
remote sensing  

Article

Aerosol Characterization during the Summer 2017 Huge Fire
Event on Mount Vesuvius (Italy) by Remote Sensing and In
Situ Observations

Antonella Boselli 1, Alessia Sannino 2,* , Mariagrazia D’Emilio 1, Xuan Wang 3,4 and Salvatore Amoruso 2

����������
�������

Citation: Boselli, A.; Sannino, A.;

D’Emilio, M.; Wang, X.; Amoruso, S.

Aerosol Characterization during the

Summer 2017 Huge Fire Event on

Mount Vesuvius (Italy) by Remote

Sensing and In Situ Observations.

Remote Sens. 2021, 13, 2001. https://

doi.org/10.3390/rs13102001

Academic Editor: Chris G. Tzanis

Received: 31 March 2021

Accepted: 13 May 2021

Published: 20 May 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Istituto di Metodologie per l’Analisi Ambientale (IMAA)—CNR, 85050 Tito Scalo, Italy;
boselli@imaa.cnr.it (A.B.); demilio@imaa.cnr.it (M.D.)

2 Dipartimento di Fisica “E. Pancini”, Università degli Studi di Napoli Federico II, 80138 Napoli, Italy;
salvatore.amoruso@unina.it

3 Istituto Superconduttori, Materiali innovativi e Dispositivi (SPIN)—CNR, 80126 Napoli, Italy;
xuan.wang@spin.cnr.it

4 School of Remote Sensing and Information Engineering, Wuhan University, Wuhan 430072, China
* Correspondence: alessia.sannino@unina.it; Tel.: +39-081-676276

Abstract: During the summer of 2017, multiple huge fires occurred on Mount Vesuvius (Italy),
dispersing a large quantity of ash in the surrounding area ensuing the burning of tens of hectares of
Mediterranean scrub. The fires affected a very large area of the Vesuvius National Park and the smoke
was driven by winds towards the city of Naples, causing daily peak values of particulate matter (PM)
concentrations at ground level higher than the limit of the EU air quality directive. The smoke plume
spreading over the area of Naples in this period was characterized by active (lidar) and passive
(sun photometer) remote sensing as well as near-surface (optical particle counter) observational
techniques. The measurements allowed us to follow both the PM variation at ground level and the
vertical profile of fresh biomass burning aerosol as well as to analyze the optical and microphysical
properties. The results evidenced the presence of a layer of fine mode aerosol with large mean
values of optical depth (AOD > 0.25) and Ångstrom exponent (γ > 1.5) above the observational site.
Moreover, the lidar ratio and aerosol linear depolarization obtained from the lidar observations
were about 40 sr and 4%, respectively, consistent with the presence of biomass burning aerosol in
the atmosphere.
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1. Introduction

Atmospheric aerosol content and composition are of particular interest, playing an
important role in several areas, such as Earth’s radiative budget, air quality, human
health, etc. [1–3]. Biomass burning injects smoke particles into the atmosphere whose
properties change with time according to combustion phase, mixing phenomena and atmo-
spheric conditions. For this reason, biomass burning is considered one of the main aerosol
emission sources.

Biomass burning generates fine mode particles that are mainly composed of organic
carbon, black carbon and inorganic particles [4,5] and whose chemical composition and
optical properties depend on both the type of forest burned and environmental combustion
conditions [6]. Aging processes lead to an evolution of the emitted particles that change
their chemical, optical and microphysical properties.

In the last decade, biomass burning has been extensively studied, both at regional and
global scales, with the aim of investigating the spatial and temporal variability of chemical,
optical and microphysical properties of the particles injected into the atmosphere and the
associated transport mechanisms [7–12]. Measurement campaigns for the characterization
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of biomass burning aerosols have been carried out worldwide by using different observa-
tional techniques and retrieval methods [13–15]. Previous studies have provided important
information on optical and microphysical properties of aged and long-range transported
smoke particles, whose features and vertical distribution are highly variable, changing
with the aging process [5,16]. Instead, local real-time observations of fresh smoke aerosol
are still scarce despite their importance [17–20].

The characterization of biomass burning aerosol optical and microphysical properties
is particularly relevant in regions affected by numerous forest fires and biomass burning
episodes, being very important sources of atmospheric pollution. This kind of analysis
is critical in areas like the Mediterranean region where many events occur on an annual
basis [21,22].

