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Abstract: This study analyzes the geophysical signals in J2 time series from 1976 to 2020 by using
singular spectrum analysis (SSA) and the Lomb-Scargle (L-S) periodogram for the first time. The
results of SSA indicate that the secular trend is characterized by a superposition of the secular
linear decrease with a rate of approximately (−5.80 ± 0.08) × 10−11/yr and an obvious quadratic
rate of (2.38 ± 0.02) × 10−13/yr2. Besides, the annual, semi-annual, and 10.6-year signals with
determining for the first time its amplitude of 5.01 × 10−11, are also detected by SSA, where their
stochastic behavior can be maintained to the greatest extent. The 18.6-year signal cannot be detected
by SSA even when the window size of 18.6 years was selected, while L-S periodogram can detect
the signal of 18.6 years after removing the 18.6-year tidal theoretical value and the linear trend,
proving the existence of the tidal variations of 18.6 years in the residual time series. Nevertheless,
the 10.6-year signal can be found only after removing the secular trend. This fact suggests that the
advantages of different methods used will lead to different sensitivity to the particular signals hard
to be detected. Finally, the reconstructed ∆J2 time series through the sum of the climate-driven
contributions from glacial isostatic adjustment (GIA), Antarctic ice sheets (ANT), atmosphere (ATM),
continental glaciers (GLA), Greenland ice sheets (GRE), ocean bottom pressure (OBP), and terrestrial
water storage (TWS) by using GRACE gravity field solution and geophysical models agrees very
well with that of the observed ∆J2 from SLR in terms of the amplitude and phase. About 81.5%
of observed ∆J2 can be explained by the reconstructed value. ATM, TWS, and OBP are the most
significant contributing sources for seasonal signals in ∆J2 time series, explaining up to 40.1%, 31.9%,
and 26.3% of the variances of observed ∆J2. These three components contribute to the annual and
semi-annual variations of the observed ∆J2 up to 30.1% and 1.6%, 30.8% and 1.0%, as well as 25.4%
and 0.7%, respectively. GRE, ANT, and GLA have ~3 to ~7-year periodic fluctuations and a positive
linear trend, excluding GIA.

Keywords: earth’s oblateness; satellite laser ranging; singular spectrum analysis; geophysical model;
Lomb-Scargle periodogram; grace; climate-driven source

1. Introduction

The accurate recovery and analysis of the Earth’s oblateness term C20 (or J2) time
series are of great significance for understanding the mass redistribution in the Earth’s
climate system [1,2]. Since 1976, the C20 time series derived from the satellite laser ranging
(SLR) observations to geodetic satellites by Cheng and Ries [2] from the Center of Space
Research (CSR) has been of the highest quality, even though various research institutes
have recently taken their efforts to the SLR-derived, GRACE-derived (Gravity Recovery
and Climate Experiment satellite mission) or SLR-GRACE-derived C20 time series, such
as the Astronomical Institute, University of Bern (AIUB) [3], the Deutsches Geodätisches
Forschungsinstitut, Technische Universität München (DGFI) [4], the NASA Goddard Space
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Flight Center (GSFC) [5] and the Centre National d’Etudes Spatiales/Groupe de Recherche
de Géodésie Spatiale (GRGS) [6]. GRACE is less sensitive to the zonal harmonics, in
particular J2 [7], because of its near-polar orbit inclination (89.3◦). Though the GRACE-
derived C20 has been greatly improved with the improvement of solution strategies and
force models in recent years, it is not as reliable as SLR estimates [7] and should be replaced
by SLR-derived C20 for scientific interpretations and geophysical applications of GRACE
and GRACE-FO data products. In this paper, the time-variation characteristics of the
SLR-derived C20 time series from CSR [1,2] are intensively analyzed.

During the past four decades, various analyses of SLR data have indicated that the
mass redistribution within the Earth’s dynamic system has been undergoing significant
variations as a response to the tidal and non-tidal changes ranging from hours to decades
or longer-periods [2,8], which is characterized by the temporal variations in the Earth’s
gravity field. The surface mass redistribution concentrated in a thin layer on the Earth’s
surface is reflected by the variations of the spherical harmonic (SH) coefficients of the
Earth’s gravity field model. C20 is the largest SH coefficient, which is often described
instead of J2 with a relationship of J2 = −

√
5C20. J2 is called the Earth’s oblateness and its

variation is at the magnitude of 10−10.
In the previous studies, the variations of J2 have been routinely characterized by the

following model

∆J2 = ∆J2(t0) +
.
J2(t− t0) +

1
2

..
j2(t− t0)

