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Abstract: Maize is a widely grown crop in China, and the relationships between agroclimatic param-
eters and maize yield are complicated, hence, accurate and timely yield prediction is challenging.
Here, climate, satellite data, and meteorological indices were integrated to predict maize yield at the
city-level in China from 2000 to 2015 using four machine learning approaches, e.g., cubist, random
forest (RF), extreme gradient boosting (Xgboost), and support vector machine (SVM). The climate
variables included the diffuse flux of photosynthetic active radiation (PDf), the diffuse flux of short-
wave radiation (SDf), the direct flux of shortwave radiation (SDr), minimum temperature (Tmn),
potential evapotranspiration (Pet), vapor pressure deficit (Vpd), vapor pressure (Vap), and wet day
frequency (Wet). Satellite data, including the enhanced vegetation index (EVI), normalized difference
vegetation index (NDVI), and adjusted vegetation index (SAVI) from the Moderate Resolution Imag-
ing Spectroradiometer (MODIS), were used. Meteorological indices, including growing degree day
(GDD), extreme degree day (EDD), and the Standardized Precipitation Evapotranspiration Index
(SPEI), were used. The results showed that integrating all climate, satellite data, and meteorological
indices could achieve the highest accuracy. The highest estimated correlation coefficient (R) values
for the cubist, RF, SVM, and Xgboost methods were 0.828, 0.806, 0.742, and 0.758, respectively. The
climate, satellite data, or meteorological indices inputs from all growth stages were essential for
maize yield prediction, especially in late growth stages. R improved by about 0.126, 0.117, and 0.143
by adding climate data from the early, peak, and late-period to satellite data and meteorological
indices from all stages via the four machine learning algorithms, respectively. R increased by 0.016,
0.016, and 0.017 when adding satellite data from the early, peak, and late stages to climate data and
meteorological indices from all stages, respectively. R increased by 0.003, 0.032, and 0.042 when
adding meteorological indices from the early, peak, and late stages to climate and satellite data from
all stages, respectively. The analysis found that the spatial divergences were large and the R value
in Northwest region reached 0.942, 0.904, 0.934, and 0.850 for the Cubist, RF, SVM, and Xgboost,
respectively. This study highlights the advantages of using climate, satellite data, and meteorological
indices for large-scale maize yield estimation with machine learning algorithms.

Keywords: maize yield; machine learning methods; climate data; vegetation index; meteorologi-
cal indices

1. Introduction

The global demand for the use of agricultural crops as food, feed, and bioenergy will
continue to grow in the coming decades [1]. Accurate and timely estimation of yield can
help make informed policies and investments in agriculture and increase market stability
and efficiency [2,3]. Maize is an important cereal crop and is cultivated almost everywhere
around the world. The relationships between agroclimatic input parameters and maize

Remote Sens. 2021, 13, 146. https://doi.org/10.3390/rs13010146 https://www.mdpi.com/journal/remotesensing

https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://orcid.org/0000-0002-3438-364X
https://doi.org/10.3390/rs13010146
https://doi.org/10.3390/rs13010146
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/rs13010146
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/2072-4292/13/1/146?type=check_update&version=2


Remote Sens. 2021, 13, 146 2 of 17

are complicated and building a fundamental explanatory model that integrates all of
these factors has become extremely challenging and difficult [4]. To solve this problem,
a variety of methods mainly based on crop growth models and empirical models have
been constructed in relevant studies to predict crop yield [5].

Crop growth models, which are widely used in crop yield forecasting, can accurately
simulate crop yield at the field scale by explaining the relationships of crop growth with
soil, cultivation management, atmospheric, or other factors [6–9]. Statistical models, which
construct a statistical relationship between crop influence factors and yields, are major
tools in estimating crop yield [10]. Compared with crop growth models, the statistical
models have the characteristics of fewer inputs required, simplicity, and relatively high
predictive skill when enough training data are available [11]. Statistical models have
also been widely used in crop yield estimation [12–14]. Combined with official data,
this method showed its usefulness for crop monitoring. However, empirical models also
have shortcomings, such as collinearity between predictors due to sampling extrapolation
problems [15–17]. Along with advances in technology, a number of machine learning
approaches have been proposed to predict yield across a large number of crops and a
broad geographic swath [18–21]. Machine learning can acquire useful information and
uncover hidden features from a variety of training data, which could potentially bring
better predictions than traditional statistical approaches [11].

