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Abstract: The spatial distribution of forest stands is one of the fundamental properties of forests.
Timely and accurately obtained stand distribution can help people better understand, manage, and
utilize forests. The development of remote sensing technology has made it possible to map the
distribution of tree species in a timely and accurate manner. At present, a large amount of remote
sensing data have been accumulated, including high-spatial-resolution images, time-series images,
light detection and ranging (LiDAR) data, etc. However, these data have not been fully utilized.
To accurately identify the tree species of forest stands, various and complementary data need to be
synthesized for classification. A curve matching based method called the fusion of spectral image and
point data (FSP) algorithm was developed to fuse high-spatial-resolution images, time-series images,
and LiDAR data for forest stand classification. In this method, the multispectral Sentinel-2 image
and high-spatial-resolution aerial images were first fused. Then, the fused images were segmented to
derive forest stands, which are the basic unit for classification. To extract features from forest stands,
the gray histogram of each band was extracted from the aerial images. The average reflectance in
each stand was calculated and stacked for the time-series images. The profile curve of forest structure
was generated from the LiDAR data. Finally, the features of forest stands were compared with
training samples using curve matching methods to derive the tree species. The developed method
was tested in a forest farm to classify 11 tree species. The average accuracy of the FSP method for ten
performances was between 0.900 and 0.913, and the maximum accuracy was 0.945. The experiments
demonstrate that the FSP method is more accurate and stable than traditional machine learning
classification methods.

Keywords: forest stands classification; curve matching; data fusion; multisource remote sensing data;
segmentation; tree species mapping

1. Introduction

Forests, an important type of land cover and a key part of ecosystems, have a decisive
influence on maintaining carbon dioxide balance, biodiversity, and ecological balance.
Forests play a vital role in the survival and development of human civilization. According
to the report by the Food and Agriculture Organization (FAO) of the United Nations,
forest ecosystems cover approximately one-third of the earth’s land surface [1]. The com-
position and spatial distribution of forest tree species have a great impact on the forest
ecological environment, biodiversity, resource utilization efficiency, production and carbon
storage capacity, and nutrition cycle [2–8]. The basic unit for the forest inventory is the
forest stands, which is a large forested area of homogeneous tree species composition [9].
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Classification of tree species, one of the main tasks of forest science, is important to forest
management [10]. Tree species information obtained from classification can be served as
fundamental dataset. For example, the productivity of forest biomass can be improved
based on some tree species-specific models [7]. Timely and accurate identification of forest
stand types and tree species can help people better understand, manage, and protect forests.
Therefore, effective and efficient techniques for delineating forest stands and classifying
tree species are highly demanded [11,12].

In traditional forest surveys, forest stand distributions were obtained through field
investigation, which is a time-consuming and laborious process [13,14]. Remote sensing
technology can easily obtain forest information over large areas [15], even in dense and
inaccessible forests. Spectral images obtained from remote sensing systems offer a practical
and economical method to draw the distribution of tree species [13,16], thus reducing the
field workload [17,18]. According to the assumption that different tree species have differ-
ent spectral feature characteristics [19], the distribution of forest species can be extracted
from spectral images.

Spectral images include multispectral and hyperspectral images. Multispectral images
generally contain mid to low-spatial-resolution images, such as GaoFen-1/4, Sentinel-2,
Landsat-7/8, and SPOT 1/2/3/4 and high-spatial-resolution images, such as GaoFen-
2, IKONOS-2, QuickBird, RapidEye, and Airborne [20]. In the early stage, a Landsat
Multispectral Scanner System (MSS) image was applied to forest cover mapping, but the
classification results were limited due to the coarse spatial and spectral resolution of the
image [21–23]. With the improvement in multispectral sensors, high-spatial-resolution
multispectral images with wider band ranges have become available; thus, more details of
forest stands can be obtained from images [3,24–26]. A high-spatial-resolution multispectral
image provides rich spectral and textural information [27–29], which can improve the
accuracy of tree species classification [24,25]. Object-based image analysis (OBIA) is usually
first applied to high-spatial-resolution images, partitioning the image into segments (i.e.,
objects) according to the textural and spectral information [26]. Each segment can be seen
as a forest stand. Classification is applied to each forest stand to obtain the tree species.
Qian et al. (2006) showed that the classification accuracy can be improved by 10–15%
after introducing textural information compared with using only spectral information [30].
However, traditional OBIA uses only statistical features, such as the mean and standard
deviation of the pixels in the objects [27,28,31], so the rich information in the objects is not
fully used. Additionally, for the features of objects represented by those statistical features,
it assumes that the pixel values in the objects follow a Gaussian distribution [32]. When the
spatial resolution is high, the heterogeneity in the objects is large, such as in the forest stand
unit, and the traditional OBIA is no longer applicable [33]. In addition to the improvements
in spatial and spectral resolutions, the increase in time resolution also benefits forest stand
classification. Distinctive spectral-temporal features of tree species can be extracted from
time-series images. Karlson et al. (2016) used two seasonal WorldView-2 images for
mapping five tree species in West Africa [27]. Madonsela et al. (2017) concluded that two
seasonal WorldView-2 images can improve the accuracy of tree species [34]. Pu et al. (2018)
evaluated the potential of five seasonal images for classifying tree species in an urban
area [35]. These studies have shown that information on the phenology changes in forest
stands over the growing season can improve classification accuracy [26].