2 + ∆JNT
2 (t) + ∆JT

2 (t)

It is the superposition of a secular trend and accelerations (
.
J2 and

..
j2), tidal (∆JT

2 (t)) and
non-tidal variations (∆JNT

2 (t)) [1,2]. ∆JT
2 (t) and ∆JNT

2 (t) are typically described by seasonal
variations, interannual variations, decadal variations, and longer-period variations [2,9].
Since 1976, Cheng and Ries [2], Cheng et al. [1], Cheng and Tapley [10], and other re-
searchers [9,11–15] have studied the J2 time series as its time-span increases year by year,
understanding the nature of the secular trend of J2, from a linear trend by analyzing a
short time series [10,16,17] or a long time series of more than three decades employing a
quadratic trend [1,2,7,9,13,15]. Cheng et al. [1] characterized the nature of the secular trend
by a quadratic curve imposed on a period tidal signal of 18.6 years. The quadratic term is
described by the superposition of a linear decrease induced by glacial isostatic adjustment
(GIA) or postglacial rebound (PGR) of the Earth’s mantle [11,18,19] and a slowly increasing
rate caused by global mass redistribution related to the ice-sheet and glacial melting as
well as mass transfer in the atmosphere and ocean [2]. Other effects are also considered
as factors influencing the oblateness changes, such as co-seismic effects induced by earth-
quakes [20,21], artificial water reservoir impoundment [22], and the Earth’s spin-down,
induced by the tidal forcing [23] which contributes to the deceleration of J2 at the order of
10−12/yr. The global sea-level rise enlarges the above rate by almost the same value. The
different secular decrease rates of the Earth’s oblateness have been reported by analyzing
the SLR data covering different time intervals from 5 years up to four decades, where the
first secular decrease is −3 × 10−11/yr [12], then −2.6 × 10−11/yr derived from 10-year
data after 1980 and −2.8 × 10−11/yr from 1976 to 1995 [24], −1.95 × 10−11/yr from 1980
to 1998 [15], −2.75 × 10−11/yr from 1976 to 2004 [10], −5.9 × 10−11/yr from 1976 to 2010
by considering it to be a quadratic curve [1].

In addition to the well-known annual and semiannual variations of J2, the interannual
variations related to the strong EI Nino-Southern Oscillation (ENSO) [10,25] generally
with the fluctuations of 4 to 6 years were reposted. “The 1998 anomaly” described by
Cox and Chao [15] has drawn significant attention and is believed to be caused by the
mass redistribution associated with the atmosphere, ocean, and land water [1]. Besides
the interannual period, the decadal variations of 18.6 years and about 10.5 years are the
evident signals from the analysis of Cheng and Ries [2]. The period of 18.6 years is a
pure tidal harmonic signal, while the possible cause and nature of the variation of about
10.5 years with variable amplitude and phase related to climate change remain unknown.
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Previous studies [1,2,15] indicated that, apart from the tidal harmonic and linear variations,
J2 variation presents an obvious climate-related nonharmonic behavior, especially the
varying amplitude and phase. To process these signals, a variety of methods were used.
Cheng and Tapley [1,15] adopted the wavelet analysis to decompose ∆J2 into high- and
low-frequency, where the discrete approximation of the Meyer wavelet is applied as a
low pass filter and a sliding average of 360 days is used as a high pass filter, analyzing
the long-term variations and removing the seasonal and high-frequency variations in J2,
respectively. Chao et al. [9] subtracted the quadratic trend and seasonal signals with a
constant amplitude from ∆J2 by using the least-squares fit, ignoring the stochastic behavior
of these signals. Cheng and Ries [2] detected the evident variation of 18.6 years in the
original ∆J2 time series by using Meyer wavelet, whereas Ding and Chao [26] and Chao
et al. [9] presented a quite small signal of 18.6-year by using the stabilized AR-z spectrum
(autoregressive spectrum implemented in the complex z domain) after removing the linear
variation and 18.6-year tidal theoretical value. However, Seo et al. [13] failed to find this
~18.6-year signal in the residual time series. Cheng and Ries [2] explained that the lack of
this signal in the analysis of Seo et al. [13] is attributed to the 11-month sliding average
used. Therefore, the existence of the 18.6-year signal from the analysis of different methods
has led to different discussions.