Crop yield forecasting systems can be classified into four types based on the data
used: surveys, remote sensing, climate data, and combined climate-remote sensing [13].
Climate change is essential for crop growth [10,22]. Martinez et al. [23] used climate indices
to predict maize yield and evaluated the impact of large-scale oceanic and atmospheric
climate patterns on maize yield in the southeast United States during the period 1970–
2005. They found that climate and technologies were the main factors that determined
annual national coconut production. Moreover, an increasing number of studies have
attempted to use remote sensing data for crop prediction [24–27]. Satellite data have been
recognized as a useful tool for yield estimation owing to their repetitive and timely synoptic
coverage [28]. Additionally, satellite data has the probability of improving yield prediction
by deriving spatially explicit crop information in progress. Specifically, the enhanced
vegetation index (EVI) and the normalized difference vegetation index (NDVI) have been
recognized for their value in monitoring crop conditions and predicting crop yield since the
early 1980s [17,29]. The NDVI was highly correlated with canopy background variations;
however, it had some limitations related to soil background brightness and saturation
problems with high biomass values [30]. Conversely, the soil adjusted vegetation index
(SAVI) could minimize the soil brightness problem that exists in the NDVI [31]. Hence, all
three vegetation indices were important in tracking the phenological events and monitoring
seasonal variations in crops. Moreover, the final yield was related to green biomass during
the head-filling period, according to Son et al. [31]; thus, the saturation problem of the
NDVI would lead to inaccuracy. This problem could be solved by using the EVI, which was
proposed to reduce atmospheric influences and decouple the canopy background signal,
according to Deng et al. [32] and Son et al. [31]. Currently, studies have been conducted
using the SAVI by taking the influence of the soil background in the early period and
the interference of high vegetation coverage in the late period into consideration [33–35].
Guo et al. [34] incorporated temporal remote sensing vegetation indices (VIs) and the
wheat grow-PROSAIL model-simulated VIs to forecast regional crop yields in Yanhu
Farm and Baimahu Farm. Their results showed that the SAVI, with a root mean square
error (RMSE) of 510.68 kg/ha, was superior to other VIs when used as the assimilating
parameter. Remote sensing data are often incorporated with climate data to obtain a
synergistic overview of yield prediction accuracy [1]. Many studies have attempted to use
meteorological indices in maize yield prediction. For example, Pede et al. [36] assessed the
potential benefits of LST derived by satellite for maize yield prediction across the US Corn
Belt from 2010 to 2016 by using metrics of killing degree day (KDD) and growing degree
day (GDD). Feng et al. [37] developed a hybrid yield forecasting approach by combing
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climate extremes, NDVI, crop-process model simulated biomass, and the Standardized
Precipitation Evapotranspiration Index (SPEI) with a regression model (RF or multiple
linear regression (MLR)). They found that the forecasting system based on RF was better
than that based on MLR at each forecasting event.

In China, many studies have attempted to estimate crop yield [38–40], however, most
researches were based on a single model for small-scale yield forecasting. Few studies used
agrometeorological indicators such as GDD, EDD, and SPEI for yield forecasting; thus, it is
necessary to explore the possibility of multiple models to predict crop yield in China using
multi-source data.

All climate, satellite data, and meteorological indices have had some success in yield
predictions by applying machine learning methods [20,29,36], however, previous studies
about crop yield prediction still had some limitations. First, these studies paid more
attention to machine learning methods such as RF and SVM. In contrast, the newest
studies [1,41,42] confirmed that novel machine learning methods, such as cubist and
extreme gradient boosting (Xgboost), had the advantage of improving the accuracy of
estimating R. Second, satellite data such as the EVI and NDVI have been widely used
in yield predictions. Still, few studies have considered the SAVI to be superior to these
indices [34]. Third, these studies usually conducted their experiments at a large-scale,
such as the provincial or state level [10,43], and few studies have focused on crop yield
forecasting at the city level [13]. Moreover, maize is one of the major cereal crops grown
around the world, providing the primary caloric and nutritional source for millions of
people worldwide. Accurate and rapid monitoring and prediction of maize growth is
essential to ensure food security. Hence, executing a reliable, large-scale prediction of
maize yield using climate and satellite data at the city level is needed.