During the year 2017, multiple wildfire events affected several Mediterranean coun-
tries. In the Vesuvius National Park, in July 2017, a huge fire burned 88% of Mediterranean
forest [23]. Following this event, large quantities of ash were injected into the environment
and also dispersed in the atmosphere towards the metropolitan city of Naples. The ex-
perimental characterization of the produced fresh biomass burning aerosol was carried
out at a short distance from the fire source by means of remote sensing and near-surface
characterization methods. Model results were also used to visualize the aerosol spatial
distribution and to define the source and transport path of the observed plume.

2. Materials and Methods

The present investigation was carried out at the Aerosol, Clouds and Trace Gases
Research Infrastructure (ACTRIS) [24] National Facility (NF) located at the University of
Naples “Federico II”.

Since 2000, in the European Aerosol Lidar Network (EARLINET) [25], the Naples
observation station has included both passive and active remote sensing systems and
near-surface instruments for the study of natural and anthropogenic aerosols related to
local and long-range transport phenomena.

The station is equipped with a multiwavelength elastic/Raman lidar device—the
Multi-wavelength Aerosol Lidar Apparatus (MALIA)—based on a pulsed Nd:YAG laser
source emitting light pulses at wavelengths of 1064 nm, 532 nm and 355 nm, with a
maximum pulse energy at each wavelength of 0.65 J, 0.15 J and 0.1 J, respectively, at a
repetition rate of 20 Hz. The lidar receiver is a 30 cm Newtonian telescope with a focal
length of 120 cm and allows for detecting both elastic signals and Raman echoes at 386 nm
(N2), 607 nm (N2) and 407 nm (H2O) and aerosol depolarization measurements at 532 nm.
MALIA is periodically calibrated for depolarization measurements through the technique
proposed by Freudenthaler [26]. Data were acquired with a 1 min temporal resolution and
15 m vertical resolution.

Vertical profiles of the aerosol backscattering coefficient (βa(z)) at 355, 532 and 1064 nm
were obtained from lidar observations both in the daytime and nighttime through retrieval
by the Klett–Fernald algorithm [27,28] and Raman method [29], respectively.

The spectral dependence of the aerosol backscatter coefficient (the so-called backscatter-
related Ångström exponent) [30] was also analyzed in order to obtain information on the
variability of aerosol characteristics across the vertical profile, since such a parameter is
size dependent (the larger its value, the smaller the particles).

Extinction coefficient profiles (αa(z)) at 386 nm measured during the night were re-
trieved following the procedure introduced by Ansmann [31]. The extinction to backscatter
ratio, that is, the lidar ratio (LR), was obtained from simultaneous aerosol backscatter and
extinction data. Moreover, calibrated particle linear depolarization profiles (δa(z)) were
derived at 532 nm from the backscattered light components polarized along the direction
perpendicular and parallel to the laser beam polarization, following the inversion proce-
dure reported by Biele [32] and Freudenthaler. The LR and δa are both key parameters for
the classification of the aerosol type as they depend on aerosol microphysical properties
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and geometry [33]. Besides these aerosol properties, a recently published method can also
be used for aerosol typing [34].

Columnar aerosol properties were measured by a dual polarization and triple mode
(sun, sky, lunar) photometer (CIMEL CE318TS-M), operative since April 2016 in the Aerosol
Robotic Network (AERONET) [35]. The sun photometer provides direct solar irradiance
measurements at 8 different wavelengths from UV to near IR (340, 380, 440, 500, 675, 870,
1020 and 1640 nm). Collected data are transferred to the AERONET processing system
and successively calibrated and processed with inversion algorithms [36–39]. Level 2.0
cloud screened and quality assured data of aerosol optical depth (AOD) at the different
wavelengths, inversion products and precipitable water are directly accessible to users on
the AERONET website (aeronet.gsfc.nasa.gov (accessed on 1 February 2021)), after field
calibration at the calibration facility.

Level 2.0 data of columnar AOD at 440 nm, Ångström exponent (γ) at 870/440 nm,
volume particle size distribution dV(r)/dln(r) (µm3 µm−2) and single scattering albedo
(SSA) were analyzed with the aim of studying possible changes in the aerosol optical
and microphysical properties in the atmosphere in the period 10–17 July 2017. The re-
lationship between AOD and γ parameters allowed us to discriminate different aerosol
typologies along the atmospheric column on the basis of their different optical proper-
ties [40]. Moreover, aerosol coarse and fine mode fractions obtained from the AERONET
spectral deconvolution algorithm [41] and their relative influence were also analyzed for a
more reliable characterization.