Singular spectrum analysis (SSA) is a powerful method for studying nonlinear time
series. It was first proposed and used by Colebrook [27] in biological oceanography, then
introduced into paleoclimatology by Fraedrich [28] and in the study of social issues by Has-
sani [29]. It can construct and decompose as well as reconstruct a trajectory matrix based on
the time series, realizing the accurate separation of principal components, including trend
and periodic signals from the remaining component generally regarded as noise [30,31],
even when the time series is incomplete [32,33]. The SSA is able to analyze the structure
of the time series and make further predictions. As a powerful non-parametric spectrum
estimation technique, SSA allows us to effectively follow the evolution in amplitudes and
phases of signals [29,34]. As a special application of the empirical orthogonal function, SSA
conducts the construction of the principal components of a time series and its prediction
by using the w-correlation criterion [29]. Besides, the Lomb-Scargle (L-S) periodogram
is well known for detection and characterization of the periodic signals hidden in an un-
evenly sampled time series and has been widely used in the analysis of astronomical data.
The L-S occupies a unique position in various available methods: it is driven by Fourier
analysis [35], but it is equivalent to the least-squares method [36]. It can be generated
from the principles of Bayesian probability theory [37] and has a close relationship with
the bin-based phase folding technology in some cases [38]. As another method, the L-S
periodogram holds a unique correspondence point between many types of methods, so we
also attempt to analyze the variations of J2 by using the L-S periodogram in this study.

In addition to the above spectrum analysis, the time series of ∆J2 can also be analyzed
and reconstructed using geophysical models and other approaches [39]. Many researchers
have modeled mass variations of ice sheets, glaciers, terrestrial water, atmosphere, etc., for
seeking the geophysical source interpretation in the ∆J2 time series. Seo et al. [13] modeled
the climate contributions to ∆J2, accounting for the relation between the glacial mass change
over the Arctic and Alaska and the oscillation of 18.6-year tide. Chao et al. [9] added the
theoretical terms (i.e., 18.6-year tide) that Cheng et al. [2] has removed back to ∆J2 and
modeled the climate-driven sources of Arctic Oscillation, Pacific Decadal Oscillation (PDO),
ENSO, etc. for establishing the connections between these sources and the interannual-to-
decadal variations of observed ∆J2 while Cheng and Tapley [10] validated that the 4- to 6-
year fluctuations are related with the PDO and ENSO by geophysical models. Sun et al. [39]
improved a new approach related to fingerprints of the geoid changes patterns to estimate
∆J2, explaining the residuals by terrestrial water storage after removal of the atmosphere
and ocean variations from ∆J2. In this study, we analyze the climate-driven components in
∆J2 and then conduct the comparison between the reconstructed and observed ∆J2 time
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series, which enables us to gain an in-depth understanding of the geophysical interpretation
of J2 variations.

Therefore, this study mainly focuses on the analysis and interpretation of Earth’s
oblateness variations (∆J2) from two different perspectives. One is to analyze the observed
∆J2 time series from the perspective of spectrum analysis by applying both SSA and L-S
periodogram, respectively; the other is to calculate the contributions of climate-driven
components to ∆J2 from the perspective of a geophysical model and then analyze the
contribution of each component to the observed ∆J2 time series and reconstruct the ∆J2
time series as well as give the corresponding geophysical interpretation. The rest of
the paper is organized as follows. Section 2 briefly presents the theory of SSA and L-S
periodogram. Section 3 provides the analysis of the secular trend and periodic signals in
J2 variations and their geophysical interpretation. Section 4 gives a brief introduction of
the climate-driven components of ∆J2 and the comparison between the reconstructed and
observed ∆J2. Conclusions are given in Section 5.

2. Analysis Methods
2.1. Singular Spectrum Analysis

By using SSA, the original one-dimensional time series can be decomposed into
a sum of constituents. Each component can be determined as either a noise compo-
nent, a quasi-periodic or periodic component, or a trend component [29]. For a J2 series
{Ji, i = 1, 2, . . . , M} with length M, the trajectory matrix J can be formed by a window with
size W (W < M/2) as follows:

J =


J1 J2 · · · JM−W+1
J2 J3 · · · JM−W+2
...

...
. . .

...
JW JW+1 · · · JM

. (1)

Then, the covariance matrix PJ, which has a Toeplitz structure, is expressed as

PJ =


a(0) a(1) · · · a(W − 1)
a(1) a(0) · · · a(W − 2)

...
...

