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Abstract: As the capital city of China, Beijing has experienced unprecedented economic and popula-
tion growth and dramatic impervious surface changes during the last few decades. An application
of the classification method combining the spectral and textural features based on Random Forest
was conducted to monitor the spatial and temporal changes of Beijing’s impervious surfaces. This
classification strategy achieved excellent performance in the impervious surface extraction in complex
urban areas, as the Kappa coefficient reached 0.850. Based on this strategy, the impervious surfaces
inside Beijing’s sixth ring road in 1997, 2002, 2007, 2013, and 2017 were extracted. As the development
of Beijing has a special regional feature, the changes of impervious surfaces within the sixth ring
road were assessed. The findings are as follows: (1) the textural features can significantly improve
the classification accuracy of land cover in urban areas, especially for the impervious surface with
high albedo. (2) Impervious surfaces within the sixth ring road expanded dramatically from 1997
to 2017, had three expanding periods: 1997–2002, 2002–2007, and 2013–2017, and only shrank in
2007–2013. There are different possible major driving factors for each period. (3) The region between
the fifth and sixth ring roads in Beijing underwent the most significant changes in the two decades.
(4) The inner three regions are relatively highly urbanized areas compared to the outer two regions.
Urbanization processes in the interior regions tend to be completed compared to the exterior regions.

Keywords: impervious surface; spatiotemporal change; textural feature; Random Forest; Beijing;
urbanization process

1. Introduction

It is estimated that the world’s population will reach 9.6 billion in 2050, and 66 percent
of people are projected to be living in urban areas [1]. The surging population is driving the
acceleration of urbanization. The accelerating urbanization will result in the emergence of
more megacities, which will also bring about a series of challenges, including the increase
of impervious surfaces. Impervious surfaces can be generally defined as any material
that prevents the infiltration of water into soil, such as roads, parking lots, sidewalks, and
rooftops [2]. Impervious surfaces have been considered an efficient indicator to monitor
the urban changes and analyze the environmental impact analysis [2–6]. Therefore, as it
is an important megacity, studying the impervious surfaces in Beijing will provide some
essential clues for future urbanization.

Remote sensing has proven its value in mapping the impervious surfaces in urban
areas. Until now, many approaches have been suggested to estimate impervious surfaces

Remote Sens. 2021, 13, 153. https://doi.org/10.3390/rs13010153 https://www.mdpi.com/journal/remotesensing

https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://orcid.org/0000-0002-4598-087X
https://doi.org/10.3390/rs13010153
https://doi.org/10.3390/rs13010153
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/rs13010153
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/2072-4292/13/1/153?type=check_update&version=2


Remote Sens. 2021, 13, 153 2 of 19

from remote sensing data, particularly Landsat imagery, due to its easy availability. Ridd [7]
explored a V-I-S (vegetation–impervious surface–soil) model for urban change detection,
which provided a new method to estimate impervious surfaces through remote sensing
data. However, the limitation of the V-I-S model is reflected in impervious surface estima-
tion due to the complexity of urban ecosystems [8]. Based on the V-I-S conceptual model,
several modified models were proposed. Wu and Murray applied the V-H-L-S model
through a fully constrained linear mixture model, and four endmembers were selected,
including low albedo, high albedo, vegetation, and soil [9]. Xu studied the electromagnetic
spectrum characteristics of impervious surfaces and firstly proposed normalized difference
impervious surface index (NDISI), which can be used in a fast extraction of impervious
surfaces in a large region [10]. However, the selection for the endmember is a critical factor
in the classification accuracy in these models that only consider the spectral information in
the remote sensing images.

Texture is an important characteristic of the objects in the remote sensing images.
Classification performed on Sentinel-1A imagery indicated that the textural features re-
duced the confusion between impervious surfaces and water [11]. Zhang et al. [12] added
the texture extracted from SAR images to improve the impervious surface estimation.
However, the texture of Landsat images with the coarse resolution was rarely considered
in the impervious surface extraction. Thus, it is essential to validate the serviceability of
texture derived from Landsat images in extracting impervious surfaces. As the textural
features are introduced into the image classification, the datasets for classification tend to
have more dimensions. Thus, an optimal algorithm that can handle the high dimensional
data should be taken into consideration.

In recent decades, the Random Forest (RF) algorithm has caused widespread concern
on image classification, as the method can deal with a large number of input variables
and overcomes the overfitting problem [13]. Notably, several previous studies [14–17]
have proven that RF classifiers have excellent performance comparable to that of other
classifiers, including Support Vector Machine and Maximum Likelihood Classification
methods. Given this, the RF algorithm was used to estimate the impervious surfaces in
this study.

As the political, educational, cultural, and scientific center of the country, the devel-
opment of Beijing city has been more than 600 years in the making, which is a unique
microcosm of the rise of the cities in the world. In view of the inevitability of urbanization
in Beijing over the last two decades, extracting and assessing impervious surfaces due to
urbanization are of particular importance.

In this paper, the spatiotemporal changes of impervious surfaces within the sixth
ring road in Beijing from 1997–2017 were analyzed, combining the spectral and textural
information with a classification method based on the RF algorithm. The dataset and the
study area are briefly described in Section 2. Section 3 presents feature extraction, the RF
algorithm, and the classification strategy. The spatial and temporal changes of both the
total and regional changes in the study area are analyzed in Section 4. Section 5 discusses
the possible major driving factors of changes in each period and assesses the urbanization
level and process in each region. Section 6 is conclusions.