Particulate matter (PM) at ground level was measured with an optical particle counter
(OPC—dust monitor EDM164 Grimm). The device measures the PM10, PM2.5, PM1 mass
concentrations at the surface in continuous mode, with the time resolution varying from
1 minute to 1 day, with an instrument accuracy of ±5% over the entire measurement range.
PM data from the air quality monitoring network of the Campania region (ARPAC), readily
accessible on the ARPAC website (www.arpacampania.it (accessed on 1 February 2021)),
were also analyzed to study the correlation between data registered at different points
around the measurement area. In particular, 7 sampling sites of the network located at key
points of the city of Naples and around the Vesuvius volcano were selected for such an
analysis. Moreover, PM collected at ground level when the fire was near the lidar station
was analyzed by scanning electron microscopy with energy dispersive X-ray analysis
(SEM-EDX) to gain information about particle morphology and atomic composition.

To take into account the air mass paths close to the surface as well as at higher altitudes,
air mass back-trajectories were calculated at different altitude levels. Moreover, in order
to identify the source region and spatial distribution of the observed aerosol plumes,
Navy Aerosol Analysis and Prediction System (NAAPS) model results and satellite images
were also exploited. The back-trajectory analysis was based on the HYSPLIT dispersion
model developed by the NOAA Air Resources Laboratory (ARL) and is available on
the AERONET website (https://aeronet.gsfc.nasa.gov (accessed on 1 February 2021)).
Back-trajectory analysis was also supported by the NMMB/BSC-Dust daily forecasts of
dust concentration profiles provided by the Barcelona Supercomputing Center (http://
www.bsc.es/ess/bsc-dust-dailyforecast/ (accessed on 1 February 2021)) to assess possible
influences of Saharan dust contributions in the atmospheric column. In the examined
period, we also considered wind speed and direction measured at Capodichino Airport by
the meteorological station of the Italian Air Navigation Service Provider (ENAV).

Finally, active fire derived from satellite observations by the MODIS and VIIRS in-
struments and reported by the NASA Fire Information for Resource Management System
(FIRMS) (https://firms.modaps.eosdis.nasa.gov (accessed on 1 February 2021)) allowed us
to identify the location, extent and intensity of wildfire activity.

aeronet.gsfc.nasa.gov
www.arpacampania.it
https://aeronet.gsfc.nasa.gov
http://www.bsc.es/ess/bsc-dust-daily forecast/
http://www.bsc.es/ess/bsc-dust-daily forecast/
https://firms.modaps.eosdis.nasa.gov
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3. Results and Discussion
3.1. The Measurement Aera

The Naples NF is located in the west part of the city of Naples (40.838◦N, 14.183◦E,
118 m a.s.l.) in the center of the Mediterranean basin. Mount Vesuvius is located about
18 km away in the east direction and the Astroni Natural WWF Reserve is just 2.5 km away
in the northwest direction from the Naples NF (Figure 1).
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Figure 1. Map of the city of Naples with the location of the Actris National Facility (Actris NF), the
Astroni Natural WWF Reserve (Astroni) and the National Park of Vesuvius (Vesuvio). Stars refer to
the 7 sampling sites of the ARPAC air quality monitoring network equipped with instruments for
continuous measurements of PM concentration.

The city of Naples overlooks the sea and is affected by the circulation of the sea
breeze that develops during the day, favored by the surrounding area orography. The
measurement area is characterized by a very high aerosol content of both natural (desert
dust, sea salt) and anthropogenic (combustion, industrial activity, vehicular traffic) origin.
In particular, Saharan sand transport events are very frequent in Naples, whereas biomass
burning aerosol coming from fires is generally related to isolated events occurring mainly
in summer.

Due to the complexity of the aerosol content in this area, its characterization during
particularly high turbidity episodes is very useful. In this respect, co-location of remote
sensing and near-surface instruments provides a promising approach for the study of the
optical and microphysical properties of the aerosol layers that develop in the atmosphere
and to follow their evolution in space and time.

