical diur-
nal wind variability. The magnitude of the diurnal u and v components should sufficiently
exceed the variability owing to the variability in the estimated regression coefficients.
Defining the peak estimated magnitudes as Au =

(
a2

1 + a2
2
)1/2 and Av =

(
b2

1 + b2
2
)1/2,

and assuming that (a1, a2, b1, b2) are each independently distributed Gaussian random
variables, a reasonable acceptance condition is that Au and Av both exceed the magnitude
that results when the regression coefficients (4) are varied by up to two standard deviations
about their mean value, in order to identify conditions where the estimated diurnal wind
variability is statistically meaningful. For cases that pass this criterion after solving for (4),
an additional coefficient of determination (R2 test) is applied, and cases where R2 < 0.95
are rejected.

Figure 3 demonstrates this analysis for a single day, using satellite observations within
a 1-degree region just eastward of the Yucatan peninsula on 16 May 2016, an area of known
coastal wind variability. In this example, there are five wind vector observations (two each
from ASCAT and WindSat, one from RapidScat, all shown with red symbols) and two
wind speed observations (two from AMSR-2, blue symbols), fairly well-spaced through the
day. The symbols in the top two panels show the observed zonal and meridional winds,
and the middle row shows the wind speed magnitude and direction. After solving for θ by
locating the two values of which minimize (7), the assigned AMSR-2 wind directions are
near 275 and 310 degrees (towards the west, onshore), shown in the right middle panel.
The least-squares fitted diurnal (blue line) and semidiurnal (red line) wind components
are shown in the top two panels. The actual (u, v) and w observations fall on top of the
corresponding regression fits (solid black lines). The wind speed is fairly steady during the
morning hours and decreases in the afternoon, consistent with the sea breeze conditions
typical of this region. While the wind direction does not change markedly, the net effect
of including the smaller semidiurnal component is to “flatten” the magnitude of the sea
breeze during the morning hours. From this analysis, the “sense” of the elliptical variability
can be determined; here, the diurnal (blue) and a smaller semidiurnal (red) wind ellipse
spin clockwise (CW) with magnitudes < 3 m s−1.

Since the analysis in the following section will compare the satellite-derived daily
wind components to other observations over multiple years, this analysis should be able to
replicate daily wind patterns that are known to regularly occur. Repeating this procedure
for each day between 2003 and 2017, where the observations meet the acceptance criteria,
Figure 4 shows the regression-fitted diurnal u (top) and v (below) wind components,
for a different 1-degree region off the coast of Colombia. Each line corresponds to one
day during this interval (the line color serves only to separate the lines for better visual
appearance). The predominant maximum in the u and v components is evident near 18Z
and 6Z, respectively.



Remote Sens. 2021, 13, 141 8 of 19

Figure 3. Diurnal wind mode analysis for one day (16 May 2016) of observations, offshore of the
Yucatan peninsula. On this day, the data consisted of RapidScat, two ASCAT, two WindSat and two
AMSR-2 observations (n = 7). Each “clump” of points represents the collection of 25-km wind vector
cells that falls into this region. (a,b) The estimated diurnal and semidiurnal (u, v) wind components in
blue and red, respectively, and the “fitted” (u, v) components. (c,d) Same data as in the top panels, but
shown in speed and direction (w, θ) coordinates. (e) Wind ellipses formed by the (mean-subtracted)
diurnal and semidiurnal wind components. Both the diurnal (blue) and a smaller semidiurnal (red)
wind ellipse spin clockwise with magnitudes < 3 m s−1.

Figure 4. Diurnal wind components estimated from analysis of all data (179 cases) between 12 April
2003 and 1 February 2016, for a location just offshore of Colombia. (a). Zonal (u) component.
(b) Meridional (v) component.
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Figure 5 shows a map of the maximum amplitude of the diurnal (u, v) wind com-
ponents, for all observations meeting the quality control criteria during the RapidScat
operations period (October 2014 to September 2016). The strong near-coastal diurnal wind
patterns (red areas near coastal areas, including the areas from Figures 3 and 4) agree
well with the locations determined by [20]. Across the open ocean tropical latitudes, the
diurnal components are smaller, less than 1 m s−1. For example, there are regions in the
ITCZ (box outlining the domain of the TAO-TRITON moored array) where the meridional
diurnal wind component appears to be larger than the zonal diurnal component. In the
next section, the analysis will be focused within the tropical latitudes, specifically within
the open tropical basins (anchored by the TAO-TRITON, RAMA and PIRATA mooring
locations), where offshore propagation from coastal effects is diminished [11].