2. Study Area and Datasets
2.1. Study Area

Beijing, one of the most famous cosmopolitan megacities, is the capital of the People’s
Republic of China (PRC), covering 16 administrative districts. The city is located at the
northwest edge of North China Plain and extends from 39◦26′N to 41◦03′N and 115◦25′E
to 117◦30′E, with 16,808 km2 of total area. The elevation is high in the northwest and
low in the southeast, with an average elevation of 44 m. Beijing has a climate with four
distinct seasons, and the Köppen–Geiger climate classification is Dwa (monsoon-influenced
hot-summer humid continental climate) [18]. The average temperature is around 13.1 ◦C,
and precipitation is about 430.9 mm annually.
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Beijing has been expanding significantly in the past two decades. The great increase
of the population and economy and the holding of the Olympic Games in 2008 all possibly
prompted the increase in impervious surfaces in the city. The following occurrence of an
urban heat island and some other environmental problems have aroused a wide range of
concerns. For instance, an analysis of long-term rainfall data conducted in Beijing revealed
that urban expansion has a negative impact on the summer and annual precipitation [19].
Moreover, Lin et al. [20] concluded that the increasing intensity of the urban heat island
effect in Beijing is closely related to urbanization. Based on the grey correlation analysis,
Zhang et al. [21] suggested that the growth rates of housing construction areas have
significant impacts on the quality of drinking water in the rural areas of Beijing.

As an indicator of urban development and a tool for environmental impact analysis,
Beijing’s impervious surfaces are of great significance in revealing the urbanization process
of Beijing. Worthy of note is that the city spreads out in concentric ring roads. The ring
roads from inside out are the second, third, fourth, fifth, and sixth ring roads. These five
ring roads connect Beijing in all directions, dividing the city into five regions at different
stages of development. Given this, the area with a total area of 2267 km2 inside the
sixth ring road was selected in this study (Figure 1), including land cover types such as
vegetation, water, farmlands, commercial centers, and industrial areas.
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2.2. Datasets

In this study, we focus on the spatial and temporal changes of impervious surfaces in
Beijing. Therefore, the comparative analysis of the data sets with a long span of time may
directly reflect such variations. Meanwhile, the seasonal variations of land covers need to
be considered to estimate the impervious surface accurately, as the high albedo impervious
surface tends to be confused with bare soil in winter. Beyond that, lush vegetation will
block the impervious surface in summer, to some extent, and affect the estimation of
impervious surfaces at the very least. As the previous literature pointed out [22], remote
sensing images in spring, which have obvious impervious surface information, can increase
the separability between the impervious surface and other land cover types.
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To this end, two Landsat TM5 images acquired on 16 May 1997 and 28 May 2007, a
Landsat 7 ETM+ scene acquired on 22 May 2002, and two scenes of Landsat 8 OLI images
acquired on 12 May 2013 and 23 May 2017, were collected (Table 1). All images were
downloaded from the United States Geological Survey (USGS) global visualization viewer
(http://glovis.usgs.gov/), with Path 123, Row 32 with reference to WRS-2 (Worldwide
Reference System). The six multispectral bands (Blue, Green, Red, NIR, SWIR1, and SWIR2)
of Landsat images with a spatial resolution of 30 m were used in this study. The coastal
aerosol band of the Landsat 8 imagery was removed to increase the contrast between
different data sets. Then, the preprocessing procedure was conducted. The digital numbers
(DNs) of the image were converted to normalized exoatmospheric reflectance measures
following the methods proposed by Markham and Barker [23]. As the images of the study
area were all of good quality and were free of clouds, we assumed the images were under
homogeneous atmospheric conditions, so no atmospheric correction was performed.

Table 1. Landsat images that utilized for impervious surface mapping.

Acquisition Date Satellite Sensors Path/Row

16 May 1997 Landsat-5 TM 123/32
22 May 2002 Landsat-7 ETM+ 123/32
28 May 2007 Landsat-5 TM 123/32
12 May 2013 Landsat-8 OLI 123/32
23 May 2017 Landsat-8 OLI 123/32

3. Methods
3.1. Auxiliary Features Extraction

Although the multispectral bands can be used as the foundation of the remote sens-
ing image classification, the method of solely using these original spectral bands cannot
perform a good distinction between different land categories [24]. In particular, the noise
in remote sensing images makes it difficult for information extraction. Accordingly, two
image enhancement methods were conducted in this paper to improve the signal-to-noise
ratio (SNR) of images and increase the discrimination between different land cover types:
principal component analysis (PCA) and minimum noise fraction rotation (MNF).

Principal component analysis (PCA) is a simple, nonparametric method of extracting
relevant information from confusing data sets. It has been proven to be an effective
method to reduce the dimensionality of original data under the prerequisite that the main
information of the original data is not lost [25,26]. The front few components extracted
from PCA contain the main information from the images, which can better reflect the
discrimination between different land cover types than multispectral bands. Therefore, the
first two components, PC1 and PC2, which account for approximately 97% of the original
information, were calculated.

Minimum noise fraction rotation (MNF) is a linear transform that is widely applied
for noise removal and image enhancement [27]. It can be considered the cascaded principal
components transformation [9]. The new components are ordered in terms of image quality.
In this study, the first three MNF components, MNF1, MNF2, and MNF3, were used. The
five components calculated through PCA and MNF were served as the auxiliary spectral
features and were employed in the extraction of the impervious surfaces combined with
the original multispectral bands.