Here, this study combined climate, satellite data, and meteorological indices to forecast
maize yield using four machine learning methods in China. This study was designed to
address the following objectives: (1) to evaluate the prediction accuracies of the four
machine learning algorithms by comparing seven forms of input data and discuss the
highest estimating correlation coefficient (R) of maize yield prediction; (2) to explore the
contributions of climate, satellite data and meteorological indices to maize yield prediction
and analyze the divergence in climate and satellite data in different growth stages from
maize yield prediction; and (3) to investigate the divergences in R of maize yield prediction
between five maize-growing regions.

2. Materials and Methods
2.1. Study Area

The total land area of China is approximately 9.6 million km2; specifically, mountains,
plateaus, and hills account for approximately 67% of the land area, and basins and plains
account for approximately 33% of the land area, with high elevation in the western part
and low elevation in the eastern part. In terms of climate type, the eastern part of China
has a monsoon climate (which can also be divided into subtropical monsoon climates), the
northwest part has a subordinate temperate continental climate, and the Qinghai–Tibet
Plateau has an alpine climate. China is one of the main producers and exporters of maize
globally, accounting for 21.5% of global maize cropping area and 22.8% of global maize
production [44], and it plays a major role in the global market. This study covers maize
production in 213 cities, whereas nine cities are missing from 2000 to 2015, mainly in five
maize-growing regions of China, which includes Northeast China, North China Plain,
Northwest China, Southwest China, and South China (Figure 1). The detailed information
of five regions during the maize growing season is shown in Table 1.
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Table 1. Information on average temperature, rainfall, daily diffuse flux of photosynthetic active radiation, potential
evapotranspiration, and altitude for the five regions during maize growing season.

Northeast China North China Plain Northwest China Southwest China South China

Altitude (m) 323.268 947.513 2358.135 3429.555 331.731
Mean temperature in maize growing
season (◦C/day) 14.320 19.912 15.776 19.523 21.715

Precipitation (mm/month) 67.307 81.762 29.284 129.170 137.058
Potential evapotranspiration
(mm/day) 26.752 33.066 13.765 51.356 53.822

Diffuse flux of photosynthetic active
radiation (W m−2/day) 59.922 62.902 62.8185 64.051 64.341

2.2. Materials

Here, the growing season of maize in China was defined from March to August, and
the analysis focused on this period. Five types of data, city-level maize statistics, maize
cropping region masks, climate data, satellite data, and meteorological indices, were used
in this study.

2.2.1. Crop Yield

The city-level maize yields used in this study were survey data collected by the
National Bureau of Statistics of China from 2000 to 2015. Due to the limited yield records,
203 cities were selected. The maize cropping regions were derived from the International
Food Policy Research Institute (IFPRI) spatial production allocation model (SPAM) (2000,
2005, and 2010) beta cropland product, which was generated in collaboration with the
International Institute for Applied Systems Analysis (IIASA). The SPAM [45] was on the
basis of the IIASA best available cropland mask, subnation-level statistics, and a series
of suitability variables [3]. These features estimated cropland distribution within five
arc-minute grids by using a cross-entropy approach to 0.0833 degrees.

2.2.2. Climate, Satellite Data, and Meteorological Indices

Eight variables, including maximum temperature (Tmx), mean temperature (Tmp),
minimum temperature (Tmn), potential evapotranspiration (Pet), vapor pressure (Vap), pre-
cipitation (Pre), cloud cover percentage (Cld), and wet day frequency (Wet), were collected
from the Climatic Research Unit (CRU) [46] at 1-month intervals and at a 0.5 degree spatial
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resolution. The vapor pressure deficit (Vpd) was calculated using the method described in
Cai et al. [29]. In addition, the four radiation-related variables used in this study were the
diffuse flux of shortwave radiation (SDf), the direct flux of shortwave radiation (SDr), the
diffuse flux of photosynthetic active radiation (PDf), and the direct flux of photosynthetic
active radiation (PDr), which were developed by the satellite sensor of the Clouds and
the Earth’s Radiant Energy System (CERES). It was provided as a monthly product with a
resolution of 1 degree.

Satellite data were derived from the Moderate Resolution Imaging Spectroradiometer
(MODIS, collection 6), including the MOD13A3 EVI and the NDVI, with a 1 km spatial
resolution and monthly temporal resolution. The SAVI was calculated using the bands
from the MOD13A3 product [34].

Meteorological indices included the GDD, EDD, and SPEI. Daily maximum and
minimum temperature from 2000 to 2015 were obtained from the climate data-sharing
service system of the China Meteorological Administration (CMA) with a spatial resolution
of 0.5 degrees (http://data.cma.cn). The GDD and EDD, which were a representation of
effective thermal units and extreme heat events, respectively, were computed as following
according to previous studies [47,48].