. . .
...

a(W − 1) a(W − 2) · · · a(0)

 (2)

where the unbiased autocovariance function a(i) is computed by

a(i) =
1

M− i

M−i

∑
k=1

Jk Jk+i, i = 0, 1, · · · , W − 1 (3)

The covariance matrix PJ is decomposed as PJ = VΛVT, where Λ is a diagonal matrix
with the diagonal values λq sorted in descending order and V is an orthogonal matrix with
row eigenvectors vq. The temporal principal components (PCs) matrix C can be generated
as C = VJ after projecting the series Ji onto vq. The PCs at kth row and qth column of C is
expressed as

ck,q =
W

∑
i=1

Jk+ivi,q (4)
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where 0 ≤ k ≤ M −W, 1 ≤ i ≤ W. The qth Reconstructed Component (RC), which is
defined by showing how to optimally extract a series of length M, corresponding to a given
set of eigenvalues, can be given by

Jk,q =


1
k ∑k

i=1 ck−i+1,qvi,q, 1 ≤ k ≤W − 1
1

W ∑k
i=1 ck−i+1,qvi,q, W ≤ k ≤ M−W + 1

1
M−k+1 ∑W

i=k−M+W ci−k+1,qvi,q, M−W + 2 ≤ k ≤ M

(5)

where Jk,q is the kth component from the qth PCs. Since λq is sorted in descending order, the
first several numbers of RCs can approximate the original time series, while the remaining
RCs can be regarded as noise. Therefore, if one wants to reconstruct series Ĵq, it can be
obtained by the sum of the first q RCs.

The window size is a key issue of SSA and is chosen empirically. The optimal window
size should maximize the separation of the contained signals [40] and is usually propor-
tional to the periods of main signals. The window length W is selected to best reflect
the separability of SSA. The property ‘separability’ of SSA is also called the weighted
correlation or w-correlation [29], which is a natural measure of dependence between two
decomposed series T(k) and T(i) in Equation (6),

ρ
(e)
ki = (T(k),T(i))

‖T(k)‖e‖T(i)‖e
, (1 ≤ k ≤ i ≤ M) (6)

where T(i)
e =

√(
T(i), T(i)

)
e,
(

T(k), T(i)
)

e
=

M
∑

q=1
eqt(k)q t(i)q , eq = min{q, W, M− q}. The

smaller absolute w-correlation value means the worse w-orthogonal of two series, and
the zero value indicates that the two series are completely separable. On the contrary, the
two series will be far from w-orthogonal and strongly dependent. Therefore, we possibly
regard the two PCs with large w-correlation as one periodic signal pair.

2.2. Lomb-Scargle Periodogram Analysis

The L-S periodogram is a well-known technique to attain periodicity by analyzing
the frequency spectrum, especially from unequally spaced data [41,42], which is exactly
equivalent to the least-squares fitting of a sine wave. In previous studies, it was mainly
developed and used in spectral analysis of the unequally sampled astronomical observation.
It has the advantage of maintaining the property of the original data and avoiding the
interpolation of uneven data. Here, as a special application, we use it to determine the
spectrum of equal data.

For the J2 series {Jk, k = 1, 2, . . . , M} with the length M, the discrete Fourier transform
for an arbitrarily sampled data set is defined as

F(w) =
M

∑
k=1

J(tk)e−iwtk (7)

Then, the classical periodogram is computed by applying the definition of the Fourier
power spectrum, as follows:

pJ(w) = 1
M |F(w)|2 = 1

M

∣∣∣∣ M
∑

k=1
Jke−iwtk

∣∣∣∣2
= 1

M

[
(∑k Jk cos(wtk))

2 + (∑k Jk sin(wtk))
2
] (8)
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A generalized form of the periodogram is addressed by Scargle [42] and Zechmeister
and Kürster [43] as

PJ(w) =
1
2

{
[∑k Jk cos w(tk − τ)]2

∑k cos2 w(tk − τ)
+

[∑k Jk sin w(tk − τ)]2

∑k sin2 w(tk − τ)

}
(9)

where τ is defined to ensure time-shift invariance for each tk and is computed by

τ = (1/2w) tan−1 ∑k sin 2wtk

∑k cos 2wtk
(10)

In the least-squares analysis, the shift τ in Equation (10) is considered by Lomb [41] to
orthogonalize the normal equations. Because of the strong connection between least-
squares analysis and Fourier analysis, Equation (10) is commonly referred to as the
L-S periodogram [43,44].