3.2. Textural Features Extraction

Texture is an essential characteristic for the analysis of satellite images [28,29]. Sev-
eral studies [12,21,30,31] have proven that the image texture can provide an important
complement for remotely sensed data classification.

Up until now, a variety of methods have been proposed to measure textural prop-
erties. These can be categorized into structural, statistical, model-based, and transform
methods [32]. A statistical method based on the gray-level co-occurrence matrix (GLCM) is

http://glovis.usgs.gov/
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widely used in many texture analysis applications among the previous approaches. The
GLCM can be defined as a square matrix, the elements of which represent the occurrence
frequency between pairs of gray level values of pixels separated by a particular distance
and direction.

In this study, the textural features based on the GLCM are introduced in the imper-
vious surface estimation. Haralick et al. [28] defined a set of 14 second-order statistics
easily computable to measure the textural features. However, many of the texture mea-
sures are highly correlated with each other. Consequently, eight second-order statistics,
mean, variance, homogeneity, contrast, dissimilarity, entropy, angular second moment,
and correlation, were used in this paper. These texture measures were extracted pixel
by pixel based on the first two PCA components, generating 16 textural features as the
input to be used in the classification process. The 16 textural features are named PC1_Mea,
PC1_Var, PC1_Hom, PC1_Con, PC1_Dis, PC1_Ent, PC1_Sec, PC1_Cor, PC2_Mea, PC2_Var,
PC2_Hom, PC2_Con, PC2_Dis, PC2_Ent, PC2_Sec, and PC2_Cor, respectively. The two
principal components contain more than 97 percent of the spectral information in the
images. Therefore, they can exhibit a better contrast between different land cover types.

As for the application of GLCM, there are four main parameters to be noted: the
grayscale level of the image, the size and the orientation of the moving window, and
the distance between the pair of pixels in the GLCM. The moving window size is a key
parameter affecting texture extraction [24]. When the window is small, it can better reflect
the slight changes in the image. When the window is large, the contours of most land covers
are well described. Thus, an ideal moving window size is necessary to set for improving
the classification accuracy. The previous research [12] suggested that 7 × 7 pixels are
suitable for the texture extraction in medium spatial resolution remote sensing images,
such as Landsat images. Given this, the window size of 7 × 7 pixels was also used in
this study. The number of grayscale quantization levels has a small effect on classification
accuracy [24]. A large grayscale range included in computing the GLCM usually leads to
the high computational cost of the texture statistics. In this study, the greyscale quantization
level was set as 64. The selection of the moving window orientation is another issue taken
into account. Generally, four main orientations (0◦, 45◦, 90◦, and 135◦) were commonly
used in previous literature, though the time consumption is high in this way, and the
results tend to contain a high correlation. An assumption was proposed in this paper that
the textural features of land cover use are not directional. The orientation was set as 45◦,
and the distance between pixels in the GLCM was set to one in this paper.

3.3. The Random Forest Algorithm

The Random Forest (RF) is an ensemble learning algorithm developed by aggregating
decision trees. Each decision tree is based on a randomly selected subset from the training
samples, and random features selection is conducted to split each node for tree growing [13].
Supposing there are N samples in the training set with M features in each sample, and the
size of the subset is n (n ≤ N). The steps to growing each decision tree can be concisely
described as below [33]:

Firstly, based on the bootstrap method (randomly pick one sample at a time, with
replacement), a subset (also called bootstrap samples) is selected from the original N
training samples for growing each decision tree.

Secondly, m variables are selected at random from a total of M input features (m << M)
to split each node of the decision tree.

Lastly, each tree is grown to the largest extent possible. The trees are not pruned.
The steps above are iterated T times, and T represents the number of trees needed

for this RF. After the decision trees are built, the RF is formed. Each decision tree is used
to predict the class of the input data and vote for that class. The class with the majority
of tree votes is taken as the classification result. RF also gives internal estimates that help
understand classification accuracy and how to improve it [13]. Every time an individual
tree is grown, a different bootstrap sample set was selected from the original training
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samples. About one-third of the samples, usually called out-of-bag (OOB) data, are left out
of the bootstrap samples and are not used to construct the decision tree. The OOB data
is formed for each tree, which can be used to derive the validated classification accuracy
from the tree.

The randomness injected reduces the dependence between each decision tree and
thus makes RF an accurate and efficient classifier. Several advantages of RF have been
noted in previous research. RF can deal with many features and avoid overfitting when
there is an increasing number of trees. It is relatively robust to outliers and noise and is
user-friendly as there are only two free parameters to input. Moreover, it provides useful
internal estimates of error, strength, correlation, and variable importance. To this end, RF is
applied in this study.

RF needs only two free parameters to input: the number of trees to be grown and the
number of variables to split each node of the decision trees. The previous study pointed
out that the number of features was considered a user-defined parameter. Several studies
suggested the number to be the square root of the total number of features [15,34,35]. As
for the number of trees, it was reported that the larger number of decision trees tend to
make the RF perform better [32]. However, the larger number of trees grown can be quite
time-consuming in the training process. In earlier studies, the number was usually set to
be the default value of 500 [36,37]. Therefore, in this study, a total of 500 trees were grown,
and the number of split variables was set to be the square root of the number of input
features. The training samples were selected from the Landsat image by the units of the
pixel, and 27 features, which comprise six spectral bands, five components, and 16 texture
measures, are ready to be the input features in the RF. The name and type of the 27 features
are listed in Table 2.