GDDd = {
21, if Tmax > Tmin ≥ 29
0, if 8 ≥ Tmax > Tmin
min(Tmax,29)+max(Tmin,8)

2 − 8, otherwise
(1)

EDDd = max(Tmax, 29)− 29 (2)

where Tmax and Tmin are maximum and minimum temperature (◦C), respectively.
The SPEI product covering the period between 2000 and 2015 was obtained from the

Spanish National Research Council (CSIC), with a monthly time resolution and a 0.5 de-
grees spatial resolution. SPEI, which are often defined as meteorological indices to assess
meteorological drought, was calculated based on meteorological variables. Meteorological
drought can reflect the characteristics of drought to some extent, while the agricultural
drought often has a lag of 3–6 months after meteorological drought [49,50]. Thus, a 3-
month time scale was chosen as the agriculture was closely related with SPEI-3, according
to Zhang et al. [51] and Fu et al. [52].

All the data were obtained for the period 2000 to 2015. First, the spatial and temporal
resolutions of climate, satellite and meteorological indices variable were unified at a
monthly time resolution and a 0.5-degree spatial resolution. The maize cropping regions
(2000, 2005, 2010) of SPAM were downscaled to a spatial resolution of 0.5 degrees by
ENVI. As the maize cropping region maps were only available in 2000, 2005, and 2010, the
data during 2000–2005, 2006–2010, and 2011–2015 were masked using the maize cropping
regions of 2000, 2005, and 2010, respectively, to remove irrelevant signals from other crops
or forestry by Matlab. Finally, the monthly climate data, satellite data, and meteorological
indices were aggregated at the city level by IDL.

2.3. Methods
2.3.1. Exploratory Data Analysis

According to Cai et al. [29], exploratory data analysis (EDA) is an important step
before applying machine learning algorithms; hence, EDA were applied in this study.
First, EDA was conducted for 13 climate variables divided into four groups according to
Cai et al. [29]: (1) radiation-related variables, (2) temperature-related variables, (3) water
demand-related variables, and (4) water supply-related variables. The Pearson correlations
between each variable and maize yield, and the correlations among the variables were
calculated using the average value in the maize growing season by using R statistical
software. In each group, the climate variables which obtained the maximum absolute
correlation with yield were selected, and the climate variables that had a correlation with

http://data.cma.cn
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previously selected variables in the same group below a certain threshold (0.5 in this study)
were utilized according to Cai et al. [29].

2.3.2. Machine Learning Methods for Estimating Maize Yield

Four machine learning methods cubist, RF, Xgboost, and SVM, were used in this study.
All the 13 climate variables, satellite data and meteorological indices were normalized
to the range of 0 to 1 before applying each machine learning method. To generate the
predicted R, the data were evenly and randomly partitioned into 10 subsets. Subsequently,
nine subsets and samples were the training data, and the remaining data were selected for
validation purposes. A 10-fold cross-validation method was utilized in this study, and the
whole process was repeated 10 times to calculate the mean predicted R, which was used to
assess the performances of different models.

The cubist algorithm [53] is a decision tree-based algorithm, which is an extension of
the M5 model tree developed by Rule Quest Company. It is a type of decision tree that
adopts a multivariate linear regression fitted at each end of the leaves [54]. This algorithm
aims to predict the value of a variable by a series of independent variables (called attributes).
This algorithm does not usually fit as well as other ensembles due to its tree being shallow
but has the advantage of being able to extrapolate to abnormal values, which is useful
in forecasting anomalous years. The cubist algorithm has the strength to analyze the
input data for nearest neighbor correlations and can run iteratively multiple times to form
committee or ensemble models [55]. Moreover, although commercial production also
widely uses regression and classification approach, this algorithm was made available
through R statistical software [56]. The “boot” method was used in this study and the
number was set as 10.

According to LV et al. [57], a regression model was developed at each node for pruning
and prediction as follows:

SDR = sd(E)−∑
i

Ei
|E| × sd(Ei) (3)

where E is the set of data points that reached the node, Ei is the data point that resulted
from splitting at the node and fell into one subspace according to the chosen splitting
parameter, and sd is the standard deviation.

After avoiding the overfitting problem by pruning the tree, the tree was smoothed to
compensate for the sharp discontinuities caused by splitting as follows:

Y′ = (ny + mt)/(n + m) (4)

where Y
′

is the prediction passed to the next highest node, y is the prediction passed to the
next lowest node, n is the number of training instances that reached the node below, t is the
value predicted by the model at this node, and m is the smoothing constant.

