
remote sensing  

Article

Regional GNSS-Derived SPCI: Verification and Improvement
in Yunnan, China

Xiongwei Ma 1 , Yibin Yao 1,* and Qingzhi Zhao 2,3

����������
�������

Citation: Ma, X.; Yao, Y.; Zhao, Q.

Regional GNSS-Derived SPCI:

Verification and Improvement in

Yunnan, China. Remote Sens. 2021, 13,

1918. https://doi.org/10.3390

/rs13101918

Academic Editor: Yuei-An Liou

Received: 27 March 2021

Accepted: 11 May 2021

Published: 14 May 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 School of Geodesy and Geomatics, Wuhan University, Wuhan 430072, China; xiongw_ma@whu.edu.cn
2 College of Geomatics, Xi’an University of Science and Technology, Xi’an 710054, China;

zhaoqingzhia@xust.edu.cn
3 Guangxi Key Laboratory of Spatial Information and Geomatics,

Guilin University of Technology, Guilin 541000, China
* Correspondence: ybyao@whu.edu.cn

Abstract: From the aspect of global drought monitoring, improving the regional drought monitoring
method is becoming increasingly important for the sustainable development of regional agriculture
and the economy. The standardized precipitation conversion index (SPCI) calculated by the Global
Navigation Satellite System (GNSS) observation is a new means for drought monitoring that has the
advantages of simple calculation and real-time monitoring. However, only SPCI with a 12-month
scale has been verified on a global scale, while its capability and applicability for monitoring drought
at a short time scale in regional areas have never been investigated. Therefore, this study aims to
evaluate the performance of SPCI at other time scales in Yunnan, China, and propose an improved
method for SPCI. The data of six GNSS stations were selected to calculate SPCI; the standardized
precipitation evapotranspiration index (SPEI) and composite meteorological drought index (CI) are
introduced to evaluate the SPCI at a short time scale in Yunnan Province. In addition, a modified
CI (MCI) was proposed to calibrate the SPCI because of its large bias in Yunnan. Experimental results
show that (1) SPCI exhibits better agreement with CI in Yunnan Province when compared to SPEI;
(2) the capability of SPCI for drought monitoring is superior to that of SPEI in Yunnan; and (3) the
improved SPCI is more suitable for drought monitoring in Yunnan, with a relative bias of 5.43%
when compared to the MCI. These results provide a new means for regional drought monitoring
in Yunnan, which is significant for dealing with drought disasters and formulating related disaster
prevention and mitigation policies.

Keywords: drought; SPCI; precipitable water vapor; CI

1. Introduction

Drought has a significant scope of impact on agriculture, society, economy, and ecosys-
tem health [1,2]; therefore, drought forecasting is important for early drought monitoring
and warning. In recent years, with the continuous warming of the global climate, extreme
drought events occurred frequently. From 1960 to 2016, the annual economic losses caused
by drought were estimated to reach $221 billion [3]. China is particularly affected by
long-term drought disasters and has suffered huge social and economic losses in recent
decades [4,5]. Many studies have developed drought monitoring models based on hy-
drology [6], meteorology [7,8], economy [9], agriculture [10] and other aspects [11,12] to
quantitatively describe the impact of drought occurrence frequency, duration, and drought
intensity [13].

Drought monitoring has been performed from a single precipitation indicator to
a comprehensive indicator combined with multiple meteorological factors and then to
the monitoring model developed for a specific drought problem [14]. In the past few
decades, a series of meteorological drought indexes have been developed, including the
Palmer drought severity index (PDSI) [7], self-calibrating PDSI (ScPDSI) [15], standardized
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precipitation index (SPI) [16], and standardized precipitation and evapotranspiration index
(SPEI) [8]. The above drought indexes have their advantages, but some defects also exist,
such as the wide application of SPI; the application of SPI in semi-arid and arid areas is
often limited to precipitation, while ignoring the temperature affecting drought [17]; PDSI
and ScPDSI comprehensively consider factors such as precipitation, temperature, surface
runoff, soil water loss, and supply but exhibit notable problems, such as fixed time scale,
poor performance on ice and snow surfaces, and limited spatial comparability [8,18,19];
Vicente-Serrano et al. [8] proposed the SPEI by comprehensively considering precipitation
and temperature. This index considers the advantages of SPI and PDSI and can be used
to evaluate drought at different time scales and is widely used in global drought research.
However, evapotranspiration calculation requires many parameters, which are not easy to
obtain in many regions of the world [20]. In 2006, the China Meteorological Administration
(CMA) released the comprehensive meteorological drought index (CI), which considers
water or heat balance processes and reflects the cause, degree, start, end, and duration
of a drought event. This index primarily includes the frequency and duration of the
drought. The data involved are easy to obtain, and the physical mechanism is clear, which
is convenient for in-depth evaluation of drought occurrence. However, analyses using
these data are only applicable to China [21–23].

