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Abstract: In agriculture-dominant watersheds, riparian ecosystems provide a wide array of benefits
such as reducing soil erosion, filtering chemical compounds, and retaining sediments. Traditionally,
the boundaries of riparian zones could be estimated from Digital Elevation Models (DEMs) or field
surveys. In this study, we used an Unmanned Aerial Vehicle (UAV) and photogrammetry method
to map the boundaries of riparian zones. We first obtained the 3D digital surface model with a
UAV. We applied the Vertical Distance to Channel Network (VDTCN) as a classifier to delineate the
boundaries of the riparian area in an agricultural watershed. The same method was also used with
a low-resolution DEM obtained with traditional photogrammetry and two more LiDAR-derived
DEMs, and the results of different methods were compared. Results indicated that higher resolution
UAV-derived DEM achieved a high agreement with the field-measured riparian zone. The accuracy
achieved (Kappa Coefficient, KC = 63%) with the UAV-derived DEM was comparable with high-
resolution LiDAR-derived DEMs and significantly higher than the prediction accuracy based on
traditional low-resolution DEMs obtained with high altitude aerial photos (KC = 25%). We also
found that the presence of a dense herbaceous layer on the ground could cause errors in riparian
zone delineation with VDTCN for both low altitude UAV and LiDAR data. Nevertheless, the study
indicated that using the VDTCN as a classifier combined with a UAV-derived DEM is a suitable
approach for mapping riparian zones and can be used for precision agriculture and environmental
protection over agricultural landscapes.
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1. Introduction

Riparian zones are vegetated areas adjacent to natural water bodies with distinctive
plant communities different from their upland surroundings, strongly shaped and affected
by geomorphic processes occurring in the area [1–3]. The critical location of riparian zones
within watersheds allows them to intercept pollutants received from uplands and prevent
these pollutants from transferring downstream to estuarine systems [4–7]. The volume
of water, as well as its pathways moving through the riparian zones, are fundamental for
understanding nutrient removal and retention [8].

From a resource management perspective, valley bottoms are often focal points of
conflict between human land uses and the protection of vulnerable riparian ecotones.
Harvest operations and agriculture practices can lead to deleterious effects on the stream
channel. The removal of streamside vegetation not only compromises the stabilization
effects of roots upon the bank soil but also reduces the hydraulic roughness of the bank,
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which could lead to a rise in flow velocities [9] and thus accelerate channel erosion and
increase sediment input into streams [10,11]. In addition, failing riparian ecosystems cannot
buffer streams against sediment and pollutants loading from uplands.

The effectiveness of riparian conservation depends largely on the accurate delineation
of the riparian zone. Traditionally, riparian zone delineations have been concentrated on
field measurements over a few hundred meters [10,12]. This task could be time-consuming
and labor-intensive to evaluate a large area such as an entire catchment or a long river
corridor, particularly in remote locations. One way to reduce the time and costs is to
sample representative sections. However, the selection of representative sites can suffer
from subjectivity and be limited by accessibility and safety, which could introduce large
uncertainties for the full characterization of a riparian zone [13].

Remote sensing techniques have been used to map riparian zones due to their ad-
vantages in spatial extensiveness, non-invasiveness, and repeatability [14,15]. Riparian
zones can be mapped by predicting the interface between permanently wet or wetter areas
due to position in the landscape using terrain attributes, such as slope gradient and eleva-
tion [16,17], and/or the presence of a permanent or fluctuating water table near the soil
surface, terrain wetness index and local drainage patterns, or proximity to a watercourse.
Concurrently, these factors are prone to develop a specific soil type, describing the spatial
variation and distribution of saturated soils in a particular landscape.

Researchers and conservationists have attempted to map the complex soil drainage
classes and riparian ecosystems using online geospatial datasets [18–20]. This often means
the usage of coarser-resolution spatial data collected from traditional photogrammetry,
offering inaccurate results when attempting to represent lower-order streams and small
watersheds [21,22]. Conventional low-resolution DEMs are also unable to capture topo-
graphic variations in detail. For example, Murphy et al. [20] concluded that the final
map imperfections and limitations were probably the result of the poorer resolution and
lower initial elevation point density of these topographic models. Therefore, for ecosystem
protection, restoration, and management at smaller scales, more accurate and detailed
DEMs have become necessary [23,24].