3.2. The Period 10–19 July 2017

During the period 10–19 July 2017, the area surrounding the city of Naples was affected
by a strong Saharan dust event characterized by dust plume intrusion in the planetary
boundary layer (PBL) that influenced the local atmospheric aerosol distribution and its
properties. According to air mass back-trajectories, based on the HYSPLIT dispersion
model (Figure 2) and NMMB/BSC-Dust daily forecast outcomes (Figure 3), the dust event
lasted from 8 to 12 July. In the last day of the dust event, the area of the Vesuvius National
Park was affected by a very large fire that caused significant damage to the forest on
all sides of the volcano. The biomass burning aerosols were blown by wind toward the
northwest direction, especially on 12–13 July and (Figure 4) when the wind speed reached
values as high as 10 m/s.
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Figure 4. The wind speed and direction and the frequency of counts by wind direction on 12–
13 July 2017.

In the same period, on 17 July, the fire also affected the Astroni Natural WWF Reserve
located very close to the measurement area. The images of the active fire derived from
satellite observations corresponding to 12 July and 17 July 2017 are reported in Figure 5.
These local episodes were characterized by high atmospheric turbidity and a strong impact
on PM at ground level that reached daily peak values above the limit established by the
European Directive (2008/EC/50), which for PM10 sets two limiting values for human
health protection: the daily mean value should not exceed 50 µg m−3 more than 35 times
per year and the annual mean value should not exceed 40 µg m−3 (http://data.europa.eu/
eli/dir/2008/50/2015-09-18 (accessed on 1 February 2021)).
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Figure 5. FIRMS maps reporting active fire data (red and orange points) in the measurement area on
12 and 17 of July 2017.

3.2.1. PM Mass Surface Concentrations

The mass concentration of PM10, PM2.5, PM1 fractions was measured in Naples at
ground level with a 1-minute temporal resolution. Figure 6 reports the temporal variation

http://data.europa.eu/eli/dir/2008/50/2015-09-18
http://data.europa.eu/eli/dir/2008/50/2015-09-18
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of daily average PM mass concentration, evidencing an increase in its value in the period
12–15 of July related to the Vesuvius forest fires as well as a very high peak value on 17 July
due to the fire at the Astroni Natural WWF Reserve.
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Figure 6. Daily averaged values of the different PM fractions (in µg m−3) monitored continuously by
the OPC from 10 to 17 of July 2017.

In the observational period, daily mean values of the mass concentration in the range 5–
303 µg m−3 for PM10, 3–194 µg m−3 for PM2.5 and 2–181 µg m−3 for PM1 were registered;
larger values were measured on 13 July and 17 July when the smoke events were more
intense. During these two days, a PM2.5/PM10 ratio of about 0.7 highlighted a larger
contribution of fine particles at the source. Table 1 summarizes the values of daily mass
concentration for the different PM fractions as well as the PM2.5/PM10 ratio. In the table,
the mean standard deviation is reported as data uncertainty.

Table 1. Daily mean values of PM mass concentration (µg m−3) measured by the OPC in the time
period 10–17 July 2017 and corresponding PM2.5/PM10 ratio.

July 2017 10 11 12 13 14 15 16 17

PM10 13 ± 5 15 ± 5 32 ± 10 33 ± 15 24 ± 14 24 ± 8 17 ± 8 55 ± 74
PM2.5 6 ± 3 8 ± 2 19 ± 8 24 ± 13 15 ± 12 15 ± 6 6 ± 1 37 ± 47
PM1 4 ± 3 7 ± 2 16 ± 7 21 ± 13 11 ± 11 11 ± 5 4 ± 1 34 ± 44

PM2.5/PM10 0.4 ± 0.1 0.6 ± 0.1 0.6 ± 0.1 0.7 ± 0.1 0.6 ± 0.1 0.6 ± 0.1 0.4 ± 0.1 0.7 ± 0.1

The high concentration measured by the OPC evidences an interesting phenomenon
concerning the whole area over Naples, as highlighted by PM10 and PM2.5 data collected
by the ARPAC air quality monitoring network. In particular, we focused on seven sampling
sites of the network (Acerra Caporale, Acerra Industriale, Casoria, Pozzuoli, Osservatorio
Astronomico, Pellegrini, Portici) located at key points of the metropolitan area of Naples
and around the Vesuvius volcano. All the ARPAC monitoring sites are equipped with
instruments for continuous and automatic measurements of PM10 and PM2.5 concentra-
tions on a daily or hourly basis, except for the Pellegrini sampling site that is equipped for
monitoring only PM10. We examined the data measured during July 2017. We noted that
for all the sampling stations and for both PM10 and PM2.5, the higher concentration values
were measured in the period 10–19 July 2017. In particular, we calculated a concentration
percentage increase that varied from 82% to 158% for PM10 and from 99% to 308% for
PM2.5. This indicated a large presence of particulate matter at ground level in the examined
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period and a prevalence of the finer matter. At the Pozzuoli sampling station, which was
the furthest station from the Vesuvius fires but the closest to the Astroni fires, concentration
peaks were measured in the days of greatest activity of the Astroni fire.