High-spatial-resolution images usually contain a few bands with a wide bandwidth,
thus providing poor spectral information. More importantly, similar spectral information may
exist among different tree species in high-spatial-resolution images. Hyperspectral images
contain nanometer-level spectral resolutions and the rich spectral information of ground
objects. Hyperspectral images have also been used for forest stand classification [36,37]. How-
ever, hyperspectral images usually have low spatial resolution. Due to the large number of
hyperspectral bands and strong correlation between bands, the increase of feature dimension
may cause the performance of the classifier to deteriorate when the feature dimension reaches
to a certain critical point. This is the so-called Hughes phenomenon, occurring in traditional
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machine learning classification methods that rely on spectral features and sample size [38,39].
Additionally, the variance of the spectra within the same class is usually large for hyperspec-
tral images, leading a poor separability of hyperspectral features [39–41]. These problems
might greatly affect the accuracy of forest stand classification [42–44], and the classification
result is not robust to noise when using hyperspectral images [36]. In addition, multispectral
and hyperspectral images do not contain three-dimensional structural information, such as
canopy height and vertical structures.

To describe the three-dimensional structure of trees, light detection and ranging
(LiDAR) data were introduced to forest stand classification. LiDAR data, a collection of
points, are a three-dimensional representation of an object. The LiDAR system became
mature in approximately 2000 [45]. Numerous works have pointed out the effectiveness of
LiDAR data in tree species classification [42,43,46], and some researchers used LiDAR data
to classify forest in a large area [47]. LiDAR data can be used alone for classification, but the
accuracy is lower than that using spectral images. More frequently, LiDAR points are
regarded as ancillary data to classify forest stands with remotely sensed images. At present,
LiDAR has become an important tool in forestry applications. Valuable forest geometric
information is obtained from LiDAR data, such as tree height [44], canopy diameter [48],
leaf area index [49], and canopy volume profiles [43]. For example, Blomley et al. (2017)
analyzed multi-scale geometrical features, revealing that representative features extracted
from LiDAR data can improve the accuracy of tree species identification. Rami et al. (2018)
and Pu et al. (2018) concluded that the height information extracted from LiDAR data is
helpful for mapping urban tree species [50,51]. Shi et al. (2018) evaluated some frequently
used LiDAR features for discriminating forest tree species, and these features are useful in
a mixed temperate forest [52]. However, the use of LiDAR data has some shortcomings.
For example, the features extracted from LiDAR can vary among tree species, which may
reduce the classification accuracy [53]. Additionally, it is difficult to fuse LiDAR data with
remotely sensed images.

As mentioned above, high-spatial-resolution images include spectral and textural
information, making it possible to extract forest stands. Time-series images provide phono-
logical features, and LiDAR data contain information about the geometric structure of
tree species. The information provided by the three types of data is complementary [43].
Consequently, combining these three types of data may hold great promise for improving
forest inventories, particularly at stand-level discrimination [54–57]. However, different
spectral images have different spatial, spectral, and time resolutions, making the fusion of
multisource images difficult. Additionally, LiDAR data are in point cloud format, which is
different from spectral images. Therefore, the traditional classification methods that fuse
spectral images and LiDAR data often sacrifice rich forest information. To fuse with
images, LiDAR data are usually transformed to raster formats, such as canopy height
modules (CHM) [56,58–61] and canopy volume profiles (CVP) [43]. These characteristics
only can describe one aspect of trees. Fassnacht et al. (2016) pointed out that few studies
have combined spectral images and LiDAR data in a more complicated way for forest
classifications [53].

Consequently, a comprehensive fusion method was expected to utilize the characteris-
tics of various types of data. Curve matching methods have shown promising outlooks for
object-based classification [62]. In previous studies, a histogram curve was generated for
each object across multispectral bands. Classification was performed based on a compari-
son of the histogram curves of the object to be classified and the sample objects. The curve
matching method includes richer information than traditional classification methods based
on statistical measures (e.g., mean value of objects). For LiDAR data, a frequency distri-
bution map that describes the structure of trees can be generated [63]. This profile curve
is called the profile curve because it mainly reflects information about the profile of the
tree. Compared with feature maps extracted from LiDAR data, such as CHM and CVP,
the profile curve can reflect more forest characteristics, and can be applied to estimate
the leaf area index and biomass [63–67]. Some researchers have fused the profile curve
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of LiDAR data with WorldView-2 to classify land cover types [32]. However, these cover
types are typical land cover classes, such as buildings, grass, water, trees, and pavement.
Although curve matching methods have achieved good results in classifications, there are
no related studies focusing on complex forest stand classification. Additionally, using curve
matching methods to fuse various types of data has not been explored.