GNSS meteorology includes the technology and application of retrieving atmospheric
elements using the delay caused by GNSS signals passing through the earth's atmo-
sphere [24,25]. Bevis et al. [24] first used GNSS observation to estimate precipitable water
vapor (PWV). With the continuous development of GNSS meteorology, the root mean
square (RMS) of GNSS-derived PWV is about 1–2 mm, and some studies have applied
this value to monitor drought [26–30]. GNSS can obtain PWV with high precision and
high spatial-temporal resolution [31], which provides a new means for meteorological
disaster monitoring. Bordi et al. [26] found that the precipitation efficiency (PE) based
on GNSS-derived PWV is positively correlated with SPI, and GNSS-derived PWV has
great potential for drought monitoring, and Jiang et al. [27] proved that drought in Yunnan
Province of China could be detected according to the abnormal trend of PWV and vertical
critical deformation. Wang et al. [28] found that the nonlinear trend of PWV can be used
to monitor drought and flood disasters in Australia, and Zhao et al. [29] optimized the
potential evapotranspiration in the process of SPEI calculation based on GNSS-derived
PWV and temperature, which effectively improved the monitoring accuracy of SPEI. Zhao
et al. [30] proposed a drought index that only used GNSS-derived PWV and precipitation
and named it multi-time scale standardized precipitation conversion index (SPCI). This
index is in good agreement with the traditional commonly used drought indices, such as
the SPEI, at 12- and 24-month scales.

To verify the capacity of SPEI for drought monitoring at different time scales in China,
this study considers Yunnan Province as the study area. The SPCI calculated based on
PWV and precipitation retrieved from the Crustal Movement Observation Network of
China (CMONOC) stations was first obtained; then, the SPEI was calculated using the
meteorological data and the CI (GB/T 20481—2006) was determined to analyze and verify
the applicability of SPCI on a short time scale in Yunnan. Finally, a calibrated method for
SPCI is proposed based on the monitoring deviation of SPCI and CI in Yunnan, China. The
error adjustment coefficient was calculated to ensure the accuracy of GNSS-derived SPCI
for drought monitoring at any time scale. This method can expand GNSS applications in
drought monitoring and has significant applicability for drought monitoring in Yunnan.

2. Data and Methods
2.1. Study Area

Yunnan Province is located on the southwest border of China (21◦8′–29◦15′N, 97◦31′–106◦11′E).
The terrain is high in the northwest and low in the southeast, gradually decreasing from
north to south in a staircase shape (Figure 1). The climate types of Yunnan Province are rich
and diverse. Due to the influence of monsoons and complex terrain, the precipitation in this
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area is spatially uneven from 560 to 2300 mm. The annual precipitation is approximately
1100 mm, mainly from May to October [32]. Drought is a major problem in the region
and is closely related to changes in monsoon and precipitation distribution [33]. Yunnan
Province has suffered frequent and severe droughts, especially in central and eastern
Yunnan [34,35]. The region also experienced a continuous drought from autumn 2009 to
spring 2010 [36,37], resulting in agricultural losses of $2.5 billion and a lack of drinking
water for approximately 9.65 million people [38]. Therefore, this area is ideal for drought
monitoring and methodological verification.
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Figure 1. Geographic distribution of GNSS and CMA stations in Yunnan Province. The circle is the
collocated station, and the blue circle is used for analysis.

2.2. Data Description

CMONOC is a ground observation infrastructure with a high spatial-temporal res-
olution, high precision, is multi-scale, in real-time, and compatible with various satellite
positioning systems based on the original crustal movement observation network. It is
mainly used for crustal deformation monitoring [39], seismic research [40], space environ-
ment, and meteorology research [41,42]. In this study, 27 ground-based GNSS stations in
Yunnan Province obtained from CMONOC were selected. Among them, nine stations are
collocated with the meteorological station (Figure 1) and six of nine stations with long
time series are selected for analysis. The GNSS observations sampled at 30 s from March
1999 to April 2015 were processed by the GAMIT/GLOBK software (Ver. 10.4). The cutoff
elevation angles were set to 7◦ and an elevation-dependent weighting strategy was applied
to measurements at low elevations (below 30◦) to reduce the influence of multipath and
the uncertainties in mapping functions at low elevations.

Meteorological data, such as daily maximum temperature, daily minimum temper-
ature, daily average temperature, wind speed, relative humidity, light duration, and
precipitation, are provided by the measured dataset of the China Surface Climate Data
Daily Dataset (V3.0) of the CMA to calculate the SPEI and CI. The corresponding data
from the China Meteorological Forcing Dataset (CMFD) were used to calculate the SPCI.
This dataset was generated based on existing international Princeton reanalysis, GLDAS,
GEWEX-SRB radiation, and TRMM precipitation data as the background field and was
integrated with conventional CMA meteorological observation data. The accuracy of this
dataset is dependent on CMA measured data and satellite remote sensing data, which
both exhibit higher accuracy than existing international reanalysis data [43]. The specific
information of the datasets used in this study is presented in Table 1.
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Table 1. Description of datasets used in this study.