A comparative analysis between PM10 and PM2.5 concentrations measured by ARPAC
sampling stations and OPC was carried out by means of a bivariate statistical procedure [42].
This analysis evidences the following statistical correlation between the measured data:
for the Astronomico sampling station ρ (PM10 − OPC) = 0.5, with N = 10 and p = 14%;
for the Portici sampling station ρ (PM2.5 − OPC) = 0.8, with N = 10 and p = 0.5%, where
N is the number of samples, ρ the Pearson correlation coefficient and p the statistical
significance. The higher correlation with the Portici sampling station located close the
Vesuvius area highlights the wide extension of the observed phenomenon that affected the
whole Naples area.

3.2.2. Columnar Aerosol Properties

Further useful information on the atmospheric particle characteristics is gained from
columnar properties of the aerosol optical depth (AOD) and Ångstrom exponent (γ) pro-
vided by sun photometer data. AERONET’s highest quality data (level 2.0—cloud screened
and quality assured) of AOD at 440 nm, also expressed in total, fine and coarse modes
fractions [41], and γ for the 440/870 nm range were considered. Figure 7 reports the daily
variation in the AOD at 440 nm, for total, fine and coarse modes fractions, derived from
AERONET spectral deconvolution algorithm (SDA) retrieval. From Figure 7, a larger
contribution of particles in the fine fraction is observed during the examined period. Con-
versely, according to Saharan dust transport events over the measurement area, a greater
content of coarse mode particulates in the atmospheric column was observed only on 10
July. It is worth underlining that the photometer is located at the Center for Metrological
and Technological Services of the University of Naples “Federico II” (CeSMA—40.837◦N,
14.307◦E, 50 m a.s.l.) in the east side of the city; for this reason, it did not immediately
measure an increment in the columnar AOD on 17 July during the Astroni fire event but
only in the following days (not shown) when the wind blew from west to east.
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Figure 7. July 2017 fine and coarse mode AOD derived from AERONET spectral deconvolution
algorithm (SDA) retrieval.

In the analyzed period, AOD values ranged from 0.07 to 0.78 while γ values varied
from 0.45 to 1.95. Larger daily mean values of AOD (>0.25) were measured from 12 July,
during the Vesuvius fire events. Moreover, in the days affected by the fires the 440/870 γ

exponent showed values larger than 1.5 that are suggestive of the presence of fine mode
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aerosol throughout the atmospheric column and typical for particles arising from smoke
and fires. AOD daily values were perfectly consistent with Navy Aerosol Analysis and
Prediction System (NAAPS) Global Aerosol Model results (not shown) that highlight AOD
values in the range 0.1–0.4 in the same period.

Moreover, we also considered the AOD and γ parameters in order to characterize
biomass burning aerosol. In fact, such an analysis allowed for distinguishing between
different aerosol types since the AOD is proportional to the total column loading of absorb-
ing and scattering particles, whereas γ is directly linked to aerosol size, increasing as the
particle size decreases [43].

Figure 8 reports the data corresponding to the fire events as warm-colored circles
(12–15 July), meanwhile, data corresponding to the remaining days of the examined period
are displayed as cool-colored circles (July 10th, 11th, 16th and 17th). The data of Figure 8
clearly illustrate the larger AOD and γ exponent values corresponding to days affected by
biomass burning aerosol. The values are in good agreement with the findings of Burgos
et al. (2018) [44], who reported AOD and γ threshold values of 0.18 and 1.5, respectively,
during biomass burning episodes in the Mediterranean area.
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Figure 8. AOD vs. γ derived from AERONET data corresponding to 10–17 July 2017 period.