Figure 5. Maps of the maximum amplitude of the diurnal wind components, for all observations meeting the quality control
criteria during the RapidScat operations period (October 2014 to September 2016). (a) Zonal (u) component. (b) Meridional
(v) component.

3. Daily Wind Modes over the Tropical Pacific

Less understood are wind variability effects in the tropical oceans, far away from
coastal effects. While the factors associated with daily variability in wind modes are likely
ocean-basin-dependent, these patterns have been surmised to occur owing to variations
in the sea level pressure gradient associated with atmospheric thermal tides [31], or po-
tentially due to diurnal modes in the wind vector derivative fields (e.g., surface wind
convergence) associated with tropical convection [32]. To date, the best long-term record
of surface observations in the tropical Pacific comes from the TAO-TRITON mooring
array. Using these data, the zonal wind variability has previously been shown to be domi-
nated by the semidiurnal component, and the meridional wind variability by the diurnal
component [9,10]. Figure 6 shows the diurnal wind components (upper left = zonal, upper
right = meridional) as revealed with all TAO-TRITON data during 2015 for the mooring
located at 2S 155W, in the same panel layout used for Figure 3. The elliptical variability
assumption assumed in (1) very closely replicates these observations. In this case, the
predominant wind blows from the east at around 5 m s−1 (middle panels), but buried
within this value is the diurnal wind variability, which has a magnitude of only around
0.2 m s−1, which is nearly an order of magnitude smaller than the strong near-coastal wind
variability noted in Figure 3. Note that the diurnal mode wind ellipse spins CW, and the
semidiurnal spins counter-CW.



Remote Sens. 2021, 13, 141 10 of 19

Figure 6. Same layout as Figure 3, except for the TAO-TRITON mooring located at 2S 155W. All hourly data from 2015 are
used to solve for the coefficients in Equation (4). The “fitted” mean value at each hour is shown by the connected black
line, with the associated ±1 standard deviation bar. The semidiurnal and diurnal modes are evident for the zonal and
meridional wind components. The diurnal (blue) and a semidiurnal (red) wind ellipse spin clockwise and counter-clockwise,
respectively, with magnitudes < 0.2 m s−1.

From satellite-based data, the use of scatterometry has not been fully explored to see
if it can replicate these known tropical diurnal wind patterns. If so, this would potentially
expand the use of scatterometer wind data to serve as an independent validation of the diur-
nal winds produced by climate models. In this section, regions of diurnal and semidiurnal
wind variability are investigated over the tropical Pacific Ocean (8S-8N, 170E-110W) cov-
ered by the TAO-TRITON array (boxed area in Figure 5). After the SeaWinds/QuikSCAT
tandem period ended in late 2003, the next opportunity for two or more scatterometers
came in 2007, with the availability of the first Advanced Scatterometer (ASCAT) on MetOp-
A. Therefore, the collection of scatterometers and radiometers from Table 1 are examined
during the mid-2007–early 2017 period for individual days when the observations are
spaced in time such that all 10 harmonic terms (a0 a1 a2 a3 a4 ) and (b0 b1 b2 b3 b4) can
be estimated with at least two extra degrees of freedom (n = 12). Figure 7 shows that
over this period of record, this alignment of observations will occur most often if at least
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two speed-only radiometers are included. The corresponding number of observations
available at each mooring location ranges from 61 (2S 110W location) to 153 (2N 110W
location) for the 2007–2017 period. Interestingly, when the two radiometer observations
are restricted to only TMI and GMI (preferred asynchronous orbiting), the number of cases
is less than if all radiometers except TMI and GMI are used. This is likely due to the Aqua
and GCOM-W observing times filling in an otherwise lengthy revisit in the local afternoon
times (Figure 2).