Although a large amount of remote sensing data is available, they have not been
fully utilized. Comprehensive utilization of multiple data is expected to more accurately
classify forest stands. Currently, there are few studies on fusing time-series images with
high-spatial-resolution images to synergize spectral and phenology information for forest
stand classification. Additionally, there is a lack of multisource heterogeneous data fusion
methods to integrate images and point cloud data (i.e., LiDAR). Therefore, to solve these
problems and further improve the classification accuracy of forest stands, a forest stands
classification method that fuses high-spatial-resolution images, time-series multispectral
images and LiDAR data is developed. We define this method as the Fusion of Spectral
image and point data (FSP) method.

This paper is organized as follows: the study areas and experimental data are in-
troduced in Sections 2.1 and 2.2; the method we propose is described in Section 2.3;
experimental results and analysis are demonstrated in Section 3; the applicability of this
method is discussed in Section 4; the conclusion is provided in Section 5.

2. Materials and Methods
2.1. Study Area

The study area is in the Gaofeng forest farm (22◦58′20.54′′ N, 108◦23′16.26′′ E) in
Nanning, Guangxi Zhuang Autonomous Region, China (Figure 1). The area, which is in
a subtropical monsoon climate zone, is composed of a hilly landform with an elevation
varying from 100 to 300 m and a falling gradient of 6◦ to 35◦. The average annual tempera-
ture is 21.6 ◦C, and the annual sunshine time is between 1450 h and 1650 h. Additionally,
the annual rainfall, which is mainly concentrated in summer, is 1304.2 mm. The average
humidity is above 80%, and the annual evaporation is slightly higher than the rainfall.

This area, with typical characteristics of forests in southern China, is suitable for
the growth of a variety of timber trees, especially tropical and subtropical tree species.
The forest farm is rich in forest resources, with a forest coverage rate of 87.5%. The number
of tree species in the forest mainly includes Eucalyptus robusta Smith, Illicium verum Hook.
f., Mytilaria laosensis Lec, Cunninghamia lanceolata, Pinus massoniana Lamb, Pinus elliottii,
and other broad-leaved tree species.

2.2. Experimental Data
2.2.1. Sentinel-2 Data

Sentinel-2 images are widely available. The multispectral bands of Sentinel-2 images
include 13 bands, with bands 2, 3, 4, and 8 having a 10 m spatial resolution; bands 5, 6, 7,
8a, 11, and 12 having a 20 m spatial resolution; and bands 1, 9, and 10 having a 60 m spatial
resolution. Due to cloud coverage, only four images which were come from 2015 to 2017
were selected. The four images were acquired on 2 September 2016, 2 June 2016, 1 April
2017, and 30 July 2017, as shown in Figure 2. April and June are the flowering periods of
many tree species. In the midsummer in July, the growth of trees is vigorous and leafy.
September is the mature period of most trees in the study area. The selected periods are
typical time nodes of tree growth, and the spectra of these periods are of equal importance.
Time-series multispectral images were stacked in a monthly wise chronological order to
provide rich phonological information and spectral–temporal features.
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2.2.2. Aerial Image and LiDAR Data

High-resolution aerial images and LiDAR data were acquired by the CAF (The Chinese
Academy of Forestry)-LiCHy(LiDAR, Charge-Coupled Device (CCD) and Hyperspectral)
airborne remote sensing system platform in June 2016. The LiCHy system, developed by
the Chinese Academy of Forestry, includes one full-waveform airborne LiDAR (RIEGL
LMS-Q680i) and one high-resolution charge-coupled device camera. The CCD sensor is
a DigiCAM-60, and the heading and lateral overlap rates are 60% and 30%, respectively.
All sensors share the same position and altitude system [68]. The parameters are shown in
Table 1.

Table 1. The parameters of LiCHy airborne remote sensing system platform.

CCD: DigiCAM-60 LiDAR: Riegl LMS-Q680i

Frame size 8956 × 6708 Wavelength 1550 nm
Pixel size 6 µm Laser beam divergence 0.5 mrad

Imaging sensor size 40.30 mm × 53.78 mm Laser pulse length 3 ns
Feld of view (FOV) 56.2◦ Cross-track FOV ±30◦

Ground resolution @1000 m altitude 0.12 m Vertical resolution 0.15 m
Focal length 50 mm Point density @1000 m altitude 3.6 pts/m2

—— —— Waveform Sampling interval 1 ns
—— —— Maximum scanning speed 200 lines/s
—— —— Maximum laser pulse repetition rate 400 kHz

2.2.3. Field Data Collection

In this study, two types of ground reference data are included: (i) field sampling points
and (ii) points interpreted from images. The field sampling plot is a square with a side
length of 30 m. The three-dimensional coordinates of the four corner points of the sample
plot were measured using dual-frequency differential global positioning system (GPS).
The surroundings of forest stands were observed when each plot was sampled. If the forest
stands within 30 m around the sampling center were the same tree species, the center was
sampled. Otherwise, the center was moved to a suitable place where the sampling plot
contained only one tree species. If the sample plot could not contain only one tree species
by moving to other places, two tree species can be included. Finally, the coordinates of the
four corner points of each sample point, dominant tree species, average breast diameter,
and average tree height were recorded.