Name Sources Spatial
Coverage

Temporal
Resolution

Temporal
Coverage Sources

Temperature max;
Temperature min;

Wind speed;
Relative humidity;

Sunshine hours;
Precipitation

CMA 826 Daily 1949–2018 http://data.cma.cn/;
accessed on 12 May 2020

PWV CMONOC 259 6-hourly 1999–2015 [31]

Precipitation CMFD 0.1◦ Monthly 1979–2018 https://data.tpdc.ac.cn/;
accessed on 12 May 2020

2.3. Methodology
2.3.1. Correlation Analysis

The Pearson correlation coefficient calculates the linear correlation proposed by Pear-
son in the 1880s. It is used to measure the linear correlation between two variables and
an index reflecting the closeness of the correlation between variables. In this study, the
correlation coefficient was used to determine the correlation between the SPCI and CI.
The significance level was set at α= 0.05. The Pearson coefficient is usually expressed
as R, and the value of R is between [−1, 1]; the larger the value of |R|, the stronger the
correlation [44].

2.3.2. Ensemble Empirical Mode Decomposition (EEMD)

The EEMD was proposed by Wu and Huang [45]. This is an improvement in empirical
mode decomposition (EMD). The ensemble average of EMD decomposition results was
determined to avoid the scale-mixing problem by introducing white noise. This method is
suitable for non-stationary and nonlinear signal detection and can gradually separate the
oscillation (intrinsic mode function, IMF) or trend components of different time scales from
the original signal. In this study, the EEMD algorithm was used to decompose the time
series of SPCI, SPEI, and CI to obtain the IMFs of each variable. A significance test was
performed for the IMFs of different variables. The signals that pass the significance test are
signals with actual physical significance. The eigen components that failed the significance
test were removed, and the IMFs that passed the significance test were reconstructed
to the new time series. The reconstructed sequence has actual physical meaning and
can truly reflect the drought situation; therefore, the applicability of different drought
monitoring indices in Yunnan was analyzed by comparing the reconstructed time series
of SPCI, SPEI, and CI.

2.3.3. SPCI, CI, and SPEI

(1) SPCI

The SPCI is a new drought monitoring method based on the GNSS-derived PWV and
precipitation proposed by Zhao et al. [30]. Bordi et al. [26] found that the precipitation
conversion rate based on GNSS-derived PWV can represent regional drought. Therefore,
Zhao et al. [30] has added multiple time scales to the traditional precipitation conversion
rate calculation and standardized them. The specific calculation process is as follows:
first, obtain the PWV and precipitation data of each station and unify these data into the
monthly scale; second, add the precipitation and PWV data to the specified monthly scale
and calculate the precipitation conversion rate of the specified time scale. The specific
expression is as follows:

http://data.cma.cn/
https://data.tpdc.ac.cn/
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PCIn =
∑m+n−1

i=m Pi
total

∑m+n−1
i=m PWVi

mean × dayi
× 100 (1)

where i is the month, Pi
total is the total monthly precipitation i, PWVi

mean is the PWV mean
of i month, dayi is the number of days of i month, m is the first month of a multi-month scale,
n is the total month of a multi-month scale, and PCIn represents the relative precipitation
conversion index of n, the month scale with magnitudes of tens to hundreds. PCI is further
standardized owing to its large magnitude, and it is compared with the traditional drought
monitoring index:

SPCIn = nor(PCIn) (2)

where nor refers to standardized PCIn.

(2) SPEI

The SPEI was proposed by Vicente-Serrano et al. [8]. This index combines the sensitiv-
ity of the PDSI to the temperature-induced evaporation demand change and the multi-time
scale characteristics of SPI. It can identify different drought types under the background of
global warming and is widely used to monitor and analyze drought. SPEI can measure
drought severity according to intensity and duration and identify the beginning and end
of drought events. The SPEI calculation is based on the difference between precipitation
and PET, which is standardized. There are many methods to calculate PET, including
the Food and Agriculture Organization of the United Nations, which recommended the
Penman–Monteith (PM) method as the standard calculation method of evapotranspiration
with high accuracy. However, its disadvantage is that the PM method requires many
meteorological parameters, which is not easy to obtain in many parts of the world [20,46].
SPEI can be calculated following the formula proposed by Vicente-Serrano et al. [8], where
the monthly climatic water balance Di of month i is initially computed using the difference
between precipitation Pi and PET and is expressed as follows:

Di = Pi − PETi (3)

The calculated Di values are aggregated at different time scales. SPEI is calculated
using the three-parameter log-logistic distribution based on the standardized D series.
The probability distribution function of the log-logistic distribution for D series can be
expressed as

F(x) =
[

1 + (
α

x− γ
)

β
]−1

(4)

where α, β, and γ are the scale, shape, and origin parameters, respectively, which are
obtained using the L-moment procedure [8]:

α =
(w0− 2w1)β

Γ(1 + 1/β)Γ(1− 1/β)
γ = w0− αΓ(

1 + 1
β

)Γ(
1− 1

β
) (5)

where Γ(1 + 1/β) is the gamma function of (1 + 1/β), and ws is the probability-weighted
moments of order s (s = 0, 1, 2) and can be calculated as follows:

ws =
1
n

n ∑i

∑
n

(1− j− 0.35
n

)
s

(6)

where n is the number of data points, and j is the range of observations in increasing order.
SPEI is then calculated as the standardized values of F(x), as shown as follows:
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SPEI = W − 2.515517 + 0.802853W + 0.010328W2

1 + 1.432788W + 0.189269W2 + 0.001308W3 (7)

where W =
√
−2In(F(x)) when F(x) < 0.5, and W =

√
−2In(1− F(x)) when F(x) > 0.5.