1 
 

 
Figure 7. Time sequence of days where there are at least 12 u and v observations surrounding the TAO mooring located
at 2S 125W, sufficient to solve Equation (4) with at least two extra degrees of freedom. Each of the five horizontal lines
corresponds to a different satellite data acceptance criterion. From top to bottom: (a) All available wind vector observations
and up to three radiometers maximum; (b) Same as (a) but two radiometers maximum; (c) Same as (a) but one radiometer
maximum; (d) Same as (b) but not allowing TRMM or GPM radiometers; (e) Same as (b) but only allowing TRMM and GPM.
The gap in 2014 occurs in the period after OceanSat-2 had ceased functioning but RapidScat had not yet been deployed.

In the discussion to follow, the results of the merged scatterometer + radiometer
(denoted as SCAT + RAD) wind mode analysis will be carried out in 1-degree boxes
centered at the TAO mooring locations. For graphical purposes, only three latitudes
between (2S, 0S and 2N) and eight longitudes from 165E to 95W (24 locations) within the
equatorial subset of the TAO-TRITON array will be presented.

3.1. Average Daily Wind Modes at the TAO-TRITON Locations

The merged SCAT + RAD wind mode analysis is accompanied by the wind mode
analysis carried out with the 3-hourly (i.e., 8 samples per day, sufficient to resolve the
diurnal and semidiurnal modes) MERRA2 and ERA-I data, over this same time period. As
discussed in the Introduction, the ability of a model to represent the daily modes of variabil-
ity of wind (and precipitation) provides a test of the physical convective parameterizations
used in the model [15,16]. It is recognized that there are known differences in how these and
other models partition wind kinetic energy into zonal and meridional wind components,
which has implications for surface wind derivative fields such as divergence [33]. Here,
the purpose of including these data is to examine how the smaller wind mode variability
from two well-known forecast model reanalyses replicates, or deviates from, the patterns
of diurnal wind mode variability noted from the TAO-TRITON observations and the SCAT
+ RAD merging analysis.

Figure 8 summarizes the results of the wind mode analysis in 1-degree boxes centered
at the mooring locations, for the zonal (u) diurnal + semidiurnal (sum of both) wind
component. All figure panels use the same scale, with local time on the abscissa (extending
over two daily cycles for clarity, 0–48-h local time) and wind speed on the ordinate between
±1 m s−1. The daily mean zonal wind component (i.e., the ao and bo terms in Equation
(1)) has been removed to isolate the magnitude of the diurnal variability. The estimates
from the TAO moorings, ERA-I, MERRA2 and the SCAT + RAD analysis are represented
by the red, blue, green and black line colors, respectively.
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Figure 8. Map layout of the daily mode (sum of diurnal + semidiurnal components) zonal (u) wind component, at each of
the 24 locations within the TAO-TRITON array (box area shown in Figure 5) using all data between 2007 and 2017. The
x-axis extends from 0 to 48 h local time (two daily cycles) for enhanced visibility, and the y-axis extends between ±1 m
s−1. Positive (negative) values indicate westerly (easterly) winds relative to the daily mean. The estimates from the TAO
moorings, ERA-I, MERRA2 and the scatterometer + radiometer (SCAT + RAD) analysis are represented by the red, blue,
green and black line colors, respectively.

The TAO-TRITON zonal component shows a predominant semidiurnal variability
under ±0.5 m s−1, especially for longitudes at and westward of 155W (toward the West
Pacific warm pool area), with some added diurnal variability (e.g., 0S 125W location)
especially at locations eastward of 155W, in general agreement with [9]. The peak zonal
amplitude is fairly consistent, occurring twice daily near 3- and 15-h local time. The
semidiurnal zonal wind behavior is believed to be associated with known semidiurnal
variations in the tropical sea level pressure gradient, associated with atmospheric thermal
tides [31]. The SCAT + RAD zonal component is fairly well aligned in phasing and
amplitude with the moorings at and westward of 155W longitude. Eastward of this, the
SCAT + RAD component exhibits more added diurnal variability than the moorings and
with a two-times larger overall amplitude (nearly ±1 m s−1 at the 2N 95W location). By
contrast, the zonal component revealed by both models is more consistent with the TAO-
TRITON analysis. However, it is noted that the models differ more from each other in the
locations where SCAT + RAD also differs from TAO-TRITON (e.g., 2N 95W) and where
TAO-TRITON reveals added diurnal variability (e.g., 0S 125W).