The field samples were collected in August 2016. The samples include 11s tree species
(Illicium verum Hook. f., Eucalyptus urophylla, Eucalyptus grandis, Cunninghamia lanceolata, Linden,
Pinus elliottii, Michelia macclurei, Manglietia glauca, Mytilaria laosensis, Tsoongiodendrom odorum,
Pinus massoniana) and a total of 30 sampling areas. Figure 3 shows the spatial distribution
of all samples, and the range of the sample plot was determined by the diagonal point and
its adjacent point. For convenience, all tree species in the following text are abbreviated as
shown in Table 2. The ratio of training samples to test samples is 1:4 in this study.

Table 2. Abbreviations of tree species.

Species Illicium verum Tilia tuan Eucalyptus urophylla Michelia odora

Abbreviation I. verum T. tuan E. urophylla M. odora

Species Eucalyptus grandis Pinus massoniana Mytilaria laosensis Cunninghamia lanceolata

Abbreviation E. grandis P. massoniana M. laosensis C. lanceolata

Species Manglietia glauca Michelia macclurei Pinus elliottii ——

Abbreviation M. glauca M. macclurei P. elliottii ——
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2.3. Methods

The flowchart of the FSP method is shown in Figure 4. First, a high-resolution aerial
image was fused with a single-time Sentinel-2 image, and the forest stand was obtained by
the fractal net evolution approach (FNEA) segmentation. The features of the three types
of data were extracted for each forest stand. The histogram was generated using all pixel
values in a forest stand (i.e., one segment) for the aerial image across all multispectral
bands. The average reflectance of each band was calculated in a forest stand for the time-
series images, and the reflectance curve was generated by stacking all the bands of the
time-series images. The profile curve of height was generated from the LiDAR data for each
forest stand. Finally, the curve matching classifier was applied to classify the forest stands
based on the extracted feature curves. The details of the FSP method are described in the
following subsections, including data preprocessing, multisource image fusion, forest stand
segmentation, feature extraction, and classification.

2.3.1. Data Preprocessing

Atmospheric correction and resampling were applied to the Sentinel-2 image. The Level-
1C products of Sentinel-2 images were used. The Sen2Cor plug-in (v255) was used to manually
correct the atmosphere on all bands through the Sentinel application platform (SNAP, v6.0.4,
available online: http://step.esa.int/main/third-party-plugins-2/sen2cor/). The water vapor
band was removed because it mainly reflects the water vapor in the atmosphere. Since multi-
spectral bands of the Sentinel-2 image have different spatial resolutions, a third-party plug-in
super-resolution tool Sen2Res was used for resampling. This tool can synthesize all bands
with different resolutions to 10 m through super-resolution technology [69].

The LiDAR data were registered with images, and non-signal points were removed.
Therefore, the preprocess for the LiDAR data is to classify ground points and forest points.
The improved progressive triangulated irregular network (TIN) densification filtering
algorithm was applied to classify point clouds [70].

http://step.esa.int/main/third-party-plugins-2/sen2cor/
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In this algorithm, an appropriate grid size was selected to split the LiDAR data, and
the initial grid size was 20 m. The lowest point in each grid was selected as the initial seed
point. The seed points were used to construct an initial TIN. To iteratively densify the
TIN, all points to be classified were traversed, and the triangles into which the horizontal
projection of each point fell were queried. The distance k from the point to the triangle was
calculated, and the maximum value of the angle was formed by the point and plane of the
triangle. The calculated distance and the angle were compared with the iteration distance
(the threshold of the distance was 1.5 m) and iteration angle (the threshold of the value
was 8◦), respectively. If the distance and angle were less than the thresholds, the point
was classified as a ground point and added to the TIN. Thus, the ground points and the
points returned from the forest were separated. Finally, the values for these forest points
were normalized to 0–1. The final height was obtained by subtracting the digital elevation
model (DEM) to remove the influence of terrain.

2.3.2. Multisource Image Fusion

As mentioned before, aerial images have rich textural information, and time-series
images contain rich spectral information. The color (spectral) is as important because the
texture when using segmentation. Therefore, the Sentinel-2 image obtained on 2 June 2016,
was fused with the aerial image since both images were acquired in June. The twelve bands
of the Sentinel-2 image were used to fuse with the aerial image. The fusion can make the
best use of the spectral and textural information for an accurate segmentation. The fusion
method adopted in the experiments was a nonlinear transform and multivariate analysis
algorithm (NMV) [71]. The NMV method could minimize the spectral distortion in the
fusion image. The steps of the NMV algorithm are described as follows.

(1) The spatial details were obtained by the difference between the band and its de-
graded version:

Mi,h = Mi + Mi,L
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where Mi is the ith band, and Mi,L is an upsampled image using the bicubical method
to match the pixel size of the reflective band. The spatial details of the multiple
reflective bands can be expressed as follows:

Mi,h,t = (Mi)
t + (Mi,L)

t

where t is the coefficient.
(2) A multivariate regression of a low-resolution image and multiple reflective bands

was established.

Mlow =
n

∑
i=1

[
ci(Mi

t)+ ai Mi + b + e]

where ci, ai and b are coefficients; e is the residual; and Mlow is the low-spatial-
resolution image. Given value t, the coefficients can be estimated using the least
squares approach.