The RF algorithm, proposed by Breiman [58], is a bagging-based method that employs
a regression tree method. It has been widely applied for prediction via the “RandomForest”
package within the R software environment [59], although it lacks efficiency, especially
when dealing with our large training set [60]. The final predicted value is the mean fitted
response from all individual trees [61]. The ntree was set as 400 in this study. Compared
to traditional decision tree-building methods, RF has the advantages of fast speed, easy
adjustment to parameters, accurate results, and the characteristics of insensitivity to multi-
ple collinearities in dealing with multidimensional features. Additionally, RF uses random
sampling with replacement to build a decision tree. Thus, an overfitting phenomenon
would not occur as in traditional decision trees, even if the decision tree was not prun-
ing [62]. For the training dataset drawn at random from the distribution of the random
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vector X, Y, and an ensemble of classifiers h1(X), h2(X) . . . , and hk(X), the margin function
is presented as follows:

mg(x, y) = avk I(hk(x) = Y)−maxavk I(hk(X) = j) (5)

where I(.) is the indicator function. The margin measures the extent to which the mean
number of votes at X, Y for the right class exceeds the mean vote for any of the other classes.

The Xgboost model is a special variety of gradient boosting algorithm proposed by
Chen and Guestrin [63]. It was constructed by building sequential trees, where one tree
is added at a time to optimize the objective further. The model aims to develop a strong
learner by combining all of the predictions for a set of weak learners through additive
training strategies based on the idea of boosting. The model is characterized by parallel
calculations to improve computational speed. Xgboost inherits the high fitting capability of
ensemble trees, which is extremely efficient (at least ten times faster than RF to train) [64].
In this study, the parameters of “nrounds” was set as 50, the number of parallel trees was
set as 100, the verbose was set as 2, and the “maximum depth” was set as 10. The general
function of the prediction at step t is presented as follows:

f t
i =

t

∑
k=1

fk(Xi) = f (t−1)
i + ft(xi) (6)

where xi is the input variable and ft(xi) and f t
i are the learner and predictions at step t,

respectively.
To prevent overfitting problems without reducing the computing time of this algo-

rithm, the objective functions are presented as follows:

obj(t) =
n

∑
k=1

l(yi, yi) +
t

∑
k=1

Ω( fi) (7)

where n denotes the number of observations, l indicates the loss function, and Ω represents
the regularization in the form of Equation (8).

Ω( f ) = γT +
1
2

λ‖w‖2 (8)

where γ designates the minimum loss needed to further partition the leaf node, λ denotes
the regularization parameter, and ω represents the vector of scores in the leaves.

The SVM is a supervised nonparametric statistical learning algorithm proposed by
Cortes and Vapink [65] and has been used in numerous applications for crop yield pre-
diction [1,42]. The basic method of SVM is the mapping of data to a high-dimensional
feature space by applying nonlinear mapping [66]. The regression prediction function is
constructed in the high-dimensional feature space and finally mapped back to the original
space [67]. The biggest characteristic of SVM is that it changes the traditional principle
of mining risk based on experience [68]. The problems of a small number of samples,
nonlinearity, overfitting, and single-digit disaster are well solved.

SVMs with Gaussian radial basis functions were used in this study. According to
Brdar et al. [66], the function is expressed as follows:

k(x, y) = exp(−‖x− y2‖
2δ2 ) (9)

The regression function can be expressed as follows:

f (x) =
l

∑
i=1

(ai − a∗i )K(x, xi) + b (10)
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where ai and a∗i are Lagrange multipliers and xi is a support vector that is learned through
the optimization technique in SVM regression. To build a good predictive model, a pa-
rameter selection procedure was employed. Cross validation was used to find the best
parameters C (cost of constraint violation) and γ = 1

2σ2 . The final model was built from the
whole training dataset with the best parameters that were previously estimated.

2.4. Experimental Design

The study included three groups of experiments (Figure 2). The first group was
designed to analyze which combination form would obtain the best performance, and
we adopted nine combinations of inputs: (1) the satellite data (EVI, NDVI, and SAVI), (2)
climate data only, (3) meteorological indices only, (4) climate and satellite data (EVI, NDVI,
and SAVI); (5) climate data and the meteorological indices, (6) satellite data (EVI, NDVI,
and SAVI) and the meteorological indices, and (7) climate, satellite data (EVI, NDVI, and
SAVI) and the meteorological indices.
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Figure 2. Flowchart indicating all steps of the model development.