SPEI value of 0 represents 50% of the cumulative probability of D series. Table 2 shows the
drought classification of the SPEI [8].

Table 2. Categorization of drought/wet grade by SPEI.

Categories SPEI Values

Extremely dryness Less than −2
Severe dryness −1.99 to −1.5

Moderate dryness −1.49 to −1.0
Near normal −1.0 to 1.0

Moderate wetness 1.0 to 1.49
Severe wetness 1.5 to 1.99

Extremely wetness More than 2

(3) CI

The CI considers the cumulative effects of precipitation and evapotranspiration on
current droughts. This index has been used in drought monitoring, impact assessment, and
early warning systems and services of the National Climate Center and provincial climate
centers with good results. Moreover, this index was widely used as a national standard
in 2006 [47–50]. The CI is calculated using the time and seasonal scales of the SPI for the
current month and the relative humidity index of the recent month, reflecting the climate
anomaly of the short (month) and long (season) time scales and reflects the short time scale
water deficit. The specific expression is as follows:

CI = a× SPI1 + b× SPI3 + c×MI1 (8)

where a and b are 0.4, c is 0.8, SPI is the standardized precipitation index that accumulates
over time, and the calculation of SPI for a certain time scale needs completed monthly
precipitation data. The detailed formula can be referred Zhang et al. [51] MI is the moisture
index, which can be calculated as follows:

MI1 =
P− PET

P
(9)

where P is the accumulated precipitation in the corresponding time scale, and PET has
accumulated evapotranspiration at the corresponding time scale. To make the results
more accurate, the PM formula was used to calculate PET. The PM formula can be seen
Zhao et al. [29]. The distribution of CI drought grades is presented in Table 3 [47].

Table 3. Integrated meteorological drought level division.

Grade Type Value of Ci Scope of Drought Effects

1 No
drought −0.6 < Ci

Precipitation is normal or higher than in normal years, moist surface, no
signs of drought

2 Light
drought −1.2 < Ci ≤ −0.6 Precipitation is less than normal years, surface air is dry, soil moisture

exhibits mild deficiencies

3 Moderate
drought −1.8 < Ci ≤ −1.2 Precipitation continued below normal years, soil surface is dry, soil water

shortage, surfaces of plant leaves exhibit daytime wilting

4 Serious
drought −2.4 < Ci ≤ −1.8

Soil appear sustained severe lack of moisture, thicker dry soil, wilting
plants, dry leaves, and fruit shedding. Serious negative impact on crops
and ecological environment, industrial production, and drinking water

5
Special
serious
drought

Ci ≤ −2.4

Soil appeared a serious shortage of water for a long time, Surface plants
withered or died, causing a serious impact on crops and ecological

environment with a greater impact on drinking water and industrial
production
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2.3.4. Deviation Rate Calculation

The Formula (11) is used to calculate the drought monitoring deviation percentage
between SPCI/SPEI and CI. Firstly, the drought occurrence frequencies of SPCI, SPEI, and
CI at 6 Co-located stations are calculated based on the following formula, respectively:

Fi =
ni
N

(10)

where i refers to the level of drought, 1 ≤ i ≤ 5, 1–5 refers to no drought, light drought,
moderate drought, serious drought and special serious drought, respectively. ni refers
to the number of type i droughts. N refers to the number of all drought types. Fi is the
frequency of type i drought. Then, the deviation rate of SPCI and SPEI can be obtained by
subtracting Fi(SPCI) and Fi(SPEI) from Fi(CI), respectively.

3. Results
3.1. Correlation Analysis of SPCI and SPEI at Different Time Scales

The SPCI was calculated using the GNSS-derived PWV and CMA-derived precipita-
tion at the 1- to 12-month scales. In addition, the SPEI at corresponding time scales was
also obtained, and the PET was calculated using the PM model to guarantee the precision
of the calculated SPEI. Figure 2 compares SPEI and SPCI at six collocated GNSS and meteo-
rological stations at the 1- to 12-month scales. The correlation between SPCI and SPEI is
poor at short time scales, especially at YNCX and YNMZ stations; the correlation coefficient
is less than 0.75 at a 1-month scale. With the increase in time scale, the correlation between
the two becomes stronger, the correlation coefficient at the 12-month scale was the highest,
and the correlation coefficient of some stations reached 0.97.
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The physical significance of drought calculation by SPCI and SPEI is different. SPCI
that evaluates drought used a ratio between PWV and precipitation [30], while SPEI eval-
uates drought by subtracting potential surface evapotranspiration from precipitation [8].
Therefore, it is expected that there is a deviation between the two different drought indexes.
Both of them can detect drought on the low time scale, but the degree of drought detected
is different. With the increase of time scale, the correlation between them increases, which
indicates that their drought monitoring effects tend to be the same under the precipitation
accumulation. To explore whether SPCI can be used for drought monitoring at a short time
scale, this study introduced the CI to verify it at each time scale.
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3.2. Correlation Analysis of SPCI/SPEI with CI at Different Time Scales
3.2.1. Determination of Multi-Time Scale CI (MCI)