(3) The low-spatial-resolution image was fused to the final image with a high spatial
resolution by the following equation:

Mlow, f = Mlow +
n

∑
i=1

[ci Mi,h,t + ai Mi]

2.3.3. Forest Stand Segmentation

The FNEA [72] was applied to segment the forest stand. This algorithm grows from
bottom to top, following the principle of minimum heterogeneity and adjacent hetero-
geneity. Pixels with similar spectral information are merged into a homogenous object,
during which the textural, spectral, and shape features of the image object are simultane-
ously considered. The scale parameter was selected using the automated Estimation of
Scale Parameter (ESP2) tool. The scale factor was set to 80. The shape factor was 0.3 and
the compactness was 0.1.

2.3.4. Feature Extraction

By generating the histograms from the aerial image, the brightness of each multi-
spectral band was projected on the x-axis, and the histogram frequency was projected on
the y-axis. One hundred histogram bins were set between 0 and 1, and the number of
pixels was counted in each bin. Finally, the total number of pixels was used to normalize
the generated histogram, so that the effect of different sizes of objects can be eliminated.
Figure 5 shows the histograms of a forest stand for three multispectral bands of the
aerial image.
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The average reflectance of each band for each forest stand was calculated.
Figure 6 shows a forest stand for the time-series Sentinel-2 images and the stacked time-
series reflectance curve.
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Figure 6. The reflectance curve of time-series image of a forest stand. (a) A forest stand. (b) The average reflectance of a
forest stand for each band. (c) The reflectance curve across the stacked time-series bands.

For the LiDAR data, the profile curve for each stand was generated to extract the
structural features of forest stands. The profile curve was generated from the vertical frequency
distribution of the LiDAR data. The profile curve is essentially a histogram of height. Since this
curve can characterize the vertical structure of trees, we use the term profile curve. The same
tree species have similar structural features, and different tree species have different structural
characteristics, as illustrated in Figure 7. Figure 8 shows the profile curve extracted in a forest
stand. The steps for generating the profile curve are described as follows. First, the elevation
was uniformly discretized, and the value of each elevation interval was calculated. In this
study, N was set to 100. The number of point clouds contained in each discrete height interval
of each forest stand was calculated, and the vertical profile curve of the point cloud was
generated. Finally, after being divided by the total number of point clouds in this forest stand,
the profile curve was obtained. The x-axis in Figure 8 is the height bin, and the y-axis is
the frequency distribution of the point cloud. The average point number in a stand is 2687,
thus the generated curves are rather smooth.
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2.3.5. Classification

Five feature curves (three for aerial images, one for time-series images, and one for
LiDAR) were extracted for each forest stand. To identify the species that the curves belong
to, a fusion method was developed to fuse all features using three curve matching classifiers:
The Kullback–Leibler divergence (KL), root sum squared differential area (RSSDA), and curve
angle mapper (CAM). In the curve matching classifier, the similarity between the known
sample and the sample to be classified was measured. In this study, P1 represents the feature
curves of the reference forest stand, and P2 refers to the feature curves of the forest stand to
be classified. The three curve matching classifiers are described below.

KL divergence, also known as cross entropy, is a method used to describe the difference
between two probability distributions. This method measures the distance between two
random distributions. If two random distributions are the same, their relative entropy is
zero. As the difference between two random distributions increases, their relative entropy
also increases.

dKL =
n

∑
i

log
(

P1(i)
P2(i)

)
P1(i)

CAM calculates the similarity between two discrete curves. The calculation result rep-
resents the angle between the curve to be classified and the sample curve in n-dimensional
space. The smaller the difference between the two curves, the smaller the angle.

dCAM = cos−1

 ∑n
i=1 P1iP2i√

(∑n
i=1 P1i

2)
√

∑n
i=1 P2i

2


RSSDA calculates the difference between the area integrals of two curves. This clas-

sifier uses discrete intervals as the differential unit to approximate the area. The RSSDA
classifier was originally applied to match spectral curves [73], and was improved by
Douglas [74].

dRSSDA =

√
n

∑
i=1

(P1i − P2i)
2

In Formulas (5)–(7), i is a discrete interval of the curves, and n is the number of intervals.
For the histogram of the aerial image, i refers to the ith gray interval of a spectral histogram,
n is the number of intervals of this histogram. For the time-series reflectance curve, i refers to
the ith band, n is the total number of the stacked bands. For the profile curve, i refers to the
ith height bin, n is number of total bins. Moreover, dKL, dCAM, dRSSDA are the similarities of
two curves measured using the KL, CAM, RSSDA curve matching methods.
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Five feature curves were obtained for each forest stand. For a forest stand to be
classified (i.e., a testing sample), its feature curves were compared with the feature curves
of all training samples, using one of the above curve matching classifiers. The FSP method
is defined as follows:

dFSP = f1dR + f2dG + f3dB + f4dTS + f5dLD

where f 1, f 2, f 3, f 4, and f 5 are proportional weights for different features. These weights
were determined by the controlled variable method. In this study, the weights from f 1 to
f 5 were set to 0.2, 0.23, 0.23, 0.1, and 0.24, respectively. Moreover, dR, dG, and dB are the
similarities of R, G and B bands of the aerial image, respectively; dTS is the similarity of
time-series image; and dLD is the similarity of the LiDAR data.