Light Detection and Ranging (LiDAR) technology can collect high density elevation
points, which has been used to generate DEMs with more topographic detail and lead to
improved hydrological modeling accuracy. Buchanan, et al. [25] concluded that using a
high-resolution DEM (3 m) provided better results than using a 10 m resolution DEM when
estimating soil moisture conditions using a topographic wetness index. The spatial resolu-
tion and data format have a significant impact on predicting the parameters mentioned to
represent the boundaries of ecotones with different soil moisture regimes.

Bock and Köthe [26] postulated that soil characteristics influenced by groundwater
hydrological processes could be mapped according to the Vertical Distance to Channel
Network (VDTCN), a topographic index that reflects the average groundwater table depth
based on topographic positions and the distance to existing flow channels. A similar
method was used to investigate the spatial distribution of soil properties in relation to
micro-topography using a 1m resolution DEM [27], or 25 m DEM [28].

Recent technological advances, as well as the increasing availability of Unmanned
Aerial Vehicles (UAVs) with multimodal sensors, coupled with improved photogrammetry
and computer algorithms have led to dramatic improvements in the collection and pro-
cessing of terrain data using photogrammetry. This approach can produce high resolution
Digital Surface Models (DSMs) with high quality and makes UAVs a cost-effective alter-
native to Airborne Laser Scanning (ALS) [29–31]. Jeziorska [32] assessed the suitability of
DEMs obtained from UAV photogrammetry for overland flow simulations in the context of
precision agriculture applications. They concluded that UAV-based data were most suitable
for overland flow predictions compared with other methods including LiDAR data. Rah-
man, et al. [33] combined orthophotography and photogrammetric point clouds acquired
from UAVs to map peatland groundwater table in the Peace River area (Alberta, Canada).
By identifying pockets of surface water, they obtained a direct measurement of ground-
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water level (GWL) in locations where it was visible and generated continuous-surface
estimates over large areas through interpolation [33].

The general objective of this study was to test the feasibility of using a near ground
UAV and photogrammetry method for riparian zone mapping. Specific objectives included:
(1) Collecting high resolution DEM data using a UAV and photogrammetry method;
(2) Using high resolution DEMs to classify riparian zones in agricultural landscapes with
Vertical Distance to Channel Network; (3) Estimating optimal parameters for riparian
zone delineation with DEM; (4) Assessing the accuracy of riparian zone delineation with
different DEM resolutions and data sources.

2. Materials and Methods
2.1. Study Area

The study area is located on the Ridge Brook, within the Canaan River Watershed,
near Havelock in the province of New Brunswick, Canada (46◦01′29.0′′N, 65◦18′32.5′′W;
Figure 1). The Ridge Brook sub-watershed covers an area of 7020 ha. Land use within the
watershed is primarily agriculture, with small scale limestone extraction operation near
the small town of Havelock.
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Figure 1. Location of study area (Hicksville settlement, Havelock, NB); (a) The Ridge Brook subcatchment; (b) the location
of the watershed in New Brunswick; (c) the location of the study area within the watershed. The red rectangle in (c) covers
the bioengineered buffer area. The star point is the area affected by intense cattle grazing and cattle resting. The stream
follows South to North direction.
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The farm where the study was conducted grows a mix crops, including grasses, barley,
and legumes. The soil type has been classified as Luvisolic, which has a forest mull Ah, and
a Bt or Btg horizons. The Ah horizon is the top mineral soil horizon enriched with organic
matter. While the Bt horizon is an illuvial horizon enriched with silicate clay, normally
formed below an eluvial horizon, the “Btg” horizon indicates poor drainage and periodic
reduction due to significant amount of clay accumulation. Therefore, gleying (anoxic)
conditions are likely to occur within 50 cm of the mineral surface, and these features can
be found particularly in depressions with poorly drained sites coupled with Regosolic
soils. Soils in certain areas lack a distinguished “B” horizon of at least 5 cm, probably due
to recent alluvium, or colluvium on slopes, in which case the nature of the material can
be purely quartz sand. These types of soils are often classified as rapidly to imperfectly
drained (Canadian soil classification system). The pH detected in the field is close to 5.5.
The upstream riparian area adjacent to the farm is surrounded by two sections of planted
conifer species, red pine (Pinus resinosa) and Jack pine (Pinus banksiana). These planted
species may increase the acidity of the soil in the natural riparian forest, located in the
southernmost part of the study area.