Due to the multi-time scale characteristics of drought disasters, the superposition
of droughts at different time scales may lead to increasingly severe drought. Therefore,
it is important to design a multi-time scale CI and expand the application scope and
practicability of the CI to analyze drought occurrence and change. According to the CI
calculation formula, this study expands the calculation method of CI at the 3-, 6-, and
12-month scales as follows:

CI3 = a× SPI3 + b× SPI6 + c×MI3CI6 = a× SPI6 + b× SPI12 + c×MI6CI12 = a× SPI12 + b× SPI24 + c×MI12 (11)

where CI3, CI6, and CI12 are the CI at the 3-, 6-, and 12-month scales, respectively, and MI
is the corresponding accumulated moisture index.

3.2.2. Correlation Analysis of SPCI, SPEI, and CI

Before analyzing the correlation between SPCI and CI, EEMD was first introduced to
decompose the SPCI, SPEI, and CI time series. Figure 3 shows the decomposition results
for the SPCI. The red line represents the original time series. Lines 2–8 can be divided into
six IMFs and the trend term (R). According to the fluctuation characteristics of each IMF
component, the frequency of IMF1-IMF6 decreased, the period increased, and the average
amplitude decreased. To test the physical significance of IMFs, the IMF energy spectral
density period distribution was used to judge the significance of the IMF components [45].
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Figure 4 shows the significance test of the IMFs of white noise. The IMF component
obtained by EEMD decomposition is of practical significance. In this study, α = 0.05, 0.01,
and 0.1 are used to obtain the significance test chart of IMF components (Figure 4). The
line with a slope of −1 in the figure is the white noise IMF distribution curve. The closer
each IMF component is to the line or below the line, the lower is the confidence level of the
IMF component. A, B, C, and G are in the 90–99% confidence interval, and the amplitude
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is larger than that of the other components. Therefore, the IMF1, IMF2, IMF3, and IMF7
components are more significant, while D, E, and F are close to the white noise line, so
they can be considered to have less actual physical significance. In this study, the drought
indexes of different time scales were decomposed using EEMD and eliminate the signals
that fail to pass the significance test. The SPCI was compared with the commonly used
drought indices to test their monitoring performance at each time scale.
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The SPCI, SPEI, and CI time series at a 1-month time scale is first decomposed by
EEMD; then, the real intrinsic eigencomponents of different drought index factor time series
are obtained and their significance is tested. The eigencomponents that have not passed
the significance test are removed, and the remaining IMF components are reconstructed.
The results are shown in Figure 5. The long-term variation trend of the three indexes at
the KMIN station is relatively consistent and consistent with the change in precipitation.
In the case of large precipitation, it is wet, and, in the case of low precipitation, it is dry.
By comparing the long-term trend changes of SPEI-01, SPCI-01, and CI-01, it was found
that the change trend of SPCI-01 was closer to that of CI-01. In this study, the Pearson
method was introduced to calculate the correlation between SPCI and SPEI on the monthly
time scale of six stations, and the results are shown in Table 4. Regardless of the original
time series or the reconstructed time series after EEMD decomposition, the correlation
coefficients of SPEI and CI at the 1-month time scale are less than those of SPCI, and the
average correlation coefficients of the original time series and reconstructed time series of
the six stations were 0.73/0.90 and 0.75/0.89, respectively. This indicates that the SPCI at
the 1-month scale has the potential for drought monitoring in Yunnan.
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Table 4. Correlation between CI and SPEI/SPCI-01.

Station Name Length SPEI-01 SPCI-01

Original RC Original RC

KMIN 1999.03–2015.04 0.71 0.72 0.92 0.92
XIAG 1999.03–2015.04 0.83 0.81 0.92 0.90
YNCX 2010.07–2015.04 0.61 0.62 0.87 0.84
YNLC 2010.08–2015.04 0.72 0.71 0.88 0.86
YNLJ 2010.8–2015.04 0.80 0.77 0.91 0.91

YNMZ 2010.07–2015.04 0.74 0.65 0.88 0.85

Apart from the 1-month scale, the indices at the 3-, 6-, and 12-month scales can repre-
sent the drought situation of seasonal, semi-annual, and annual time scales, respectively.
In this study, EEMD was used to decompose the drought index of 3-, 6-, and 12-month
scales using the same method, and the eigencomponents that pass the significance test
were reconstructed. The results are shown in Figure 6. Most eigencomponents decomposed
by EEMD of the three indices of the KMIN site can pass the test of significance level of
0.1. Therefore, the reconstructed sequence is slightly different from the original sequence,
which indicates that the original sequences of SPCI, SPEI, and CI have physical significance.
Figure 6 shows that the trends of SPCI and CI are relatively consistent, but the coincidence
of SPEI is relatively poor. The correlation between the original sequence and reconstructed
sequence of SPCI and SPEI and the corresponding sequence of CI at all concurrent sites
were calculated, and the statistical results are shown in Figure 7. SPCI has a good corre-
lation with CI at all time scales, regardless of whether it is the original sequence or the
reconstructed sequence, and the correlation coefficient is greater than 0.8, while SPEI has a
poor correlation with CI at the 3- and 6-month scales, and has a strong correlation with CI
at the 12-month scale. This indicates that SPCI has the potential to monitor drought at 3-,
6-, and 12-month scales, while SPEI has the potential to monitor drought in Yunnan only at
the 12-month scale.
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3.3. Comparison of Drought Monitoring Deviation at Different Time Scales