The second group was to test how climate, meteorological indices and satellite data
from three growing periods contributed to maize yield prediction. The growing stages
were defined as (1) the early growing period (March and April), (2) the peak growing
period (May and June), and (3) the late growing period (July and August). The performance
of climate data and meteorological indices from all stages and satellite data from specific
stages, climate data from specific stages and satellite data and meteorological indices from
all stages, as well as meteorological indices from specific stages and climate and satellite
data from all stages, were compared.

The third group was designed to explore the spatial divergences of the model per-
formance. For five maize-growing regions, the climate, satellite data, and meteorological
indices were used to predict the maize yield.

Finally, the leave-one-out prediction method, which uses one year for testing and the
rest for training to validate the performance of the model, was conducted.
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3. Results
3.1. Selection of Climate Variables

The EDA results are shown in Figure 3. The water supply-related variables and
temperature-related variables were negatively correlated with maize yield, whereas the
Vpd of the water demand-related variables was positively correlated with maize yield.
Among all water supply-related variables, the R between Wet and maize yield was the
highest. Additionally, the R between Wet and Cld, Wet and Pre were above 0.5, so Cld
and Pre were not selected. Among the three temperature-related variables, the Tmn was
selected for the highest correlation coefficient with maize yield. All the water demand-
related variables were selected, as the R between Vap and Pet, Vap and Vpd was below
0.5. Moreover, the results showed that maize yield was negatively related to PDf and SDf;
conversely, maize yield was positively related to PDr and SDr. This was consistent with
Tollenaar et al. [69], which showed that 27% of the maize yield change between 1984 and
2013 was attributable to solar brightening. Among the four radiation-related variables, the
SDr had the highest correlation coefficient with maize yield. The R between other variables
and SDr were below 0.5 except PDr, thus, PDf, SDf, and SDr were selected to apply in the
machine learning methods. Finally, eight climate variables (Wet, Tmn, Pet, Vap, Vpd, PDf,
SDf, and SDr) were selected out of the 13 variables to represent climate conditions.Remote Sens. 2021, x, x FOR PEER REVIEW  10 of 17 
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3.2. Multi-Model Performances When Estimating Maize Yield

The first group of experiments used different combinations of climate, satellite data,
and meteorological indices to evaluate model performance. The prediction performances
of the seven forms of data inputs were evaluated across four machine learning algorithms
(Figure 4). The results showed that the combination of climate, satellite data, and meteoro-
logical indices achieved the best performance, with R values ranging from 0.742 to 0.828.
Indeed, the combination of the climate data and meteorological indices performed best,
following by the combination of climate data with satellite data and the combination of
meteorological indices with satellite data. Additionally, the performance of climate data
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only, with R values between 0.641 and 0.752, was better than that of satellite data only and
meteorological indices only, with the lowest R values ranging from 0.460 to 0.487 0.449
to 0.486, respectively. Furthermore, the analyses clearly showed that the cubist model
generally provided the best accuracy among the four learning methods in estimating R,
followed by RF, Xgboost, and SVM.
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3.3. The Divergences of Model Performances between Different Growth Stages and
Maize-Growing Regions

The yield forecasting performances using satellite data and meteorological indices
from all periods and climate data from one specific period during the growing season
were compared with those using satellite data from different periods and climate data
and meteorological indices from all periods or meteorological indices from one specific
period and climate and satellite data from all stages. R improved by about 0.126, 0.117, and
0.143 by adding climate data from the early, peak, and late periods to satellite data and
meteorological indices from all stage via the four machine learning algorithms, respectively.
R increased by 0.016, 0.016, and 0.017 when adding satellite data from the early, peak
and late stages to climate data and meteorological indices from all stages, respectively. R
increased by 0.003, 0.032, and 0.042 when adding meteorological indices from the early,
peak and late periods to climate and satellite data from all stages, respectively (Figure 5).