Finally, the maximum value of fusion for each stand to be classified was found, and
the category of the training sample corresponding to the maximum value was assigned to
the stand to be classified.

3. Results
3.1. The Results of Fusion and Segmentation

Figure 9 shows the fusion results and detailed parts of the aerial image and Sentinel-
2 image. These detailed images (Figure 9d) show that textures in the fused image are
very clear. The fused image has a high resolution (0.2 m) and richer spectra than the
aerial images. The segmentation results and some representative details are shown in
Figure 10. As seen in the detailed images, the segmentation results divide the forest stands
with different textures, and each forest stand can largely maintain its internal consistency.
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3.2. Feature Extraction Results

Figure 11 shows the histograms of 11 tree species in the R, G, and B bands.
Figure 12 shows the histograms generated by a single sample for each class in the R,
G, and B bands. The histograms in the R and G bands are similar. However, the peak of
the R band appears more quickly than the peak of the G band, and the gray value of the B
band is more concentrated than the values of the R and G bands. Therefore, the maximum
value of the histogram in the B band is larger than that in the R and G bands, and the wave
crest appears more quickly in the B band. This similarity can be regarded as the vegetation
commonality. In addition to the commonalities, the histogram shapes for different tree
species show diversity for different bands. In general, the histograms generated by each
category show similarity in the overall distribution. Different categories of tree species
have certain differences in each waveband, and some tree species in some wavebands have
high degrees of similarity.

Figure 13a–k shows the curves of the time series of eleven tree species. Figure 13l
shows the time-series curve generated by a single sample of 11 tree species. In the time-
series curves, distinguishability is greatest in the red-edged band (bands 4, 5, 6, and 7), and
the spectra show distinctive differences in different seasons.
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Figure 13. (a–k) The spectral curve of time-series image of 11 tree species, and (l) a comparison chart of the curves for 11
tree species, shows the curves of the time series of eleven tree species.

Figure 14a–k shows the profile curve generated by the LiDAR data for different tree
species. The profile curves of the same tree species are similar. This similarity demonstrates
that the features extracted from the LiDAR data are effective for distinguishing different
tree species. Among the profile curves of 11 tree species, nine have one peak, and two have
double peaks. In the curve with two peaks, the first peak is caused by the vegetation under
the trees, such as small shrubs. The second peak is caused by the characteristics of trees.
When the forest stands are of the same species, the structure below the canopy might be
different, which may cause the deviation of the profile curve, such as for M. glauca and
I. verum. In addition, the tree species in a forest stand may not be all the same, causing the
waveform to deviate. Generally, the amount of deviation in the profile curve is only a small
part of the total forest stand.
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Figure 14. (a–k) The profile curve generated by the LiDAR data of 11 tree species and (l) a comparison chart of the curves
for 11 tree species.

To clearly show the difference in profile curves among the different tree species,
Figure 14l presents the results that integrate the profile curve of different tree species.
Generally, different tree species have different waveforms, including the locations of wave
peaks and the shape of the waveform. Sometimes, the profile curves of certain tree species
are nearly identical, such as P. elliottii and P. massoniana (Figure 14b,e). Therefore, the uti-
lization of the profile curve alone cannot distinguish between P. elliottii and P. massoniana
Fortunately, the histograms of P. elliottii and P. massoniana in the R, G, and B bands are
distinctive. M. laosensis and C. lanceolata (Figure 14h,j) can be easily distinguished using
profile curves even though they have similar histogram and time-series curves.
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3.3. Classification Results of FSP

Figure 15a shows the classification result obtained using the FSP method KL classifier.
The white areas are non-forest areas. C. lanceolata, P. elliottii, I. verum and E. grandis have
the widest distributions. Table 3 shows the classification results using the FSP method
based on three curve matching classifiers. The overall accuracy of the KL matching result
is 0.937, and the kappa coefficient is 0.926. The overall accuracy of the CAM matching
result is 0.902, with a kappa coefficient of 0.884, and the overall accuracy of the RSSDA
matching result is 0.925, with a kappa coefficient 0.911. The overall classification results of
the FSP methods based on the three curve matching classifiers reach 0.900, and the RSSDA
and KL classifiers are better than the CAM. Among all species, E. urophylla and P. elliottii
have the worst classification results. The KL and CAM classifiers classify a large part of
these two tree species into E. grandis because the two species have greater similarities in
the histograms for the R, G and B bands. The product accuracy of P. elliottii is fairly high
(0.900), but the user accuracy is poor (0.562) because the number of samples for P. elliottii is
small, and the number of samples for P. massoniana is five times more than that of P. elliottii
This imbalance of samples caused a part of the P. massoniana to be incorrectly classified as
P. elliottii The indices of the FSP method based on three curve matching classifiers indicate
that all classifications are well classified except for P. elliottii and E. urophylla However,
the F1-score for these two tree species achieves 0.75 and 0.83 in the RSSDA classifier.
This test indicates that the FSP method is suited to classify the tree species of forest stands
and that the classification accuracy is rather high.
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Table 3. Classification accuracies of the FSP method based on the Kullback–Leibler divergence (KL), curve angle mapper
(CAM), and root sum squared differential area (RSSDA) curve matching classifiers.