Trend and correlation analysis can only reveal whether they have potential for drought
monitoring and cannot be applied to actual drought monitoring. Therefore, this study
further verifies the actual drought monitoring ability at six stations. Figure 8 shows the
comparison of drought monitoring results of SPCI, SPEI, and CI at monthly, seasonal,
semi-annual, and annual time scales. The drought monitoring results of SPCI at different
scales are consistent with CI, while the SPEI is relatively poor. In addition, SPEI and SPCI
show large deviations in extreme drought disaster monitoring. Because CI has different
monitoring standards for different kinds of drought events than those of SPEI and SPCI, the
drought monitoring deviations of each index for no, light, moderate, severe, and extreme
drought conditions were considered.
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Before calculating the monitoring deviation of all drought types, the occurrence
frequency of different historical drought types was calculated. As shown in Figure 9, the
CI index drought monitoring based on different time scales showed that the frequency
of no drought and light drought was high, and the frequency of extreme drought was
very low at the time scales of 1, 3, 6, and 12-months. The above statistics and calculations
were obtained for SPCI and SPEI, respectively, to further calculate the drought monitoring
deviation of the SPCI, SPEI, and CI indices.

The monitoring deviations of SPCI, SPEI, and CI at six sites under four different time
scales were counted, and the statistical results shown in Table 5 were obtained. The average
deviation of the SCPI for drought monitoring in the 1-, 3-, 6-, and 12-month scales was less
than that of SPEI, and the monitoring deviations were 6.77/9.27%, 7.48/9.57%, 8.20/10.32%,
and 7.45/9.76, respectively. In different types of drought monitoring, except for extreme
drought, the SPCI of other types of drought monitoring was also less than SPEI, which
were 3.52/8.31%, 16.76/18.86%, 12.08/15.94%, 4.35/4.86%, and 0.68/0.33%, respectively.
The average monitoring deviation between SPCI and CI was 7.48%, which was less than
the SPEI (9.73%). These results further prove the suitability of SPCI for drought monitoring
in Yunnan.
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Figure 10 shows the deviation of SPCI and SPEI for different drought types and
CI monitoring results at the 1-, 3-, 6-, and 12-month time scales. SPCI exhibits better
performance than SPEI for different kinds of drought monitoring as a whole, and both
have a larger deviation from CI monitoring in moderate drought, while SPCI monitoring
has a smaller deviation at other time scales. The monitoring deviation of extreme drought
is small, mainly because the extreme drought frequency is relatively small in historical
drought (Figure 9). Both performed well in drought monitoring, but SPCI was better than
SPEI, and the monitoring deviation was less than SPEI at the six stations.

Table 5. Statistical result of monitoring deviation of SPCI, SPEI, and CI at six sites under four different time scales.

1-Month Scale 3-Month Scale 6-Month Scale 12-Month Scale Mean

SPCI SPEI SPCI SPEI SPCI SPEI SPCI SPEI SPCI SPEI

Nd. 3.41 6.67 6.34 8.80 3.72 9.06 0.60 8.72 3.52 8.31
Sld. 12.40 19.81 16.22 20.82 20.75 20.98 17.69 13.81 16.76 18.86
Md. 11.69 14.51 9.61 13.00 12.90 16.30 14.11 19.93 12.08 15.94
Sed. 5.60 4.96 3.81 4.40 3.10 3.73 4.88 6.33 4.35 4.86
Ed. 0.76 0.38 1.42 0.84 0.55 0.09 0 0 0.68 0.33

Mean 6.77 9.27 7.48 9.57 8.20 10.32 7.45 9.76 7.48 9.73
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4. Discussion
4.1. Different Correlation Coefficients for Different Sites and Scales

Good correlation was observed between SPCI and SPEI; in particular, the 12-month
SPCI can be directly applied to drought monitoring [30]. Shi et al. [52] found that, although
CRU can obtain global high spatial resolution precipitation data, the data still exhibit
obvious errors, especially in mountainous areas [52]. Similarly, the error of the ERA-
Interim PWV was 5 mm compared with the measured radiosonde data [53]. Zhao et al. [30]
demonstrated that the correlation between SPCI and SPEI at low time scale is relatively
poor, especially at the 3- and 6-month scale, and the correlation coefficient is less than
0.6 [30]. However, the correlation between SPCI and SPEI based on the measured data is
greater than 0.6, among which the minimum value is 0.68, at the YNCX station, and the
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values are greater than 0.73 at other stations, which is better than that of Zhao et al. [30].
The main reason is that the measured data rather than the reanalysis data are used to
calculate the SPEI and SPCI in this study, so the results calculated based on the measured
data are more accurate. Yunnan's terrain is complex, the regional elevation difference is
significant, and the correlations of different stations are different. Overall, the correlation
between SPCI and SPEI based on the measured data was higher. If multi-time scale SPCI is
used to detect drought, it is suggested that the measured data should be selected instead
of the assimilated data. In addition, with the increase in time scale, the effect of drought
monitoring under the effect of precipitation accumulation tends to be the same, and the
correlation is poor at a short time scale. With the increase in time scale, the correlation
increases, which is the same as that of Zhao et al. [30].