The result of the third experiment is shown in Figure 6. According to the model
performance results, the R-value in Northwest China regions was much higher than that in
other regions. In the Northwest China region, the R reached 0.941, 0.904, 0.934, and 0.850
for the cubist, RF, SVM, and Xgboost, respectively. The divergences between Northeast
China, North China Plain, and South China were insignificant, ranging from 0.744 to 0.786,
0.731 to 0.752, 0.716 to 0.752, and 0.629 to 0.673 for the cubist, RF, SVM, and Xgboost,
respectively. Moreover, the model performance was worst in Southwest China, where
the R-value reached 0.749, 0.714, 0.626, and 0.636 for the cubist, RF, SVM, and Xgboost,
respectively. The mean absolute error (MAE) and RMSE were low in North China Plain and
Southwest China, with 668.22 and 676.89 kg/ha, and 835.66 and 906.10 kg/ha, respectively,
across four machine learning methods. The MAE and RMSE values were 899.15 and
1164 kg/ha for cubist in Northeast China, whereas the highest MAE and RMSE occurred in
Northwest China with the value of 904.09 and 1224.85 kg/ha.
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A leave-one-out test was executed to assess the robustness of the model. Prediction
accuracy of different years clearly had some differences in different years. Most years
showed great prediction accuracy except for 2003 and 2014 (Figure 7). According to the
monthly minimum temperature and accumulated precipitation during the maize growing
season, the results showed that the mean monthly temperature in 2003 and 2014 was lower
than that in other years. The EDD was considered in the study; however, the extremely
low temperature was ignored.
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4. Discussion
4.1. Quantifying the Contributions of Climate, Satellite Data, and Meteorological Indices in
Different Growth Stages to Maize Yield

Generally, the results indicated that the climate data, satellite data, and meteorological
indices over the whole maize growing period played critical roles in determining maize
growth and final maize yield. The highest estimated R values for the cubist, RF, SVM, and
Xgboost methods were 0.828, 0.806, 0.742, and 0.758, respectively. The cubist algorithm
achieved the best performance among four machine learning methods, achieving an R
of 0.828 by combining climate, satellite data, and meteorological indices in this study;
however, the value was relatively lower than that of Jiang et al. [5] with a value of 0.872.
They used a long short-term memory (LSTM) model by integrating heterogeneous crop
phenology, meteorology, and remote sensing data to estimate country-level maize yield
across the US Corn Belt from 2006 to 2016. The reasons for the slight divergences in R were
as follows: (1) this study was conducted in China, while the study of Jiang et al. [47] was
conducted in the US Corn Belt. The main maize cropping regions belong to a monsoon
climate or subordinate temperate continental climate in China, however, the US Corn Belt
belongs to a temperate continental climate zone, where rainfall is less and concentrated,
and the continental climate is strong; (2) this study was conducted for a longer period of
2000 to 2015 than that from 2006 to 2016. The R of combining climate and meteorological
indices reached 0.80, 0.79, 071, and 0.72 for the cubist, RF, SVM, and Xgboost, respectively.
This result was similar to the previous study of Chen et al. [70], which indicated that climate
change and extreme climate could account for 56.7% of maize yield change by applying a
stepwise regression.

The results also showed that the prediction skill of satellite data and meteorological
indices for all stages and climate data for the late-stage was better than that from the
early and peak stages of the four machine learning methods. Additionally, the prediction
skill of climate and satellite data for all stages and meteorological indices for the late-
stage was better than that for the early and peak stage. Specifically, R improved by about
0.126, 0.117, and 0.143 by adding climate data from the early, peak, and late periods to
satellite data and meteorological indices from all stages via the four machine learning
algorithms, respectively. R increased by 0.016, 0.016, and 0.017 when adding satellite data
from the early, peak, and late stages to climate data and meteorological indices from all
stages, respectively. R increased by 0.003, 0.032, and 0.042 when adding meteorological
indices from the early, peak, and late stages to climate and satellite data from all stages,
respectively. These were in agreement with the result of Karimi et al. [42], which showed
that the RMSE values at the tasseling stage were lower than those at the early growth
stage. They also found the R values between the observed and simulated yields at the
tasseling stage were much higher than those calculated for the early growth stage by
using the SVM algorithm. This study was also consistent with previous studies [71,72],
which noted that crop yield was highly correlated with biomass during the ripening
stage or grain filling period. This phenomenon might contribute to crop sensitivities to
different climatic events varying with the growth phase [73]. For example, according to
Daryanto et al. [74], maize was more sensitive to drought during the reproductive phase
than during the vegetative phase. In contrast, the difference was not obvious between
satellite data in the three stages and climate data and meteorological indices over the whole
maize growing stages. The results also revealed that the added value of satellite data
given climate data and meteorological indices over the maize growing season, as well as
the value of meteorological data given climate and satellite data in the whole growing
season, was smaller than the value of climate data given satellite data and meteorological
indices over the maize growing season. Indeed, the performance of the model could
slightly improve the R-value to a level that was impossible to reach by climate information
alone. This finding was in agreement with the results of Becker-Reshef et al. [43] and
Kern et al. [75], who found that the model performance was greatly improved by adding
satellite information to climate data. According to Son et al. [31], crop biomass at different
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phenological periods had different correlation levels with different VIs, which might be
attributed to the phenological variations in plant growth related to the change in climatic
conditions [76,77].