Table 2. Features used in the classification.

Type Name Number

Spectral features Blue, Green, Red, NIR, SWIR1, SWIR2, PC1, PC2, MNF1, MNF2, MNF3 11

Textural features PC1_Mea, PC1_Var, PC1_Hom, PC1_Co, PC1_Dis, PC1_Ent, PC1_Sec, PC1_Cor;
PC2_Mea, PC2_Var, PC2_Hom, PC2_Con, PC2_Dis, PC2_Ent, PC2_Sec, PC2_Cor 16

3.4. Classification Strategy

It is a challenge to map impervious surfaces due to the ecosystem complexity in urban
areas. Impervious surfaces consist of diverse land cover categories such as rooftops, roads,
and airports. However, the coarse resolution of Landsat images with 30 m makes it impos-
sible to distinguish each category precisely. In order to accurately estimate the impervious
surfaces in the study area, an investigation was conducted to study the characteristics of
various land cover types. The results showed that the impervious surface tends to have
high albedo, mainly in the low-density residential areas and airports, and low albedo in the
high-density commercial areas. The estimation of impervious surfaces can be considered
the combination of high albedo and low albedo [9,12]. Given this, the land covers are
divided into five types—vegetation, water, bare soil, high albedo impervious surface (HIS),
and low albedo impervious surface (LIS). Then, the estimation of impervious surfaces in
this study can be obtained from the combination of the HIS and LIS, while the vegetation,
water, and bare soil are combined as nonimpervious surfaces.

Concerning the pixel-based classification, the training sample selection is a critical
step for the subsequent classification. Hence, high-resolution images obtained from Google
Earth, combined with visual interpretation, were used for training sample selection. If the
number of training samples for a particular type is larger than others, the classification
results tend to deviate. Therefore, the number of training samples for each type should
be kept approximately equal. In this way, about 700 sample pixels were selected for the
five land cover types. The RF model was trained by these 700 samples. Then, the trained
RF model was used to classify pixels in the study area. The land cover type of each pixel
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was decided by the voting from the trees in the RF. The land cover type that obtained the
majority of the votes was appointed to the pixel. After classification, each pixel was given
a new greyscale value to represent the land cover type it belongs to.

Our motivation is to find an effective method to improve the impervious surface
estimation. An experiment was implemented by introducing the textural features into the
image classification. At first, the classification for the Landsat 8 data acquired on 23 May
2017 (Figure 2) was conducted based on the spectral features alone and the combination
of spectral and textural features. Then, the classification performances with these two
strategies were briefly discussed, and the superior one was given through the comparison.
Finally, the extraction of the impervious surfaces was performed based on the superior
strategy for other Landsat datasets.
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true color composite with the five ring roads overlaid on the image. The ring roads were vectorized
based on the visual interpretation of high-resolution images obtained from Google Earth.

4. Results and Analyses
4.1. Effect of Textural Features on Classification Accuracy

Accuracy assessment was conducted to investigate the effect of textural features on
classification. Zhang et al. noted that the OOB error built in the RF algorithm is insufficient
for classification accuracy assessment [12]. Therefore, a random sampling method was
employed in this study. High-resolution satellite images from Google Earth at the same
phase by reference to the classification images were used. Then a total of about 700 samples
were randomly selected based on the high-resolution image. The number of samples of
each land cover category was approximately equal. Finally, using the confusion matrix and
the Kappa coefficient, the accuracy of the classification result was evaluated.

Figure 3 shows the classification accuracy of land cover based on the spectral features
only and using the spectral and textural features simultaneously. Based on the spectral
features, the highest accuracy is for vegetation at 88.82%, while the lowest accuracy is for
bare soil with only about 76.16%. When introducing the textural features, the classification
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accuracy was improved for all the land cover types. The accuracies of the vegetation and
bare soil are up to 95.36% and 83.78%, which is an increase of 6.54% and 7.62%, respectively.
The most significant improvement was obtained in the accuracy of HIS, which is an increase
of 16.23% from 77.56% to 93.79%, and the improvement of bare soil ranked second highest.
On the other hand, the accuracy of LIS classification only increases by 3.58%, from 84.42%
to 88%, which is lower than the 4.4% of water. Compared to the classification strategy using
the spectral features only, the Kappa coefficient evaluated based on the strategy combining
the spectral and textural features increased from 0.694 to 0.850. This result proved that the
spatial information reflected by the textural features plays an important role in extracting
the surface information. Moreover, the improvement in the accuracy after introducing
textural features is the most significant for the HIS.
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Figure 4 presents the Landsat 8 OLI image classification result in the year 2017 using
the RF algorithm and both spectral and textural features. The HIS and LIS were combined
as one type. Figure 4 shows the distributions of the four land cover types fit well with
the satellite image in Figure 2. The outline and location of typical land cover generally
correspond with actual land objects. For instance, three typical land objects were recognized
with reference to the high-resolution images obtained from Google Earth, which is Western
Hills in the northwest of the study area (Object A in Figure 2), Beijing Capital International
Airport that is in the northeast of the study area (Object B in Figure 2), and a large patch
of bare soil (Object C in Figure 2). Figure 4 shows that Object A is shown correctly as
vegetation, Object B is indicated as the impervious surface, and Object C is appropriately
classified as well.