4.2. Advantages of EEMD in SPEI Monitoring

The EEMD was introduced and applied to analyze the SPCI, SPEI, and CI. The signifi-
cant and non-significant signals were separated by a significance test, and the long-term
main oscillation series of drought were obtained. Comparing the sequences with practical
physical significance to verify the effectiveness of SPCI and SPEI in drought monitoring in
Yunnan can highlight whether the SPCI and SPEI are consistent with the actual situation in
drought monitoring. The EEMD decomposition of three drought monitoring indices, SPCI,
SPEI, and CI, shows that the correlation between SPCI and CI is better than that of SPEI in
both the original and reconstructed time series, which confirms the monitoring ability of
SPCI. In addition, from Figures 5 and 6, with the increase in time scale, the decomposed
non-significant signals decrease, and the original drought index series with a high time
scale has practical significance. Therefore, the correlation coefficient between the original
and reconstructed signals of SPCI and SPEI in Figure 7 is not obvious. However, the SPEI is
lower than that of SPCI, which is more in line with the evolution of drought in the region,
while other factors, such as temperature, drive SPEI. In addition, some studies have shown
that the SPEI has uncertainty in drought monitoring in Yunnan [54].

4.3. Rationale for Multi-Scale CI

Drought disasters occur along various time scales, and the superposition of different
time scales may lead to more serious droughts. Vicente-Serrano et al. [8] pointed out that
the drought situation is different under the effect of precipitation accumulation at different
time lengths [8], and Paulo et al. [55] also pointed out that the drought indices at the 3-, 6-,
and 12-month scales can represent meteorological, agricultural, and hydrological droughts,
respectively [55]. Therefore, it is necessary to provide the CI with a multi-time scale
designation. The SPCI index has the characteristics of multiple timescales, and the analysis
of the practicability of SPCI multi-time scales is of great significance for the promotion
of the application scope of the index and the study of drought occurrence. Therefore,
according to the CI calculation principle and method, this study designs CI indices of
3-, 6-, and 12-month scales, respectively. The seasonal, semi-annual, and annual time
scales of CI can reflect the water change of this quarter/half-year/year and reflect the
drought evolution of a longer scale and can profoundly retrieve the drought superposition
of different time scales. Some studies have accurately detected Yunnan's drought situation
based on the CI index [47]. Therefore, this study can fully evaluate the drought monitoring
performance of multi-time scale SPCI with reference to multi-time scale CI.

4.4. Necessity of Calibration

According to the drought classification grades of SPCI, SPEI, and CI, this study mon-
itored different droughts in Yunnan Province. The results showed that the monitoring
results of SPCI and CI were in good agreement, while the results of SPEI were in poor agree-
ment. Although the SPEI shows good consistency at the 12-month scale, the performance of
SPEI-12 is poor in the actual monitoring application, which indicates that SPEI-12 may not
be suitable for characterizing drought conditions under the effect of long-term precipitation
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accumulation in Yunnan Province. The authors in [54] also proved this finding. SPCI
can monitor drought at any time scale, and the deviation is less than SPEI, but there is
still a gap between CI and monitoring results. Therefore, this paper proposes a method
to improve the SPCI, and it is found that there is a linear relationship between CI and
SPCI and precipitation; the correlation coefficients on 1, 3, 6, and 12-time scales are 0.80,
0.70, 0.63, and 0.94, respectively. Therefore, an improved SPCI (ISPCI) was determined by
combining PWV and precipitation.

4.4.1. Improved SPCI (ISPCI) and Validation

Figures 5 and 6 show that there is a close relationship between precipitation and
CI. Therefore, this paper proposes an improved SPCI index combined with SPCI and
precipitation to monitor drought in Yunnan. ISPCI is expressed as follows:

ISPCI = b0 + b1× nor(
∑m+n−1

i=m Pi
total

∑m+n−1
i=m PWVi

mean × dayi
· 100%) + b2×

m+n−1

∑
i=m

Pi
total (12)

where b0, b1, and b2 are estimated by the least-squares method, and the other parameters
are the same as in Equations (2) and (3).

Figure 11 shows the deviation between the ISPCI and CI. ISPCI has significantly im-
proved for different types of drought monitoring. According to the deviation in Figure 11,
this paper presents the statistical results of the average monitoring deviation of six stations
after calibration, as shown in Table 6. It can be found from Table 5 that the SPCI monitoring
deviation at the 1-, 3-, 6-, and 12-month scales decreased from 6.77%, 7.48%, 8.20%, and
7.45% to 4.20%, 4.73%, 5.33%, and 7.22%, respectively. In addition, the results shown in the
table indicate that the calibrated SPCI exhibited a significant improvement in the monitor-
ing of mild and moderate drought events with an increase from 16.76% and 12.08% to 6.1%
and 4.22%, respectively. Considering the four types of time scales of drought monitoring
in different degrees, the monitoring deviation of ISPCI in the Yunnan area was found to
be reduced from 7.48% to 4.30%, and the improvement rate was 27.41%. This method can
effectively improve the drought monitoring accuracy of SPCI in the Yunnan area.