Consistent with the layout of Figure 8, the results of the wind mode analysis for the
meridional (v) wind component are shown in Figure 9. The TAO-TRITON data reveal a
predominant diurnal variability, slightly larger in peak-to-peak amplitude than the zonal
component, in general agreement with [9]. Moving eastward in longitude (left to right in
the figure panels), the maximum in the meridional wind component shifts from the early
morning (6 h) more towards midday (12 local). The SCAT + RAD analysis also reveals
a diurnal variability, but with substantial additional semidiurnal variability in most of
the locations and up to two-times larger overall amplitude relative to the moorings. The
patterns in the meridional component revealed by both models are less consistent. In
general, the meridional wind component shows generally less semidiurnal behavior (e.g.,
near 110W), although some locations suggest a superposition of diurnal and semidiurnal
patterns (e.g., near 140W). In general, the TAO-TRITON meridional component is smaller
in the southwestern locations compared to the northwest locations. Overall, a key takeaway
is that, relative to these surface observations, the SCAT + RAD meridional mode does not
exhibit as clear a dominant diurnal signal as noted in the moorings and models.
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Figure 9. Same as Figure 8, but for meridional (v) wind component. Positive (negative) values indicate southerly (northerly)
winds relative to the daily mean. The estimates from the TAO moorings, ERA-I, MERRA2 and the scatterometer + radiometer
(SCAT + RAD) analysis are represented by the red, blue, green and black line colors, respectively.

The overall 11-year (2007–2017) analysis presented above averages any year-to-year
variability that may be present in the underlying wind conditions. As noted, such a
long-term average was necessary in order to maximize SCAT + RAD data sufficiency
at each of the locations. From Figure 7, the SCAT + RAD sampling was densest in the
2010–2014 period when OceanSat-2 and MetOp-A were jointly operating, with a notable
gap until RapidScat began operation in late 2014. In the following section, these same
data are analyzed for variability as a function of El Niño Southern Oscillation (ENSO)
conditions inferred from the Oceanic Niño Index (ONI) [34]. The ONI is based on the
variation of the 3-month running mean of the oceanic sea surface temperature (SST) within
the domain specified by the 5S–5N, 170W–120W latitude and longitude range, respectively.
It is emphasized that the limited and intermittent satellite data over any single year are
insufficient to analyze the characteristics of the SCAT + RAD wind variability at many of
the TAO-TRITON locations.

3.2. Daily Wind Modes from 2010 and 2015

The ITCZ normally moves northward (southward) during northern (southern) hemi-
sphere summer seasons. During El Niño years, the location of the ITCZ shifts further
southward with the change in the predominantly zonal trade winds, with resultant changes
to the regions of SST and resultant convective precipitation. It is hypothesized that any
change to the diurnal wind variability that is manifested as a result of these large-scale
trade wind and SST conditions is most likely to be noticeable when El Niño and La Niña
conditions are contrasted.

During the 2007–2017 average period presented above, 2007 and 2010 were strong
La Niña years, and 2011 was a moderate La Niña year. Moreover, 2009 was a moderate
El Niño year, and 2015 was a very strong El Niño year. The remainder were more or less
neutral. While presenting and interpreting results for each of these 11 years is beyond
the scope and length of this manuscript, in this section, the zonal and meridional wind
variability during the 2010 La Niña year is contrasted with the variability during the very
strong 2015 El Niño year.

3.2.1. Zonal Wind Modes

Figure 10 depicts the zonal (u) wind component estimated by TAO-TRITON, ERA-I,
MERRA2 and SCAT + RAD using data from 2010. Figure 11 depicts the same using data
from 2015. In both figures, the layout is identical to Figure 8. To ensure that the full year
variability was sampled, at least 10 months of TAO-TRITON sampling was required for
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each location; otherwise, these data (solid red line) are not shown. As mentioned above,
many locations have no SCAT + RAD data and are not shown (solid black line).

Figure 10. Same as Figure 8, but showing zonal (u) wind components from 2010, a year with moderate La Niña conditions.
Positive (negative) values indicate westerly (easterly) winds relative to the daily mean. For many locations, TAO-TRITON
and SCAT + RAD data are not shown owing to the limited number of observations.