Generally, the landcover map generated is rational, and it is precise enough to be used
in the extraction of impervious surfaces. Therefore, the classification strategy combining
spectral and textural features based on the RF algorithm was employed in the other four
Landsat images to extract impervious surfaces in Beijing, and the results are presented in
Figure 5.
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The ranges of the five ring roads are overlaid in Figure 5. Generally, the impervious
surface had always been the primary land cover type in the regions within the fourth ring
road. In the region between the fourth and fifth ring roads, the outstanding phenomenon is
the fast declination of the vegetation and bare soil from 1997 to 2002. The most significant
phenomenon is in the region between the fifth and sixth ring roads, where abundant
vegetation and bare soil were transformed into impervious surfaces from 1997 to 2007.
Moreover, the vegetation cover in the whole was recovered from the year 2007, which is
particularly apparent in the region between the fifth and sixth ring roads. These phenomena
should be paid more attention to in the following analysis.

Even so, two features should be mentioned.
First, the impervious surfaces within the second ring road and between the second

and third ring roads are almost constant in the five panels in Figure 5.
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Second, the water cover within the fourth ring road and the vegetation cover in the
Western Hills remained relatively constant in the five panels.

These features coincide well with the actual land covers in Beijing, indicating the
rationality of the extraction.

4.2. Impervious Surface Changes

The five ring roads split the study area into five separated regions. In order to analyze
the impervious surfaces quantitatively, the impervious surface area (ISA) was calculated
for the five separated regions and the study area in the five specific years (Table 3). For
simplicity, the second to sixth ring roads are denoted by numbers 2 to 6. Further, we
calculated the area percentage of impervious surfaces for the five separated regions and
the study area in these five years. Lastly, based on the area percentages, the area change
percentages in the five separated regions and the study area between every two adjacent
years (Table 4) were calculated to compare the magnitude of changes. By interpreting the
land cover maps, and the analysis of ISA, the spatial and temporal changes were studied in
the following Sections 4.2.1 and 4.2.2.

Table 3. The impervious surface area (ISA) in each separated region and the study area (unit: km2).

Regions
Date

1997 2002 2007 2013 2017

Within 2 58.49 57.13 58.72 56.68 56.45
2–3 91.81 90.68 93.40 87.28 88.87
3–4 134.89 138.51 141.01 130.13 132.85
4–5 284.51 335.52 344.13 300.60 312.85
5–6 772.37 1217.83 1267.03 1133.73 1199.92

Total 1342.06 1839.67 1904.28 1708.41 1790.93

Table 4. The area changepercentage of impervious surfaces in each separated region and the
study area.

Regions
Period

1997–2002 2002–2007 2007–2013 2013–2017

Within 2 −0.06 0.07 −0.09 −0.01
2–3 −0.05 0.12 −0.27 0.07
3–4 0.16 0.11 −0.48 0.12
4–5 2.25 0.38 −1.92 0.54
5–6 19.65 2.17 −5.88 2.92

Total 21.95 2.85 −8.64 3.64

4.2.1. Spatial Changes

Figure 5a demonstrates that, in 1997, the impervious surfaces were concentrated
within the fifth ring road, and they were comparatively dispersed between the fifth and
sixth ring roads. The majority of vegetation spread around the impervious surfaces and
were outside the fifth ring road, with the bare soil distributed among vegetation in patches.
In this time, the impervious surfaces were mainly located in the central part of the city, and
the suburban was mainly covered by vegetation and bare soil.

Figure 5b demonstrates that, in 2002, the distribution of the impervious surfaces
remained almost constant within the fourth ring road compared to that of 1997. Between
the fourth and fifth ring roads, abundant impervious surfaces were converted from bare
soil and vegetation. A great change occurred between the fifth and sixth ring roads, where
the majority of the bare soil and vegetation were replaced by impervious surfaces except a
small quantity of bare soil in the northwestern part and vegetation in the southeastern part.
The impervious surfaces expanded dramatically in three directions, including the north,
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east, and south. As a result, bare soil and especially vegetation there were greatly replaced,
and the remaining bare soil and vegetation covers existed in small patches.

Figure 5c demonstrates that, in 2007, the distribution of the impervious surfaces kept
almost constant within the fifth ring road compared to that of 2002. The expansion of
impervious surfaces was apparent in the southwestern and southeastern parts beyond the
fifth ring road, where the vegetation patches in Figure 5b were replaced by impervious
surfaces and bare soil.

Figure 5d demonstrates that there was an interesting phenomenon in 2013 that the
distribution of impervious surfaces shrunk evidently in the northern, northeastern, south-
western, and northwestern parts of the study area where most impervious surfaces were
replaced with vegetation. Moreover, compared to Figure 5c, there occurred abundant small
patches of vegetation within the fifth ring road, which are transformed from the impervious
surfaces. Several typical patches of vegetation that appeared in 2013 are marked in red
circles in Figure 5d.

Figure 5e demonstrates that, in 2017, the distribution of the impervious surfaces kept
mostly constant within the fifth ring road compared to that of 2013. An apparent change
occurred in the southwestern part between the fifth and sixth ring roads, where abundant
impervious surfaces were converted from vegetation.

4.2.2. Temporal Changes

From 1997 to 2002, the total ISA increased steeply from 1342.06 km2 to 1839.67 km2,
and the total area percentage increased considerably by 21.95%. Compared to the other
time scale, the impervious surface expansion is most significant in this period. Most of the
expansion of impervious surfaces happened in the region between the fifth and sixth ring
roads during this period, as the increased area percentage of impervious surfaces in this
region was as high as 19.65%. Simultaneously, the expansion of impervious surfaces in
the region between the fourth and fifth ring roads is also evident, with the increased area
percentage being 2.25%.