Volume particle size distribution dV(r)/dln(r) derived from the AERONET hybrid
inversion data procedure were also analyzed to highlight any difference in the aerosol
composition. A representative particle size distribution was obtained by averaging over
24 hours the different size distributions obtained during the day. Figure 9 reports the
columnar size distributions dV(r)/dln(r) for the period 10–15 of July; data for 16 and 17
of July are missing. The error bars of the data points in Figure 9 represent the uncertainty
calculated as the mean standard deviation. This analysis highlights an interesting variation
of the atmospheric aerosol composition during the days affected by fire events, showing a
reduction in coarse mode aerosol components together with a larger predominance of fine
particulates. According to Saharan dust transport events, a larger contribution of coarse
mode fraction aerosol was present on 10 July, whereas on 12 July, a fine aerosol contribution
was added to a similar content of coarse mode aerosol due to Saharan dust mixing with
biomass burning aerosol. It is worth noticing the shift and increase in the peak value of the
fine mode components for 13–15 July as a consequence of the arrival of biomass burning
aerosols in the measurement area.
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Figure 9. Daily columnar volume particle size distributions dV(r)/dln(r) obtained from sun pho-
tometer measurements carried out in Naples from 10 to 15 of July 2017. The mean standard deviation
was chosen as uncertainty for the data.

SSA derived by AERONET hybrid inversion data allows for studying aerosol absorp-
tion properties, which for biomass burning aerosol depend on fire intensity and different
combustion phases [37]. Moreover, differences in absorption can be also correlated to ambi-
ent temperature and relative humidity as well as to particle composition and aging [45].
Figure 10 reports the SSA spectral variation in the observational period 10–17 July 2017.
Due to desert dust contributions throughout the atmospheric column, an increment in the
SSA value is observed, going from 440 nm to 670 nm on 10th of July (from 0.93± 0.03 to
0.97 ± 0.01), whereas a constant behavior occurs on 11th and 12th of July (SSA ~ 0.94 and
092, respectively). Conversely, a decreasing spectral dependence of the SSA is observed
from the 13 of July, in agreement with a prevalence of fine particles due to fire episodes.
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Figure 10. Spectral dependence of the single scattering albedo (SSA) for biomass burning and desert
dust episodes that occurred in the period 10–17 of July in Naples.

Moreover, data show that the SSA value varies with time and, for fine particles related
to fire, the SSA increases with time according to age and less absorbing smoke aerosol in the
atmosphere. Finally, the highest absorption of urban–industrial aerosol in the atmosphere
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(lower SSA) was observed on 16 July, when the fire was extinguished and the wind blew in
the direction away from the measurement area.

The daily mean values of the AOD, γ and SSA corresponding to the analyzed period
are reported in Table 2.

Table 2. Daily mean values of AOD, γ and SSA for period 10–17 July 2017.

July 2017 10th 11th 12th 13th

AOD@440 nm 0.21 ± 0.04 0.12 ± 0.01 0.29 ± 0.08 0.30 ± 0.14
γ (440/870) 0.66 ± 0.15 1.08 ± 0.15 1.47 ± 0.17 1.68 ± 0.14

SSA@440 nm 0.93 ± 0.03 0.94 ± 0.03 0.93 ± 0.03 0.96 ± 0.02

July 2017 14th 15th 16th 17th

AOD@440 nm 0.38 ± 0.13 0.44 ± 0.10 0.11 ± 0.03 0.17 ± 0.02
γ (440/870) 1.63 ± 0.10 1.61 ± 0.05 1.05 ± 0.23 1.49 ± 0.13

SSA@440 nm 0.96 ± 0.01 0.96 ± 0.03 0.92 ± 0.05 0.95 ± 0.03

3.2.3. Lidar Remote Sensing Measurements

Vertically resolved lidar measurements carried out at Naples NF allowed for studying
and characterizing the aerosol dispersed in the atmosphere just after the beginning of
the fires as well as following its spatial and temporal evolution. Vertical profiles of the
aerosol optical properties also allowed for discriminating dust from biomass burning
aerosol layers.

We report the results of measurements performed on 10 and 13 of July, comparing
properties of the aerosol layer due to dust (10 July) and fire events (13 July). We also report
measurements carried out on 17 of July when the fire event damaged the Astroni Natural
WWF Reserve, at a distance of only 2.5 km from the NF.