4.2. Quantifying the Divergences of Model Performances Between Five Maize-Growing Regions

The spatial divergences of R value between different maize-growing regions were
obvious. Indeed, the R-value in Northwest China region was significantly higher than
that in other regions. The divergence might be attributed to Northwest China having
a continental climate, which is characterized by a dry climate and sufficient sunshine.
Besides, the population density in this region is small, with less interference from human
activities compared to other regions. The reason for the poor model performance in the
Southwest China region might be that this region has a temperate humid climate, which is
characterized by abundant rainfall and less sunshine. Additionally, climate changes are
more complicated in this region. Therefore, for regions with similar climate characteristics
to Northwest China, the maize yield prediction method in this study was efficient and
useful. Yao et al. [40] estimated the maize yield by using a process-based model in the
Northeast China Plain during 2002–2011. Their results showed that the R and RMSE were
0.827 and 712 kg/ha, respectively, from 2002 to 2011. The results were slightly better than
those in this study, however, this might be attributable to the process-based model being
superior in small-scale than large-scale regions. However, machine learning methods were
widely and well used in large-scale regions.

The leave-one-out test showed great prediction accuracy in most years except for 2003
and 2014. The EDD was considered in the study, however, the extreme low temperature
was ignored. This result was consistent with that of Li et al. [11] and Cai et al. [29], who
found that extreme climate was another factor affecting yield predictability. However,
our results showed good performances throughout the year, which had extremely low
precipitation. This might be attributed to the fact that the prediction could be greatly
improved by incorporating satellite data that could contain crop progress information [11].
Hence, this study showed that the machine learning models had limited in predicting
maize yield when extreme climate conditions existed. These extreme climate events could
cause large prediction biases due to that such conditions might not have occurred in the
historic training dataset.

4.3. Uncertainty and Limitations

This study successfully applied four machine learning approaches to predict maize
yield in China. Three limitations of this work should be considered. Firstly, although the
SAVI was added to consider soil property information, uncertainties in the heterogeneity
of environmental conditions might be ignored [78], including irrigation system, fertilizer
application rate, and soil conditions. Secondly, as our models were built on a fixed growth
season, crop phenology dynamics were ignored in this study. Hence, further studies should
consider the crop phenology of each statistical unit to improve the prediction accuracy.
Finally, all the machine learning methods that function as black boxes were nonlinear
methods with the characteristic of limited process-based interpretation. Moreover, the
mechanism of each method also had divergences, thus, a more accurate machine learning
method will improve the performance of maize prediction.

5. Conclusions

In this study, four machine learning approaches, including cubist, Xgboost, RF, and
SVM, were used to predict maize yield at the city level in China from 2000 to 2015 based
on climate, satellite data, and meteorological indices. This study included three groups
of experiments. The first group adopted seven combinations of inputs to analyze which
combination would obtain the best performance. The second group was used to test how
climate data, meteorological indices, and satellite data from different growing periods
contributed to maize yield prediction, and the third group was designed to explore the
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model performance differences of five maize-growing regions. The major findings were
as follows:

(1) The performance of climate data, with R ranging from 0.641 to 0.752, was better than
that of satellite data and meteorological indices, with the lowest R ranging from 0.449
to 0.486 and 0.442 to 0.481, respectively. Integrating all climate, satellite data, and
meteorological indices could achieve the highest accuracy.

(2) The climate data or satellite data inputs from all growth stages were essential for
maize yield prediction, especially in late growth stages.

(3) The spatial analysis found that the spatial divergences were large, and the R-value in
the Northwest region reached 0.942, 0.904, 0.934, and 0.850 for the Cubist, RF, SVM,
and Xgboost, respectively. Additionally, unprecedented extreme climate events could
cause large prediction biases.

In summary, this study provided an applicable approach using climate, satellite data,
and meteorological indices for large-scale yield prediction, which could be used for other
crop types and other regions.
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