Prior to 2007, cattle had access to the stream as a watering source and used the riparian
zone for grazing. These cattle activities caused some impacts on the structural integrity of
the stream banks and the growth of riparian vegetation, which led to a widening of the
channel and increased sedimentation. In 2007, a bioengineered buffer zone—that currently
covers approximately one-third of the stream path through the farm—was implemented to
increase riparian health, to add stability to the stream, and to recover the riparian zone to a
more natural condition. With the help of a bioengineered buffer zone protection project,
the vegetation coverage increased as well as the bank stability, and reduced eutrophication
due to accelerating the water velocity. However, due to the lack of an off-stream watering
system for cattle and absence of a dedicated livestock crossing, vegetation is still removed
from grazing activities in the areas outside of the bioengineered buffer. Cattle activities
have also caused soil compaction along the fenced area on the eastern side of the stream.

2.2. Functional Riparian Zone Delineation
2.2.1. Online Available Data Interpolation

The traditional coarse resolution provincial DEM was obtained from the Service
New Brunswick (SNB) geographic information source (http://www.snb.ca/geonb1/e/
DC/DEM.asp, accessed on 1 April 2021). The accuracy of a single elevation point was
approximately 2.5 m and the spacing between the elevation points was of nearly 70 m on
average, with increased density in more complex terrain area. We generated a DEM at a
2 m cell size using the Inverted Distance Weighted (IDW). This DEM was hydrologically
corrected in ArcMap 10.5 with field-mapped open drainage channel network ("burn" DEM)
within the Service New Brunswick Geospatial Database.

The LiDAR DEMs were obtained from the Service New Brunswick Geospatial Database.
The point cloud density of the LiDAR dataset collected in 2013 was 1.2 points m−2. The
DEM based on the 2013 LiDAR data had a horizontal accuracy of 0.3 m and the vertical
accuracy of 0.133 m at 95% confidence level. The point cloud density of LiDAR dataset
collected in 2018 was 6 points m−2. The horizontal accuracy was 0.20 m, and vertical
accuracy was RMSE Z = 10.5 cm, equating to +/− 20.6 cm at a 95% confidence level. The
DEM raster was generated with Natural Neighbors interpolation with a 30 cm resolution.

2.2.2. UAV and Sensor Description

The Unmanned Aerial Vehicle (UAV) used in this study was a DJI Phantom 4 Pro
(Da-Jiang Innovations, SZ DJI Technology Co., LTD; Figure 2). This UAV was chosen
due to its recognized camera stability which is considered to be a key factor for precision
agriculture and forestry purposes [34–36]. The Phantom 4 Pro is a vertical takeoff and
landing aircraft with total payload of 1388 g, battery and propellers included. This UAV
uses four 2312S Brushless motors powered by a 15.2 V battery with a cruising speed of

http://www.snb.ca/geonb1/e/DC/DEM.asp
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72.0 km h−1 (s-mode) and a maximum climb speed of 6 m s−1. The maximum service
ceiling is 6000 m asl and the maximum transmission range with no obstruction and free of
interference is up to 7 km. The maximum payload is 1.02 lbs. The maximum wind speed
resistance is up to 10.0 m s−1. The reported maximum flight time with a single battery
is 30 min, with a practical flying time of around 25 min based on our tests depending on
wind speed and temperature (<10 km h−1; > 4 ◦C). We planned the flight durations within
20 min, at a flight speed of 7 m s−1.
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Figure 2. The DJI Phantom 4 Pro set up in the field.