From 2002 to 2007, there was a continued increase of impervious surfaces in the study
area. The total ISA increased from 1839.67 km2 to the peak value of 1904.28 km2, and the
total area percentage increased by 2.85%. The total area percentage increase is much lower
than 21.95% of the period between 1992 and 2002. Considering that Beijing was preparing
for the Olympic Games in this period, this decelerating increase gave some interesting
information about the causes of the impervious surface changes. The area percentage
increased in the region between the fifth and sixth ring roads is as high as 2.17%, which
indicates this region to be the focus of urban construction in this period.

From 2007 to 2013, the impervious surfaces shrank both generally and regionally, as
indicated in Table 4. The total ISA fell from 1904.28 km2 to 1708.41 km2, and the total area
percentage presented a considerable decrease of 8.64%. It was the first and only period that
the total ISA decreased, which indicates that the causes of the impervious surface changes
might change in this period. The decrease is apparent in the regions between the fifth
and sixth ring roads and between the fourth and fifth ring roads, with the area percentage
dropping by 5.88% and 1.92%.

From 2013 to 2017, having been through the general and regional decrease, the imper-
vious surfaces grew again. The total ISA jumped from 1708.41 km2 to 1790.93 km2, and
the total area percentage had a slight increase of 3.64%. The total ISA is higher than that in
2013 but evidently lower than that in 2002 and 2007. This result reveals that the impervious
surface expansion resulting from urbanization was still going on during this period, but
the expansion was limited. Moreover, the growing area percentage of impervious surfaces
between the fifth and sixth ring roads accounts for 2.92%, so the expansion of impervious
surfaces still centralized on the region between the fifth ring and sixth ring road as before.

Generally, it can be summarized from the analysis above that the total impervious
surfaces in the study area have three expanding periods—1997–2002, 2002–2007, and 2013–
2017—and only shrank in the period from 2007–2013. Among the three expanding periods,
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the total impervious surfaces increased the most in 1997–2002, followed by 2013–2017 and
2002–2007. Besides, it can also be found that the impervious surface changes are slight
within the fourth ring road. The impervious surface changes are relatively significant in
the region between the fourth and fifth ring roads, where impervious surfaces increased
from 1997 to 2002 and decreased from 2007 to 2013. The most significant changes of the
impervious surfaces existed between the fifth and sixth ring roads, where the impervious
surfaces expanded incredibly from 1997 to 2007, declined significantly from 2007 to 2013,
and grew again from 2013 to 2017. Such changes of the impervious surfaces will bring
some interesting clues for the expansion of the megacity.

4.2.3. Regional Changes

Table 4 shows that the regional impervious surface changes are not always consistent
with the total variation trends, and the changes differ significantly from region to region.
The regional impervious surface changes are closely related to the area of the region. To
eliminate the effect of the regional area and also compare the impervious surface coverage
in each region, the impervious surface ratio (ISR), defined as the ISA in a region divided by
the area of the corresponding region, was calculated for the five regions in the five specific
years and the results were shown in Table 5. Table 5 also presents the mean ISR in each
region. Moreover, the variation trends of regional ISRs were plotted in Figure 6.

Table 5. Each year’s impervious surface ratio (ISR) in each separated region, and their mean and
coefficient of variation (as a percentage).

Regions
Date

Mean Coefficient of Variation
1997 2002 2007 2013 2017

2 92.84 90.68 93.20 89.96 89.60 91.26 1.82
2–3 95.64 94.46 97.29 90.92 92.57 94.18 2.66
3–4 94.33 96.86 98.61 91.00 92.90 94.74 3.21
4–5 77.95 91.92 94.28 82.36 85.71 86.44 7.78
5–6 48.27 76.11 79.19 70.86 75.00 69.89 17.81
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Table 5 also presents that the mean values of ISRs in different regions are quite diverse.
Figure 6 denotes that fluctuations of ISRs during the 20 years in the region between the
outer ring roads are significantly more dramatic than those of the region between the inner
ring roads. To compare the fluctuation of regional changes quantitively, the coefficient of
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variation (CV), which is a dimensionless number and allows the comparison of variation
for populations with significantly different mean values, was introduced and presented in
Table 5. The CV for each separated region is calculated as follows:

CV =
σ

µ
× 100%, (1)

where σ is the standard deviation of ISR in each region, and µ is the mean ISR in each
region of the five years.

Within the second ring road, the maximum ISR occurred in 2007. After that, the ISR
continuously declined. The fluctuation of impervious surfaces is slight, with the CV being
1.81%. Such slight fluctuation of the impervious surfaces in the urban core areas indicates
the rationality of the extraction results in this study.

In the region between the second and third ring roads, the maximum ISR also occurred
in 2007, and there was an abrupt decline in the period from 2007 to 2013. From 2013 to
2017, the ISR slightly recovered. Generally, the fluctuation of impervious surfaces is also
slight, with the CV being 2.66%, which also proves extraction results are rational.

In the region between the third and fourth ring roads, the ISR gradually increased
from 1997 to 2007, while it had an abrupt decrease from 2007 to 2013. After that, the ISR
increased again. Generally, the fluctuation of impervious surfaces is small, with the CV
being 3.21%.