FSP Method KL-Based CAM-Based RSSDA-Based

Class UA PA F1-Score UA PA F1-Score UA PA F1-Score

I. verum 1 0.933 0.966 1 0.867 0.929 0.938 1 0.968
T. tuan 1 1 1 1 0.941 0.970 1 0.824 0.903

E. urophylla 0.818 0.692 0.750 0.800 0.615 0.696 0.909 0.769 0.833
M. odora 1 1 1 1 0.800 0.889 1.000 1 1
M. glauca 1 0.933 0.966 1 0.933 0.966 0.875 0.933 0.903

M. macclurei 1 1 1 0.889 0.889 0.889 1 1 1
E. grandis 0.885 0.920 0.902 0.800 0.960 0.873 0.958 0.920 0.939

P. massoniana 0.980 0.877 0.926 0.942 0.860 0.899 0.943 0.877 0.909
M. laosensis 0.905 1 0.950 0.900 0.947 0.923 1 0.947 0.973
C. lanceolata 0.86 1 0.993 0.932 0.971 0.951 0.920 0.986 0.952

P. elliottii 0.562 0.900 0.692 0.571 0.800 0.667 0.643 0.900 0.750

Overall accuracy: 0.937
Kappa coefficient: 0.926

Overall accuracy: 0.902
Kappa coefficient: 0.884

Overall accuracy: 0.925
Kappa coefficient: 0.911

UA: user accuracy; PA: product accuracy

3.4. Comparison between Fusion Results of Different Types of Data

To determine whether the fusion can effectively improve the classification accuracy, we
further compared the proposed FSP method with the method based on aerial images alone
and the method based on the fusion of aerial images and time-series images. The same
curve matching classifiers (KL, CAM, and RSSDA) were used. To reduce the effects of
sampling, ten performances were applied with different random samples. The ratio of
training samples to test samples is 1:4.

Table 4 shows the accuracy of the assessment results. When only the aerial image was
used, the average classification accuracies (AVG) of ten performances were 0.795, 0.788,
and 0.794 based on KL, CAM, and RSSDA, respectively, and the highest accuracy (MAX)
reached 0.835. The fusion of time-series images and aerial images slightly improved the
classification accuracy. The classification accuracies of FSP were 0.911, 0.900, and 0.913
based on the KL, CAM, and RSSDA classifiers, respectively. The accuracy of FSP was higher
than that of the method that uses only aerial images. The SD column shows the standard
deviation of the accuracies for the ten performances. The standard deviation decreased as
more data were fused. The standard deviation of FSP was significantly lower than the other
two methods, suggesting that the FSP method is more robust and less affected by sampling.

Table 4. The average of overall accuracy for ten performances using the KL, CAM, and RSSDA classifiers.

Aerial Alone Fusion of Aerial Image and
Time-Series Images

Fusion of Aerial Image, Time-Series
Images, and LiDAR Data

AVG SD MAX AVG SD MAX AVG SD MAX

KL 0.795 0.023 0.835 0.805 0.021 0.839 0.911 0.017 0.937
CAM 0.788 0.016 0.808 0.788 0.017 0.812 0.900 0.014 0.925

RSSDA 0.794 0.019 0.820 0.797 0.017 0.824 0.913 0.017 0.945

From the results of fusing different types of data in Table 4, it can be seen that the
most helpful information for classification mainly comes from the aerial image and LiDAR
data. The improvement contributed by the time-series images is limited. Nevertheless,
the standard deviation of ten classification results is reduced when introducing time-series
images, indicating a more robust result can be obtained.

Figure 15b,c shows the classification results using the KL classifier based on the fusion of
the aerial image and time-series images and the aerial image alone. After fusing the time-series
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images, the details are improved. By comparing these two results, the classification result of
FSP provides a more accurate description of the distribution of tree species.

3.5. Comparison with Traditional Methods

The FSP method was also compared with other traditional object-level classifiers,
including the random forest (RF) [27], support vector machine (SVM) [75], and eXtreme
Gradient Boosting (XGBoost) algorithms [51]. These three classifiers are commonly used.
For traditional OBIA methods, the spectral and textural information for each forest stand
were used for all bands of the aerial image and time-series images, whereas only the mean
and standard deviation of the heights were used for the LiDAR data [7]. The spectral fea-
ture includes the mean and standard deviation, and the textural information includes con-
trast, entropy, homogeneity, angular second moment, dissimilarity, and correlation based
on the gray-level co-occurrence matrix (GLCM) [28]. Therefore, the multi-dimensional
summarized characteristics of forest stands are obtained. For a fair comparison, all the
classifications were performed on the same ten samplings as previously mentioned.