The onboard camera is 1 inch complementary metal oxide semiconductor (CMOS)
with 20 M effective pixels (5472 × 3648). The lens has a field of view (FOV) of 84◦ and the
focal length is 8.8 mm/24 mm (35 mm format equivalent) f/2.8–f/11 auto focus at 1 m–∞.
During the flight, the sensor registers either vertical images captured at Nadir angle (for
2D maps), or the camera can be tilted (off-Nadir angles) up to 90 degrees for 3D Digital
Surface Model (DSM) reconstructions. The image trigger can be activated automatically
in autopilot flight mode, with simultaneous timestamps and automatic recording of GPS
locations due to its multiple satellite position navigation system (GPS and GLONASS). The
reported vertical hover accuracy range is 0.5 m with GPS positioning and the horizontal
hover accuracy is 1.5 m with GPS positioning. Images and metadata are automatically
stored with a 64 GB Lexar high performance 633x MicroSDXC UHS-I Secure Digial Card
(SD-Card).

Rogers et al. [37] tested different UAVs (DJI Inspire 1, DJI Mavic Pro, and DJI Matrice
210) including DJI Phantom 4 Pro and compared the accuracy of the UAV-derived DSMs
for each UAV using a DSM created from Light Detection and Ranging (LiDAR) mounted
on a DJI Matrice 600 Pro. They found that the DJI Phantom 4 pro provided higher accuracy
in four of the six land covers tested (vines, bare soil, forest, and mowed grass). Among
the drones tested, the DJI Phantom 4 Pro performed the best due to the higher resolution
sensor (20 MP), which provides finer Ground Sample Distances (GSDs) and greater density
in output point clouds. They also ranked the UAVs used in different categories, including
maximum flight time, number of batteries, dimensions, resolution, and weight. The
Phantom 4 Pro was considered to be the best balance between size and sensor resolution,
which makes this a versatile drone widely used by professional users [37].

2.2.3. UAV Data Collection

Flights and image acquisition were scheduled on days when the temperature was
above 5 ◦C and the wind speed was low (<10 km h−1). We tried capturing images under
overcast or partially overcast days to minimize shading effects. We acquired near-ground
UAV aerial data in 2018 and 2019 in three different seasons, including early Spring, Summer,
and Fall (8 May, 20 August, and 17 November of 2018, and 13 May, 28 August, and
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25 October of 2019). The main consideration of season selection was to map different
vegetation growth stages and streamflow conditions throughout the year. The early spring
provided field conditions with herbaceous vegetation that was still snow-flattened but
without snow cover on the ground. This can reduce the elevation error caused by the
height of streamside vegetation. Deciduous tree species were also still in leaf-off conditions.
These data can be used to visually identify the starting points of ephemeral, intermittent,
or permanent flows and help in determining the threshold parameter of streams for flow
accumulation data. The stream initiation parameter is an important parameter for the
mapping of lower-order stream network-based DEM, and it is difficult to determine due to
upland variations in vegetation cover and type, topography, sediment, and soil hydraulic
properties across regions due to variations in weather and climate [38,39].

Six ground control markers (square targets of 1.44 m2) were equally positioned across
the site and at the boundaries of the UAV study area, including next to the watercourse
at different elevations (Figure 3). A ground control point (GCP) of each target’s corners
was recorded with a Trimble Geoexplorer 6000 Series handheld GPS (10 cm of horizontal
accuracy according to the GPS manual) to mark the positions of the panels with geometrical
precision for georeferencing accuracy. Each position was registered using the real-time
kinematics (RTK) mode to register the location of each target (checkpoint). To do so, the
GPS was placed in a static position for 30 seconds. The precision observed in the GPS
device during the geolocation acquisition was 10 cm for each record, with a minimum of
16 satellites available.
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During each flight, we acquired 1027 images following pre-planned and evenly spaced
parallel flight paths in two directions to form a squared grid using Pix4D app (Pix4D Inc).
The side and frontal overlap rate was 80%. The average flight speed was 7 m s−1 at near
ground elevation (80 m), with the camera set at Nadir angle for 2D mapping. The captured
images were processed with the Structure from Motion (SfM) algorithm to generate geo-
rectified orthomosaic images using Pix4D 4.4 (Pix4D Inc). The latitude, longitude, and
altitude (WGS84 projection) in metadata were used to position the aerial photos first.
Common points from different images in the overlap areas were used as keypoints to build
a 3D projected point through aerotriangulation [40]. In order to improve the software image
stitching, 10 manual tie points (mtps) were added in the planted forest area upstream.
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2.2.4. Point Cloud Cleaning