Table 6. Monitoring deviations of different drought between ISPCI and CI (%).

1-Month Scale 3-Month Scale 6-Month Scale 12-Month Scale Mean

Nd 4.47 6.64 11.98 10.62 6.72
Sld 5.26 6.62 7.87 10.13 6.10
Md 3.83 44.87 3.10 8.74 4.22
Sed 5.60 4.04 2.59 6.55 3.77
Ed 0.76 1.42 1.12 0.08 0.67

Mean 3.98 4.72 5.33 7.22 4.30

4.4.2. Spatial Comparison of ISPCI and CI in Yunnan

In this section, ISPCI is calculated at 27 GNSS stations in Yunnan Province, and the
CI verifies the performance of ISPCI at 32 meteorological stations. Because only six GNSS
stations in Yunnan are collocated with meteorological stations, and other non-collocated
stations have no precipitation data, this paper introduces the CMFD data, uses the bilinear
interpolation method to obtain precipitation at the CMONOC location, and uses CMA-
provided precipitation to verify CMFD-provided precipitation. As shown in Figure 12,
the scatter diagram shows that CMFD-derived precipitation data has good consistency in
this region, and the RMS and bias of the precipitation data are only 5.1 mm and 1.74 mm,
respectively. Therefore, the data can be used to calculate ISPCI.
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Figure 11. Deviation of different drought monitoring between ISPCI and CI.

The ISPCI of 27 GNSS stations and the CI of 32 meteorological stations in Yunnan
were calculated at the time scales of 1, 3, 6, and 12 months. The spatial distributions of
ISPCI and CI at different time scales in August 2013 are shown in Figure 13. The drought
conditions in Yunnan Province under monthly, seasonal, semi-annual, and annual time
accumulation scales are shown in Figure 13a–d. The results indicate that the drought
conditions monitored by the two indices were the same. Under the monthly and seasonal
time scales, the entire Yunnan region showed no drought; under the half-year time scale, the
central and eastern Yunnan showed light drought, and other regions showed no drought;
under the cumulative effect of annual precipitation, ISPCI and CI showed moderate to
severe drought in central and eastern Yunnan. Both have the same results for drought
monitoring in Yunnan at different time scales, which is the same as the research results
of [34,35]. Therefore, the proposed ISPCI and CI have the same performance, and ISPCI
can be used for actual drought monitoring in this region.
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4.5. Limitations and Future Work

Some studies have reported that PWV derived from GNSS plays an important role in
extreme natural disasters [31,53,56], particularly in drought and flood disasters [28,57–59].
GNSS-derived SPCI can identify drought and quantitatively evaluate the severity of
drought, which is of great significance for drought disaster monitoring. However, GNSS-
derived SPCI has only been proven to have good monitoring ability in the global land
area at 12- and 24-month scales, and the practicability of drought monitoring at other time
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scales is worth further exploration. In this study, the applicability of SPCI at a short time
scale was investigated in typical drought-prone areas. It was found that, at the short time
scale, SPCI has a strong performance in drought monitoring in Yunnan. Yunnan's terrain is
complex, the height difference between the north and south is large, and the number of
GNSS stations and meteorological stations is low, which greatly limits the verification of
SPCI in Yunnan. In the next step, we will investigate the applicability of SPCI at a short
time scale of SPCI in China to expand its application ability. According to the monitoring
error of GNSS-derived SPCI in different regions of China, the error adjustment coefficient
was constructed to serve the purpose of drought monitoring in China.

5. Conclusions

GNSS-derived SPCI provides a new method for global drought monitoring. The
effective use of high-density global GNSS stations can effectively improve the real-time
and universality of meteorological drought monitoring. GNSS-derived SPCI has the
characteristics of a multi-time scale, which can identify the beginning and end of drought
events and measure the severity of drought according to the intensity and duration. To
verify the ability of SPCI for drought monitoring, the drought-prone Yunnan area was
selected as the research area, and the SPCI, SPEI, and CI at 1-, 3-, 6-, and 12-month scales
were calculated using the measured data of six collocated stations from CMONOC and
CMA. Based on the CI, it was found that SPCI achieved better drought monitoring accuracy
than that of SPEI. Although SPEI has been widely used in drought monitoring and analysis
since it was proposed, its applicability in the Yunnan Province of China is worse than that of
SPCI. Although SPCI has excellent performance in drought monitoring in Yunnan Province,
there is still a deviation between SPCI and CI. After calibrating SPCI, the deviation between
ISPCI and CI is smaller. The GNSS-derived SPCI calculation method is simple and can
effectively overcome the difficulty of obtaining PM parameters in CI calculations. With
the establishment of an increasing number of CORS stations worldwide, GNSS can make
significant contributions to global drought disasters, apart from positioning, navigation,
and timing.
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