The FSP and the benchmark classifications were coded in Python 3.7. The main
package includes scikit-learn and gdal. The results of traditional classification methods
are shown in Table 5. The worst classification result was SVM (0.814), and the best result
was RF (0.824). RF also had the highest classification accuracy in ten performances (0.875);
regardless RF has the largest standard deviation of 0.034. The overall accuracy of the
FSP was 0.900, which was 0.09 higher than that of the traditional method. The highest
classification accuracy of the FSP was 0.06 higher than that of the traditional method.
Additionally, the standard deviation of the ten performances shows that the FSP was more
stable than traditional methods. In general, the FSP method we proposed has a higher
accuracy than the RF, SVM, XGBoost classifiers based on traditional summarized features
(i.e. mean, standard deviation, etc.).

Table 5. The accuracy assessment of ten performances of support vector machine (SVM), random
forest (RF), eXtreme Gradient Boosting (XGBoost).

Algorithm AVG SD MAX

Traditional methods

SVM 0.814 0.025 0.855

RF 0.824 0.034 0.875

XGBoost 0.817 0.025 0.855

FSP

KL 0.911 0.017 0.937

CAM 0.900 0.014 0.925

RSSDA 0.913 0.017 0.945

To compare the separability of the summarized features used in the traditional classifi-
cations and comprehensive features (i.e., feature curves) used in the FSP method, a projec-
tion of these two types of features was performed to visualize their separability. The sum-
marized features (120 dimension) include spectral and textual features of images and two
height features of LiDAR data. The comprehensive features (448 dimension) consist of all
the points on three types of feature curves in the FSP method. The t-SNE tool [76] was used
to downscale the extracted features to two dimensions at the best visual aspect. The final
visualization results are shown in Figure 16. The red circles mark some points with poor
separability. In general, the points characterized by the comprehensive features in the FSP
method are more concentrated, even those in the red circle remain aggregated (Figure 16b).
In contrast, the summarized features show a confusion of many tree species (Figure 16a).
Therefore, the comprehensive features using the FSP method have better separability than
the summarized features based on the traditional classification methods.
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4. Discussion

The study area is a managed forest, and there are not many mixed forests in this area.
Therefore, the classification accuracy can reach over 90% for 11 tree species. If in a mixed
forest, the accuracy may be compromised. Some improvements can be made from the
following aspects.

First, the histogram curves from high-spatial-resolution image reflect spectral variabil-
ity of forest stand. However, the histogram is essentially a disorder expression of the pixels,
the spatial relationship lies in the forest stand is ignored. Sometimes forest stands belonging
to different tree species may have similar spectral histograms but different textural informa-
tion. Therefore, the rich textural information contained in the high-spatial-resolution image
is not fully utilized. Therefore, in the follow-up research, a more sophisticated feature
extraction method is expected to extract and incorporate textural information.

Second, the time-series Sentinel-2 images reflect the phenology features. When intro-
ducing phenology features, the classification accuracy is improved 1% and the standard
deviation of accuracy is reduced comparing with that used the high-spatial-resolution
image alone. It is known that the wavelength beyond 2000 nm is distinctive for many tree
species [53]. Sentinel-2 images, however, do not cover such a wide wavelength range. If hy-
perspectral images are available, the FSP method can be applied similarly and probably
derive a better result.

Third, the profile curve from LiDAR data is generated by counting the number of
point clouds in forest stands, which means that the profile curves greatly rely on the density
of point clouds. The shape of the profile curves is also affected by the shape of the tree and
the size of the stand area. If in a mixed forest, the density of the point clouds is required to
be high to characterize different structures of different tree species in the profile curve.

Finally, if the tree species are mixed seriously, it would be difficult to classify tree
species at the forest stand level. Instead, classification can be performed at the individual
tree level. In such case, the current FNEA segmentation algorithm is not suited, and the
individual tree delineation algorithm is required. The FSP method can be extended to the
delineation result, but higher requirements for the spatial resolution of images and the
density of the LiDAR data are required to extract distinct features of individual trees.
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5. Conclusions

This paper proposed an FSP method to synthesize high-spatial-resolution multispec-
tral images, time-series images, and LiDAR data. The developed FSP method first extracts
rich information in the form of curves from three types of data. The histogram for the
multispectral band is generated in a stand for the high-spatial-resolution image, the aver-
age reflectance is calculated in each stand for a single band of time-series images, and a
reflectance curve is generated by stacking time-series bands, and the profile curve from
the point cloud LiDAR data is generated for each stand. Then, the fusion method is used
based on curve matching classifiers for forest mapping. The performance of the three curve
matching classifiers is evaluated, including KL, CAM, and RSSDA.

The features provided by different types of data contain a large amount of key informa-
tion. The histograms extracted from the aerial image have richer spectral information than
those of traditional OBIA methods based on some statistical measures, such as the mean
and standard deviation. The phenology information is contained in time-series images and,
thus, distinctive features can be reflected for some tree species from the reflectance curves.
The profile curve generated from LiDAR data includes rich forest structure information
and is effective in distinguishing tree species. Additionally, the features in the form of
the curves facilitate the fusion of disparate data on the stand unit by introducing curve
matching classifiers. The results show that the FSP method fused with three types of data
can achieve higher accuracy and is more stable than the methods fused with less data or
using only aerial images. The FSP method also shows a great advantage over traditional
OBIA classification methods.
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