On 10 July 2017 the city of Naples was affected by a Saharan dust transport event that
carried aerosol at altitudes between 2 and 5 km. Diurnal lidar observations were performed
from 08:17 to 10:26 UTC, while Raman measurements were carried out from 17:10 UTC.
Figure 11 shows the time variability of the range-corrected lidar signal (RCS) measured at
532 nm; data refer to diurnal observations and are reported with a spatial and temporal
resolution of 15 m and 60 s, respectively. Figure 11 highlights an aerosol stratification in
the atmosphere due to Saharan dust according to air mass back-trajectories and dust daily
forecasts. The dust layer progressively declines with time, reaching a stable condition and
extending between 2 and 4 km of altitude at a later time. The optical properties of such an
aerosol layer were characterized by the elastic/Raman measurements described hereafter.
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Elastic/Raman lidar observations were carried out on 10 July from 17:10 to 17:40 UTC,
allowing a measurement of the βa, αa, δa and LR vertical profiles, as reported in Figure 12.
The spatial resolution is 60 m for βa and δa and 120 m for αa and LR.
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Lidar profiles show local anthropogenic aerosol below 1.5 kilometers, characterized
by a calibrated δa mean value at 532 nm of (22 ± 7)% and an LR of (73 ± 9) sr at 355 nm.
Moreover, at altitudes between 2 and 4 km, a more depolarizing layer is present, showing
δa = (37 ± 7)% and LR = (28 ± 9) sr. According to the air mass back-trajectories reported in
Figure 2, this layer contains dust-derived aspherical particles.

In conjunction with the Saharan dust event, on 12 July 2017, the Naples measure-
ment area was affected by a huge fire on Mount Vesuvius. Large quantities of ash were
injected into the atmosphere and successively dispersed toward the city of Naples. Biomass
burning aerosol was mixed in the atmosphere with Saharan dust, generating a complex
atmospheric stratification.

Figure 13 displays the time variability of the RCS measured at 532 nm that highlights
a complex layering below 3 km of altitude related to both forest fire and Saharan dust
aerosols. Vertical lidar profiles of βa and δa allowed us to discriminate the two aerosol
components. The βa and δa profiles derived from diurnal observations carried out from
13:16 to 13:46 UTC are reported in Figure 14. The spatial resolution is 60 m. The calibrated
δa mean value at 532 nm was (8 ± 1)% in the layer below 1.1 km and (16 ± 2)% at altitudes
ranging from 1.1 to about 2.8 km. Moreover, averaged values of the backscatter-related
Ångstrom exponent (wavelength pair 532/1064 nm) inside each layer were (1.18 ± 0.03)
and (0.92 ± 0.05), respectively. These values suggest a predominance of fine mode biomass
burning aerosol located below 1.1 km, whereas larger and more depolarizing aerosols
related to dust transport are mainly confined between 1.1 km and 3.0 km, in agreement
with model predictions (see Figure 3).
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diurnal lidar observations carried out on 12 July 2017 in Naples.

On 13 July 2017, no signature of Saharan dust was observed above the measurement
area, as confirmed by model outcomes (Figures 2 and 3). Lidar observations were carried
out from 05:48 to 17:30 UTC, as shown in Figure 15. This allows for characterizing the
fresh biomass burning aerosol produced by the Vesuvius fire dispersed across a short
distance and following its temporal evolution. Figure 15 displays the time variability of
the RCS measured continuously from 05:48 to 16:48 UTC. The figure highlights a diffuse
atmospheric layering related to the forest fire aerosol.
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The lidar vertical profiles of βa, αa, δa and LR derived from Raman lidar observations
carried out from 17:00 to 17:30 UTC are reported in Figure 16. The spatial resolution is 60 m
for βa and δa and 120 m for αa and LR.
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In the aerosol layer above 1750 m, the LR mean value obtained at 355 nm was (37 ± 5)
sr and the calibrated δa mean value at 532 nm was (3.9 ± 0.6)%. Moreover, larger values
(LR = (49 ± 14) sr and δa = (7.6 ± 1.3)%) were measured at lower altitudes, suggestive of a
mixing with local anthropogenic aerosol. The mean values of LR and δa agree with those
reported in the literature for fresh biomass burning aerosols [40].