We observed that 3D information on water surfaces had a large error, potentially
caused by floating objects moving on the water’s surface as well as light/illumination
changes between images captured at different times (i.e., reflection, absorption, and refrac-
tion). The camera could also penetrate the water surface to identify the stream bed in some
cases but not in others, and this caused large errors or noise in surface elevation. Points
classified as water were removed in order to reduce the uncertainties for the estimation of
the stream channel, the triangulation, and the effects on the quality of the DEM [41]. In
addition, misclassification for ground or vegetation was manually corrected to avoid errors
in the surface model [42]. The resulting point cloud had an average density of 833 points
m−2, and it was further interpolated at 0.3 m resolution, using the LAStools commercial
software suite (Martin Isenburg, LAStools -efficient tools for LiDAR processing).

2.2.5. Stream Network and Flow Initiation Thresholds

The spatial hydrology tools of ArcGIS (10.5) were used to generate stream networks.
For the traditional coarse resolution DEM, the existing stream network was used to correct
the flow patterns in the flow accumulation raster [43]. This is necessary because a coarse-
resolution DEM could not capture and represent the topographic features, such as small
streams, due to interpolation errors [44]. Because of their greater initial point density,
LiDAR and UAV DEMs do not require stream correction. Local depressions or sinks were
removed with a fill function to create a depressionless DEM. The flow direction rasters
were produced with a D8 algorithm [45]. The flow accumulation raster was derived from
the flow direction raster. The flow accumulation raster was used to derive low order stream
network according to the predefined flow initiation threshold. The flow initiation threshold
was used as a parameter to optimize riparian zone mapping accuracy.

2.2.6. Functional Riparian Prediction

The Vertical Distance to Channel Network (VDTCN) was used as a classifier for
riparian zones. The Vertical Distance to Channel Network parameter measures the relative
elevation difference between a point of interest to the elevation of the channel network.
The parameter algorithm has been successful in inferring groundwater levels, aiding soil
mapping processes, and predicting soil textures [26]. More specifically, the tool uses an
algorithm that consists of two major steps: (1) It interpolates the elevation of streams and
creates a base level elevation of the stream network; (2) the neighboring stream cells for
points of interest are determined iteratively using the distance from the center of the cell as
a weighting factor. The final VDTCN is calculated by subtracting this base level from the
re-calculated DEM neighboring elevations [26].

2.2.7. Field Validation

The indicator of vegetation species adapted to poorly drained and wetted soils could
also be used to identify riparian areas because these vegetation species rely on access to
groundwater [46,47]. In this study, sedges (Carex sp.), rushes (Juncus sp.), grasses (Panicum
sp. or Agropyron sp.), blue flag iris (Iris versicolor), and cattails (Typha sp.) were used as
indicators species to map the riparian zone since they are known to grow in partially
submerged and water-logged riparian soils. Sites with over 50% visual cover [48] of target
species were included within the riparian field delineation.

In areas absence of hydrophytic vegetation, soil with signs of groundwater table
fluctuations was used to identify riparian areas [49]. Fifty-four soil pits were dug in
transects of 5 m increments from the highly dense riparian vegetation boundaries. The
soil indicators include signs of anaerobic conditions, such as the existence of microbially
reduced ferrous (Fe2+) from ferric iron (Fe3+), the presence of organic carbon, and grey
matrix soil color caused by elluviation. In addition, redoximorphic features, such as
mottling and precipitation of manganese, were also used to identify the soils exposed
to periodic or prolonged periods of saturation, typical in riparian zones [50]. A field
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survey of soil and vegetation indicators was used to register the boundary of the functional
riparian zone using a handheld GPS (Trimble Geoexplorer 6000 Series). Figure 4 details the
flowchart of the methodology.
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2.2.8. Statistical Analysis

The quantitative consistency and correctness achieved by VDTCN with each DEM
used as a source, compared with field survey, was calculated using the Kappa Index [51].