In the region between the fourth and fifth ring roads, the ISR increased considerably
from 1997 to 2002, and the ISR became the highest in 2007. However, from 2007 to 2013,
the ISR had an apparent decrease. After that, it was slightly recovered. Generally, the
fluctuation of the impervious surfaces is relatively large, with the CV being 7.78%.

In the region between the fifth and sixth ring roads, the ISR had the largest increase
from 1997 to 2002, and the ISR became the largest in 2007. From 2007 to 2013, the ISR had a
significant decline. After that, it was also recovered slightly. Generally, the fluctuation of
the impervious surfaces in this region is huge, with the CV being 17.81%.

5. Discussion
5.1. Driving Factors of the Impervious Surface Changes

The change of impervious surface can result from many factors, such as economy,
population, governmental plans and regulations, and some big events. These factors
interact with each other, and one of the comprehensive results is the increase or decrease
of impervious surfaces. Here, we only provide the possible major driving factors in each
period.

From 1997 to 2002, the impervious surfaces sprawled without limits, and the increase
of impervious surfaces is faster than any other period. The increase of impervious surfaces
was incredibly immense in the region between the fifth and sixth ring roads, where a
considerable number of impervious surfaces were converted from vegetation and bare
soil. Meanwhile, in this period, the Chinese economic reform was going on and took effect
instantly. China joined the World Trade Organization (WTO) in 2001. Since then, China
has experienced long term economic take-off. As the capital and the economic center of
China, Beijing’s economy boomed considerably, as reflected in the statistics [38], which
led to an increase in immigrants and corresponding population expansion with no doubt.
More residential areas, commercial areas, and infrastructures were constructed on the
unutilized land between the fifth and sixth ring roads covered with vegetation and bare
soil to provide essential living resources for the new immigrates. Therefore, we speculate
that the economy might be the major driving factor.

From 2002 to 2007, the impervious surfaces continued to sprawl, but the growth of the
impervious surfaces decelerated because the increased area percentage was much lower
than that between 1997 and 2002. The economic rise might still contribute to the increase in
this period as China joined the WTO. Additionally, Beijing was actively preparing for the
2008 Beijing Olympics Games, and the government invested heavily in the construction
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of new facilities and transport systems. Twelve venues within Beijing were newly built
specifically for the 2008 Games [39], most of which are located between the fourth and sixth
ring roads. Interestingly, the increase of the impervious surfaces between the fourth and
sixth ring roads in this period is much lower than that from 1997 to 2002, indicating that the
2008 Games contributed little to the increasing of the impervious surfaces. As shown in the
Beijing Master Plan (2004–2020), controlling the scale of land used for urban construction
was emphasized. Therefore, the deceleration of the impervious surface growth might be
due to the regulations of the government. Therefore, economy and government regulations
were possible key factors resulting in the impervious surface changes in this period.

From 2007 to 2013, both total and regional impervious surface shrank, and there
suddenly occurred abundant vegetation patches in the outer two regions, the larger ones
of which are marked in red circles in Figure 5d. Combined with the interpretation of
the high-resolution images obtained from Google Earth, it is known that Patch A is the
Dongba Country Park, Patch B is a 2 km long green belt, Patch C is Beijing World Park, and
Patch D is the Olympic Forest Park. All these are manmade natural parks finished during
this period. As the impervious surfaces expanded, environmental problems were also
emerging. For instance, extremely hot weather in Beijing’s summer frequently occurred [40].
One of the measures to reduce the environmental problem is to increase green space per
capita. Toward this goal, the Beijing government conducted a series of greening programs,
including Street Greening Projects, the Country Park Ring Program, the Green Olympics
Program. The three parks and the green belt mentioned were constructed under these
programs. Another event that occurred in this period is that Beijing renovated the shanty
towns in the nearby suburbs (the region between the fifth and sixth ring roads) to improve
the living conditions and achieve city beautification [41]. As a result, old bungalows in the
shanty towns were demolished, and the people living in these areas were relocated to new
settlement housing that is commonly flats. Therefore, government greening programs and
urban renewal might also be a key factor leading to the decreased of impervious surfaces.

From 2013 to 2017, impervious surfaces expanded again. The ISA in 2017 is lower than
those in 2002 and 2007, and the vegetation patches that emerged in 2013 were generally
kept constant during the period as the patches marked in red circles in Figure 5e. Therefore,
it can be concluded that the impervious surfaces grew rationally in this period, which is on
the premise of maintaining the scales of the urban greening spaces. As in the Beijing Master
Plan (2004–2020), economic construction and environmental protection were emphasized
to develop Beijing into an eco-friendly city. Therefore, both the economy and government
regulations were possible major factors resulting in the impervious changes in this period.

5.2. Regional Urbanization Level and Process

In the previous studies, the ISA is considered an indicator representing how much
a place has been urbanized [42,43]. Compared to ISA, ISR can illustrate the regional
urbanization level better since the effect of the regional area is eliminated. A relatively
high ISR can be interpreted as the place being highly urbanized. According to Table 5, the
mean ISRs in the regions between the inner ring roads are higher than those in the regions
between the outer ring roads. This result proves that the urbanization levels of the inner
three regions are higher than those of the outer two regions.