On 17 July, the fire damaged the Astroni Natural WWF Reserve, located only 2.5 km
from the Naples NF. Figure 17 shows the time variability of the RCS measured in Naples
continuously from 09:33 to 10:58 UTC. The figure highlights spots of aerosol in the atmo-
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sphere. At about 10:50 UTC, a layer of more absorbing aerosol related to biomass burning
(red circle in the figure) can be discerned. Around 11:00 UTC, the fire also affected the
measurement area and lidar measurements were stopped because of the presence of black
haze in the surroundings of the lidar station.
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The lidar profiles of βa and δa derived from diurnal lidar observations carried out
from 10:39 to 10:58 UTC are reported in Figure 18. The spatial resolution is 60 m. βa profiles
show a peak around 2500 m above the lidar station at all wavelengths with mean value
as high as 1 × 10−4 m−1 sr−1. The peak corresponds to a visible plume of smoke in the
atmosphere. An almost homogeneous layer is observed at lower altitudes with βa around
2 × 10−6 m−1 sr−1. A calibrated δa mean value at 532 nm of (4.1 ± 1.6)% is observed across
the whole profile, evidencing a diffuse layer of particles with a spherical shape resulting
from biomass burning. Averaged values of the backscatter-related Ångstrom exponent
(wavelength pair 532/1064 nm) were (1.8 ± 0.4) according to fine mode fresh biomass
burning aerosols over the measurement area [46].

Table 3 summarizes the values of the parameters obtained by lidar averaged over the
observed layers. The LR mean values for SD and fire smoke aerosols are comparable within
uncertainties, confirming that only in combination with other parameters can the LR be
used to reliably distinguish between different aerosol typologies. Moreover, the obtained
results show that δa declines with time, according to a higher content of smoke aerosol in
the atmosphere, and reaches very small depolarization values (about 4%) for both the fire
events analyzed.

Table 3. Mean values of AOD, LR and δa derived from lidar observations and measured in the layers
observed in the time period 10–17 July 2017.

July 2017 Altitude LR δa

10 (SD) 2000–4000 m 28 ± 9 sr 37 ± 7%
12 (Mixed) 600–2800 m 13 ± 4%

13 (Fire) 1750–3000 m 37 ± 5sr 3.9 ± 0.6%
17 (Fire) 600–3000 m 4.1 ± 1.6%
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Finally, on 17 of July, samples deposited on the ground were collected and analyzed
by SEM-EDX analysis. The SEM images reported in Figure 19 illustrate the morphology of
the collected material, highlighting the characteristics of the substance.
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SEM-EDX analysis of the samples (Figure 19, right panels) highlights a prevalence of
carbon material deriving from a biomass combustion process and of Si, K and Ca (a, b)
deriving from the inorganic fraction of the biomass. Moreover, a small contribution of
marine aerosol (Na and Cl) (c) due to the sea breeze circulation that develops during the
day can be also identified.

4. Summary

The present work reports the results of a study carried out during a huge fire event
that occurred on Mount Vesuvius (Italy) in July 2017. A synergetic approach, based on the
simultaneous use of both in situ and passive and active remote sensing instruments, allows
for monitoring and characterizing the optical and microphysical properties of the aerosol
produced by the Vesuvius fire that was subsequently dispersed in the atmosphere across a
short distance over the city of Naples, in the period from 10 to 17 of July 2017.

A long time series of vertically resolved lidar measurements allowed for studying and
characterizing fresh biomass burning aerosol, following its temporal evolution as well. The
lidar observations show the presence above the measurement area of a layer characterized
by values of LR ≈ 40 sr and δa ≈ 4%. Columnar aerosol properties derived from sun
photometer measurements add useful information on the atmospheric particles, allowing
us to examine aerosol microphysical and absorption properties. The measured columnar
AOD reaches values as high as 0.78 with mean values ≈0.3–0.4 and γ values up to 1.95
with mean values ≈1.6–1.7, both typical of biomass burning aerosol. Size distribution
analysis shows an increase in the peak value of fine mode components as biomass burning
aerosols reach the measurement area, while the SSA increases with time according to age
and less absorbing smoke aerosol in the atmosphere. SEM-EDX analysis of the samples
deposited on the ground, when the fire affected the measurement area, highlights the
presence of carbon derived from a biomass combustion process and of Si, K and Ca derived
from the inorganic fraction of biomass, together with Na and Cl due to the closeness of
the sea. Besides the characterization of the physical properties of biomass burning aerosol
generated by forest fires, the present study shows how the simultaneous use of different,
complementary methods can provide interesting information on atmospheric aerosols.
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