3. Results
3.1. Interpolated DEMs and Geolocation Precision

The interpolated DEMs from point clouds of different sources are shown in Figure 5.
As shown, the coarse DEM was visually different compared to the three high-resolution
DEMs and could not represent the minor topographic features, including streams. No
relevant elevation differences were observed between the LiDAR 1.2 and LiDAR 6.0-
derived DEMs. The height values shown for the UAV-derived DEM were practically equal
to the LiDAR values. On average, we obtained 53,566 keypoints per image and a minimum
of five images overlapping every pixel. Since the Phantom 4 Pro is capable of automatically
recording GPS locations, we used this product as the relative geolocation. As reported
by Fabian, et al. [52], adverse factors, such as lens distortion, GPS position error, aircraft
attitude uncertainty, and errors in the time domain can lead to the decreased accuracy in
the relative UAV map geolocation. Therefore, we corrected the overall geolocation using
the target coordinates, as checkpoints, acquired with handheld GPS as relative accuracy.
The elevation Root Mean Squared Error (RMSE) for these GCPs was 0.075 meters, and
the horizontal RMSE for longitude and latitude were 0.078 and 0.066 meters, respectively.
These results indicate high precision between the measured coordinates (GCPs registered
in the field) compared with the software-calculated position.
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Figure 5. Interpolated DEMs with point clouds from different data sources: (a) coarse resolution
(“burn” DEM); (b) LiDAR 1.2; (c) LiDAR 6.0; (d) UAV. Elevation values are displayed in meters. The
difference in the lowest value registered in (a) is due to imprinting field-mapped open drainage
channel network to create the “burn” DEM.

3.2. The Optimal Parameter for Riparian Zone Delineation

Since the traditional coarse resolution, DEM was the most available data; we opti-
mized the flow initiation and VDTCN threshold parameters with this topographic model
first. The flow network and VDTCN based on coarse resolution DEM with different flow
initiation thresholds are shown in Figure 6. The UAV images obtained in Spring, Summer,
and Fall are shown in Figure 7. As shown, the length of flow lines increases with decreased
flow initiation thresholds (Figure 6a–c). To do so, we maximized the coinciding areas
and minimized errors of commission (false positive) and omission (false negative), testing
different minimum flow initiation and VDTCN thresholds (Figure 6). Higher VDTCN
thresholds included more areas classified as wet (Figure 6d–f). We found that the optimal
flow initiation threshold was 1.5 ha, and the optimal VDTCN threshold was 14.2 m. After-
ward, we applied these optimized parameters found in the coarse resolution DEM to all
other DEMs to predict the extents of riparian zones using LiDAR- and UAV-derived DEMs.

The riparian zone prediction accuracies measured as Kappa Coefficients (KC) are
shown in Table 1. The Kappa Coefficent was 0.25 for the coarse-resolution DEM. When
the optimal parameters derived from the coarse resolution DEM were directly applied to
high-resolution DEMs, the KC were 0.04, 0.03, and 0.03 for LiDAR 1.2, LiDAR 6.0, and UAV
DEMs, respectively. The coarse resolution DEM achieved a higher prediction accuracy
than higher resolution DEMs. These results indicated that optimal parameters obtained
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with coarse resolution DEM could not be directly used to classify riparian zones with
high-resolution DEMs.
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The flow network and VDTCN based on high-resolution DEMs with different flow
initiation thresholds are shown in Figure 8. The accuracies of riparian zone prediction
with different DEMs and different flow initiations are shown in Table 1. For the LiDAR1.2
DEM, we found the optimal flow initiation threshold was 0.75 ha, and the optimal VDTCN
threshold was 0.4 m, and we achieved a KC of 0.63. If the optimal parameters found for
LiDAR1.2 DEM were used for LiDAR6 and UAV DEMs, the KC were 0.63 and 0.56, respec-
tively (Table 1). These results confirmed that the optimal parameters for the prediction of
riparian zones with different DEMs are not the same and could not be used interchangeably.
With the UAV DEM, the optimal flow initiation threshold was 0.50 ha, and the VDTCN
threshold was 0.48 m.
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Figure 8. The VDTCN maps derived from different high-resolution DEMs using different flow initia-
tion thresholds; from left to right, minimum flow initiation: 0.5 hectares; 1.0 and 1.5 ha, respectively.
Figures (a–c) show the VDTCN using the LIDAR1.2 as a source. Figures (d–f) show the VDTCN
using the LiDAR 6.0 as a source. Figures (g–i) show the VDTCN thresholds using the UAV-derived
DEM as a source.
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Table 1. Accuracy of riparian zone prediction with different DEM and different Flow Initiation (FI)
and VDTCN thresholds. Results for the VDTCN raster using different DEMs and different Flow
initiation (F. I.). (DEM LiDAR1.2 = LiDAR with a density of 1.2 points m−2; LiDAR6.0 = LiDAR with
a density of 6 points m−2).