Figure 11. Same as Figure 8, but showing zonal (u) wind components from 2015, a year with strong El Niño conditions.
Positive (negative) values indicate westerly (easterly) winds relative to the daily mean. For many locations, the TAO-TRITON
and SCAT + RAD data are not shown owing to the limited number of observations.

While there are some slight differences between 2010 and 2015 data, it is difficult to
discern different characteristics in the predominant semidiurnal zonal wind mode between
the two models. ERA-I exhibits larger amplitudes compared to MERRA2, in the western-
most (165E longitude) and easternmost (95W longitude) TAO-TRITON locations. On the
easternmost side, both reanalysis models tend to introduce a small diurnal component on
top of the semidiurnal mode, especially for ERA-I. Compared to 2010, the SCAT + RAD
zonal component (where available) during 2015 is slightly larger in magnitude than the
TAO-TRITON data. In general, the models and the SCAT + RAD data are more in-phase
(i.e., synchronized in local time maxima) with the TAO-TRITON data in 2015 than they are
in 2010.
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3.2.2. Meridional Wind Modes

Figure 12 depicts the meridional (v) wind component estimated by TAO-TRITON,
ERA-I, MERRA2 and SCAT + RAD using data from 2010. Figure 13 depicts the same using
data from 2015. In both figures, the layout is identical to Figure 9.

Figure 12. Same as Figure 9, but showing meridional (v) wind components from 2010, a year with moderate La Niña
conditions. Positive (negative) values indicate southerly (northerly) winds relative to the daily mean. For many locations,
the TAO-TRITON and SCAT + RAD data are not shown owing to the limited number of observations.

Figure 13. Same as Figure 9, but showing meridional (v) wind components from 2015, a year with strong El Niño conditions.
Positive (negative) values indicate southerly (northerly) winds relative to the daily mean. For many locations, the TAO-
TRITON and SCAT + RAD data are not shown owing to the limited number of observations.

In general, the meridional components exhibit more variability amongst the datasets
than was noted in the zonal wind analysis. Compared to the zonal component, there
is more variability between the two models across mooring locations, especially at the
easternmost (95W longitude) locations. Across the southern (2S) longitudes, both models
tend to introduce more sub-diurnal variability during 2010 than for 2015. The diurnal
mode in the meridional component is largest in the Central Pacific (northeast corner of
these 24 panels) and is noticeably smaller in the Western Pacific (southwest corner).

The conclusions from this analysis are that there are noticeable differences in the
meridional wind components between these two models when separated by La Niña
and El Niño conditions. However, there is also high regional variability, shown by the
differences from location to location, which are discussed further in Section 4.
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When SCAT + RAD data are available at a location for 2010 and 2015, these data
show large meridional wind component differences. However, it is cautioned against
drawing conclusions from these data. There are many locations where the behavior of the
SCAT + RAD wind mode shows a fairly large sub-diurnal component (e.g., 2N 140W in
Figure 12). This could happen when a speed-only (radiometer) observation occurs very
close in local time to a vector (scatterometer) observation, and the radiometer wind speed
is biased high relative to the scatterometer. The minimization (Equation (7)) will converge
by fitting a high-amplitude second harmonic (sub-daily) term to the observations from
that particular day. In order to mitigate this condition somewhat, radiometer observations
are rejected when they are within one hour of a scatterometer observation, which works
well to filter out these cases for the full 2007–2017 meridional analysis shown in Figure 9.
However, for this yearly analysis, the smaller data count limits the scientific interpretation
of the year-by-year SCAT + RAD data.

4. Discussion

In both the SCAT + RAD wind modes and in the MERRA2 and ERA-I data, the zonal
wind component is dominated by semidiurnal variability, as demonstrated and explained
in earlier studies of TAO-TRITON data by [9]. The interesting results from this study
appear in the meridional wind component, for which TAO-TRITON shows mostly diurnal
wind variability, but regional and seasonal differences reveal mixtures of diurnal and
semidiurnal modes. Both the MERRA2 and the SCAT + RAD analysis exhibited more
variability in the meridional diurnal wind component than the TAO-TRITON mooring
data. This feature is also noted in the TAO-TRITON data themselves, so it is not clear from
these findings if there is a more physical reason for the meridional component, or whether
it is related to characteristics of the satellite and mooring measurements.