Thus, the inner three regions inside the fourth ring road can be considered highly
urbanized areas compared to the outer two regions. The mean ISRs for the three regions
from the inside out are 91.26%, 94.18%, and 94.74% (Table 5). The ISRs in the three regions
all generally present a declining trend during the 20 years of development (Figure 6).
Interestingly, the ISRs of the regions between the second and third ring roads and between
the third and fourth ring roads finally declined to the initial ratio of the region within the
second ring road in 2017, as shown by the dotted line in Figure 6. These results suggest
that after the ISR reached a certain degree in the highly urbanized areas, the ratio starts
to decline. A possible explanation for this result is that the citizens in the region pay
more attention to improving landscapes as the urbanization finishes. For example, a series
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of greening projects have been conducted to the streets, community gardens, walls, and
rooftops of buildings in Beijing since 2012 [44,45].

The CV reflects the fluctuation of the impervious surfaces in each region and can also
reflect the urbanization process in which the region is. When the value of CV is small,
the impervious surfaces in this region tend to be stable, and the changes of impervious
surfaces with time are slight, which means the urbanization process in this region tend to
be finished. Whereas, when the value of the CV is big, the impervious surface ratio in this
region tends to be unstable, the changes of impervious surfaces with time are significant,
which means the urbanization process in this region is still going on.

The CV increases from the inner regions to the outer regions, which implies that
the urbanization processes in the interior regions tend to be completed compared to the
exterior regions. Thus, it can be inferred that the urbanization process has been completed
in the regions within the second ring road and between the second and third ring roads,
approximately completed in the region between the third and fourth ring roads, on the
right track to be completed in the region between the fourth and fifth ring roads, and far
from being completed in the region between the fifth and sixth ring roads.

5.3. Limitations and Future Work

In this paper, the textural features were introduced into the impervious surface extrac-
tion, which was a variable neglected in most previous research. The results showed that
the classification accuracy was significantly improved by adding textural features. The
Kappa coefficient of the classification image increased from 0.694 to 0.850. It is evident that
the textural feature is an essential factor for an accurate evaluation of impervious surfaces.
However, the impacts on texture extraction based on GLCM need to be further studied.
An empirical value of 7 × 7 for the moving window size is adopted in this study, and the
optimal value needs further experimental verification. Beyond that, 27 features were used
for image classification, but not all the features play important roles in the classification. To
some extent, there may be redundant information. Though an ideal classification result
was obtained based on these features, with the Kappa coefficient reaching 0.850, the best
combination of these features still awaits discovery.

This study adopted the VIS, NIR, and SWIR bands of Landsat 5, 7, and 8 images. Some
recent studies are denoting that the thermal bands of Landsat 8 [46].and Luojia-1 nighttime
light data [47] help classify urban land covers. Thus, these data can be considered as the
input features to improve the classification of RF in further work.

The estimation of the impervious surfaces was regarded as the combination of high
and low albedo impervious surfaces in this study. Five land cover types, vegetation, bare
soil, high albedo, and low albedo impervious surfaces, were primarily identified. However,
the shadows accompanying mountains and high buildings were ignored in the image
classification. Also, the shadows were easily confused with LIS and water [48]. Meanwhile,
the confusion between bare soil and HIS also leads to a decline in impervious surface
estimation accuracy [49]. To further improve the estimation of impervious surfaces, these
problems can be solved in a future study.

6. Conclusions

In this study, the Random Forest (RF) algorithm was used to extract the impervious
surfaces in Beijing from Landsat satellite images. In addition to the original multispectral
bands, the first two components obtained from principal components analysis (PCA) and
the first three components from minimum noise fraction rotation were also introduced in
the classification as auxiliary spectral features. Meanwhile, a total of 16 textural features
based on GLCM were extracted from the first two components of PCA. These features
altogether were used as input variables of the RF. The accuracy assessment shows that the
classification strategy combining spectral and textural features based on RF has an ideal
performance in the complex urban areas, with the Kappa coefficient being 0.850. Moreover,
it has also been proven that textural features can provide an essential supplement for
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improving the classification of land covers, especially for high albedo impervious surfaces,
with the accuracy increasing by 16.23%. Therefore, the classification strategy combining
spectral and textural features based on the RF algorithm was employed to generate the
land cover maps within the sixth ring road in Beijing in 1997, 2002, 2007, 2013, and 2017.

An analysis was conducted to study the spatiotemporal changes of impervious sur-
faces. The result shows that the overall impervious surfaces within the sixth ring road
in Beijing have three expanding periods—1997–2002, 2002–2007, and 2013–2017—and
only shrank during 2007–2013. The overall impervious surface area increased the most in
1997–2002, followed by 2013–2017 and 2002–2007. The possible major driving factors to the
changes of impervious surfaces were speculated to be the economy in 1997–2002, economy
and government regulations in 2002–2007, the government greening programs and urban
renewal in 2007–2013, and both economy and the government regulations in 2013–2017.

During 1997–2017, the impervious surfaces changed slightly within the fourth ring
road, relatively significantly in the region between the fourth and fifth ring roads, and
the most significantly in the region between the fifth and sixth ring roads. The regional
impervious surface ratio (ISR) demonstrates that the inner three regions within the fourth
ring road are relatively highly urbanized areas compared to the outer two regions. After
ISR reached a certain degree in the highly urbanized areas, the ratio starts to decline.
Additionally, according to the analysis of the coefficient of variation in each region, the
urbanization processes in the interior regions tend to be completed compared to the
exterior regions.

This study provides a detailed analysis of the spatiotemporal changes of the impervi-
ous surfaces within the sixth ring road in Beijing from 1997–2017 when the urbanization
was rapidly proceeding. Furthermore, this study lays the groundwork for future research
into predicting the process of urban expansion. Such an analysis is also critical for further
environmental regulations to be put into place.
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