DEM Interpolation F. I.
(ha)

VDTCN
Threshold (m)

Overall
Accuracy (%)

Kappa
Coefficient

Coarse 2 m 1.5 14.2 75 0.25
LiDAR 1.2 30 cm 1.5 14.2 27 0.04
LiDAR 6.0 30 cm 1.5 14.2 26 0.03

UAV 30 cm 1.5 14.2 26 0.03
LiDAR 1.2 30 cm 0.75 0.40 88 0.63
LiDAR 6.0 30 cm 0.75 0.40 89 0.63

UAV 30 cm 0.75 0.40 88 0.56
LiDAR 6.0 30 cm 0.75 0.48 88 0.64

UAV 30 cm 0.75 0.48 87 0.59
UAV 30 cm 0.5 0.48 88 0.63

3.3. Impacts of DEM Resolution on Prediction Accuracy

The accuracies of riparian zone prediction using optimal parameters specific to each
DEM are shown in Figure 9. As mentioned, KC for coarse resolution DEM was 0.25, which
is remarkably lower than the KC of 0.64 and 0.63 achieved by high-resolution DEMs. These
results indicated a substantial improvement with high-resolution DEMs (LiDAR and UAV)
compared with traditional coarse resolution DEM for delineation of riparian zones. We
also found the riparian zone prediction accuracies using high-resolution DEMs did not
have significant differences, and the KC results were practically identical (0.63 and 0.64).
The percentage area of the field-surveyed riparian zone being classified as upland using
the three DEMs were 22.1%, 23.1%, and 22.8% for LiDAR1.2, LiDAR6.0, and UAV DEM,
respectively (Figure 9), which reflected nearly identical performance.
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Figure 9. Accuracy of the VDTCN predicted functional riparian zones using different DEMs and
optimal parameters: (a) mass points coarse resolution DEM, flow initiation = 1.5 ha, VDTCN threshold
= 14.2 m; (b) LiDAR 1.2, flow initiation = 0.75 ha, VDTCN threshold = 0.40 m; (c) LiDAR 6.0, flow
initiation = 0.75 ha, VDTCN threshold = 0.48 m; (d) UAV DEM, flow initiation = 0.5 ha, VDTCN
threshold = 0.48 m. (FP = false positive, indicates upland being predicted as riparian zone; FN = false
negative, indicates riparian zone being misclassified as upland).
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Field-surveyed riparian zones together with predicted riparian zones with different
DEMs are shown in Figure 10. With traditional coarse resolution DEM, large discrepancies
between predicted and field-surveyed riparian zones were found over a large part of the
north section of the study site (Figure 10a). Nonetheless, this area was correctly classified
as a riparian zone by all higher resolution DEM including LiDAR or UAV.
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On the eastern side of the stream, riparian zones predicted by DEM were substantially
larger than the field-surveyed mapped riparian zones (Figure 10). However, the riparian
zone boundary predicted by UAV and LiDAR 6.0-derived DEMs appeared to better match
the field-surveyed riparian zone boundaries compared with LiDAR 1.2. The riparian zone
predicted by LiDAR1.2 tended to join the two functional riparian areas located on the
eastern side of the stream together (where the higher discrepancy was detected). This
must have been due to the higher capability of the UAV and LiDAR 6.0 of detecting the
microtopography compared with LiDAR 1.2 and divided the first two wet areas mentioned
more clearly. Additionally, due to this higher resolution, the LiDAR 6.0 and UAV-derived
DEM identified seasonal stream paths more accurately and therefore represented a wider
stream network.