Nevertheless, these differences in the meridional component suggest a more careful
analysis of the ocean wind data compared to the diurnal variability noted in oceanic
precipitation, available from the lengthy TRMM and GPM data record. More specific to
linking winds and convective precipitation are the dynamically important quantities of
time-mean surface convergence/divergence and vorticity, which can be computed from
the (u, v) wind components estimated by wind-vector-capable scatterometers [14]. Relative
to the wind field itself, the wind vorticity is highly intermittent and more variable [35]
and, when estimated from a scatterometer, affected by rain effects. Analysis of QuikSCAT
scatterometer data near the ITCZ has revealed the Eastern and Central Pacific Ocean to be
characterized by stronger surface convergence than the Western Pacific warm pool and the
Indian Ocean [36].

The ITCZ essentially tracks the ascending branch of the Hadley cell, producing con-
vection by solar heating, whereas the opposite occurs on the descending branch. The
descending branch is dominated by a subtropical high-pressure area, which suppresses
convection. The Southern Pacific Converge Zone (SPCZ) extends southeast from the trop-
ical West Pacific warm pool toward French Polynesia, although its size and orientation
vary [37], especially during strong El Niño years. For comparison, Figure 14 contrasts the
February GPM IMERG precipitation total from the IMERG data during winter 2015 (strong
El Niño) and winter 2017 (weak La Niña). Within the ITCZ, the precipitation patterns
appear markedly different, especially noted in 2015, where the SPCZ moves northward
and further east, into the regions covered by the TAO-TRITON moorings. Within the
ITCZ latitudes, the analysis of GPM-IMERG satellite precipitation data generally follows a
diurnal pattern, with a maximum near 5 UTC, but the diurnal amplitude does not appear
to be noticeably different from year to year (figure not shown). More coordinated investi-
gations of these joint data, including sampling of the TAO-TRITON mooring data to match
the satellite sampling times [38], is needed before further connections between tropical
convective processes and oceanic wind variability can be concluded.
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Figure 14. Comparison of GPM IMERG 7-month accumulated precipitation (mm) during November 2015–June 2016 (a) and
November 2017–June 2018 (b). Approximate domains of the RAMA, TAO/TRITON and PIRATA moored arrays are shown.
The color scale extends from 0 to 3000 mm.

5. Conclusions

Since the relationship between the ocean wind speed (w) and its zonal (u) and merid-
ional (v) wind components is nonlinear, a methodology has been demonstrated to merge
the speed-only measurements from passive MW radiometers with the wind vector measure-
ments available from scatterometers, to estimate the daily modes (diurnal and semidiurnal)
of wind vector component variability. Compared to TAO-TRITON mooring array data,
the SCAT + RAD wind components and the MERRA2 and ERA-I reanalysis model wind
components fairly well replicate the semidiurnal zonal wind variability over the tropi-
cal Pacific (in agreement with earlier studies) but generally show more variability in the
predominantly diurnal meridional wind components. Compared to the two models, the
SCAT + RAD meridional component differs widely across the mooring locations or shows
no clear dominant diurnal or semidiurnal mode. It is hypothesized that the discrepancies
amongst the meridional winds are due to interactions between surface convergence and
convective precipitation over tropical ocean basins.

Looking ahead, few studies have attempted to examine the wind derivative fields
(e.g., convergence, vorticity) that provide linkage to oceanic convection (e.g., [32]). This
is due in part to the intermittent nature of available ocean vector winds and precipitation
radar coverage. Scatterometer vector winds from operational, sun-synchronous orbiting
satellites provide practically the only observational means to estimate these dynamically
important wind derivative fields. Beginning in 2017, ocean wind speed observations
from CYGNSS provide additional diurnal wind sampling. Currently, the Compact Ocean
Wind Vector Radiometer (COVWR) is scheduled to begin operations from the ISS in 2021.
These data combine with the operational C-band (ASCAT) and Ku-band scatterometer
data (e.g., ScatSat, FY-3) to continue the record for examining the daily modes of wind
vector variability [39]. For example, does the predominance of strong convergence lead to
convective systems that shift or alter the modes of the diurnal wind cycle? Further use of
these data together with GPM Dual-Frequency Precipitation Radar (DPR) observations is
encouraged, to identify and highlight the mechanisms linking tropical convection processes.
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