We also found that all DEMs misclassified the riparian zone in the section where the
stream was partially restored (bioengineered buffer), located beside the planted forest
where the road divides these two areas, along the southern half part of the map (Figure 10).
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4. Discussion
4.1. Impact of the DEM Resolution

We observed significant differences between the accuracy achieved with the tradi-
tional coarse resolution DEM compared with higher resolution DEMs. Previous studies
also reported that coarse resolution DEMs could not adequately represent the topographic
features due to greater terrain surface generalizations [22,44,53,54]. This research confirmed
that traditional coarse resolution DEMs could not be used for riparian zone delineation
in low-order streams. With their higher elevation point density and higher vertical ac-
curacy, higher resolution DEMs derived by LiDAR and UAV can represent the subtle
elevation changes in microtopography in greater detail. Previous researchers also pointed
out that higher quality vertical information resulted in appreciable improvements in the
representation of topographic surface details [55–59]. Higher resolution and accuracy also
provided more accurate delineations of hydrologically relevant parameters and more ap-
propriate model outputs [55–59]. This can ultimately explain the differences in the VDTCN
thresholds used between low resolution and high-resolution DEMs.

4.2. VDTCN Raster Performance in Each DEM

Analysis of results highlighted slight differences between the three high-resolution
DEMs used in this study. Overall, LiDAR 1.2 displayed a more general stream network grid,
whereas the LiDAR 6.0 and UAV provided a more complex detail. Consequently, relatively
shallower areas became less constrained using LiDAR 1.2-derived DEM. This seems to be
the reason for the slightly lower correctness achieved compared to using UAV and LiDAR
6.0. These results seem to contradict the concept concluded by previous studies in which
smoother topography represented in “coarser” resolutions would reduce the confounding
effects of microtopography and increase correctness [54,60–62]. These studies reported that
a more general topography of the landscape represented subsurface groundwater level
(GWL) flow paths more accurately than a 1 m DEM.

We found that all three high-resolution DEMs performed poorly in two specific areas.
The first area was located within the bioengineered buffer. In this area, a large portion
of the riparian area was classified as upland. This section was fenced off and eliminated
access by cattle as part of riparian zone conservation. In addition to high vegetation, the
herbaceous species were also dense and tall, even during the spring. We suspected that
LiDAR might not distinguish the ground surface from the grass cover, so we, therefore,
captured the UAV images in early spring. However, the snow-flattened grass formed a
surface that was substantially higher than bare ground and caused DEM discrepancies
(Figure 11). These results indicated that both UAV and LiDAR had successfully isolated the
presence of trees but could not distinguish the denser grass. In a future study, landmarks
could be set up to estimate grass height manually in order to improve the delineation
accuracy.

The second area of discrepancy was found close to the trail created by cattle traveling
along a fenced area over the pasture (Figure 11). In this section, a large area was predicted
to be a riparian zone but was not classified as riparian in the field surveys. We considered
that this area actually should be classified as a riparian zone, but grazing by cattle has
removed all riparian vegetation, making it difficult to identify. Therefore, this prediction
should not be considered as an error, but the area was a disturbed riparian area.
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Figure 11. Study area showing the two areas of discrepancy. On the left, the stream capture
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beside the fence mentioned (the boundary between grass and grazed area).

5. Conclusions

In this study, we aimed to assess the precision of predicting the extent of the functional
riparian zones on a farm to further improve the detection of hydrologically sensitive areas
and critical source areas in farmland with similar characteristics, land use, and topography
in southeastern New Brunswick (Canada). To do so, we compared the efficiency of the
VDTCN classifying this ecotone when using different topographical models as a source:
coarse mass points DEM, obtained with traditional photogrammetry, LiDAR at different
resolutions (1.2 and 6 point m−2), and the UAV-derived DEM.

The most noticeable differences were found between the low and high-resolution
DEMs (traditional DEM vs. LiDAR and UAV DEMs). The traditional coarse resolution
DEM performed poorly in classifying functional riparian zones with KC as low as 0.25
compared with KC = 0.63–0.64 for high-resolution DEMs by LiDAR and UAV. We also
found that direct use of optimal parameters (minimal flow initiation threshold and VDTCN
threshold) for the coarse resolution DEM to high-resolution DEMs could lead to large
errors.

We found that UAV-derived DEM could be used to delineate riparian zones using
VDTCN as a classifier for lower-order streams, with comparable accuracy to that of airborne
high point cloud density LiDAR. However, tall grassed areas could cause misclassification
using LiDAR or UAV methods.
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