3. Geophysical Signal Detection from ∆J2 Time Series

The J2 time series from more than 44-year of the satellite laser ranging observations
of eight geodetic satellites from 1976 to 2020 derived by Cheng and Ries [2] from the
CSR website (http://download.csr.utexas.edu/pub/slr/degree_2/Long_term/C20_Long_
Term.txt, accessed on 20 January 2021) has been employed, where the theoretical value
of the 18.6-year tide was deducted. Besides the J2 time series, the monthly time-variable
gravity field up to degree and order 3, plus C40, is also co-estimated by using the SLR
observations. The J2 time series and the corresponding uncertainties indicated by the
light gray band are shown in Figure 1, exhibiting a superposition of a secular trend and
periodic variations and smaller uncertainties after 1992, when observations of two satellites,
LAGEOS-2 and Stella, were included.
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Figure 1. The J2 time-series from 1976 to 2020.

3.1. Geophysical Signals Detected by Singular Spectral Analysis

For the 44-year J2 time-series, after the removal of the tidal theoretical value with
542 data points, the selection of the window length W is quite important, which is the only
parameter in the SSA technique. On the one hand, if the window length is too short, the
periodic signal is not easily separated. On the other hand, since the determination of the
appropriate window length depends on preliminary information of the time series and
the problem at hand [29], it is generally recommended that the window length should be
proportional to the period of the interest but not greater than M/2 [29]. Considering the
decadal signals, we mainly focus on signals, such as 10.5 and 18.6 years. Therefore, we
select three window lengths with 112 points, 132 points, and 223 points, which correspond
to the periodic signals of 9.3, 11.0, and 18.6 years, respectively. To identify periodic signals,
we compute the absolute w-correlations of the first 30 reconstructed components (RCs)
corresponding to the above three window lengths and show them in Figure 2. The w-
correlations, shown in Figure 2a,b, are less separable than those of Figure 2c with the
window length W = 223. In Figure 2c, the absolute w-correlations of RCs (2,3), RCs (5,6),

http://download.csr.utexas.edu/pub/slr/degree_2/Long_term/C20_Long_Term.txt
http://download.csr.utexas.edu/pub/slr/degree_2/Long_term/C20_Long_Term.txt
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and RCs (7,8) are larger than others, indicating that these pairs are strongly correlated.
Moreover, we are also mainly interested in the existence of the 18.6-year signal. Therefore,
the window length W = 223 is most suitable to separate the various periodic signals in the
J2 time-series. The variations in J2 with a window length of 18.6 years are analyzed for the
detection of the various periodic signals.
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The eigenvalues of the first 30 RCs are illustrated in Figure 3 for the window length
W = 223. The first eigenvalue is much larger than the others, which indicates that
RC (1) is much more significant than other components. The first and forth eigenval-
ues show the general tendency of the J2 time-series better than the first one alone [29].
Therefore, the RCs (1,4) represents the trend with the red solid line, as illustrated in
Figure 4. By using the quadratic polynomial fitting to the red solid line (in green dot-
ted line) and directly to the J2 time-series (in black solid line), the derived secular lin-
ear decrease rate of about (−5.80 ± 0.08) × 10−11/yr and obvious acceleration rate of
about (2.38 ± 0.02) × 10−12/yr2 are consistent with the values of −5.90 × 10−11/yr and
1.80 × 10−13/yr2 reported by Cheng et al. [1], as listed in Table 1. Moreover, the evolution
of the trend of the J2 time-series can be better characterized with the solid red line com-
pared to the black solid line, as shown in Figure 4, indicating that the trend derived by
SSA has better performance than that from quadratic polynomial. This quadratic trend
is attributed to solid Earth’s response to the mass redistribution due to recent significant
ice melting [2,5,9,13,45,46].
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Table 1. The trend in J2 detected by SSA with a window length of 18.6 years.

RC-Index Linear Trend Term Quadratic Term Time Span

RC (1,4) (−5.80 ± 0.08) × 10−11/yr (2.38 ± 0.02) × 10−12/yr2 1976.01~2020.09

Quadratic Fit (−5.64 ± 0.66) × 10−11/yr (2.29 ± 0.14) × 10−12/yr2 1976.01~2020.09

Cheng et al. (2013) −5.90 × 10−11/yr 1.80 × 10−12/yr2 1976.01~2011.01

Besides, the second and third components, the fifth and sixth components, the seventh
and eighth components have close eigenvalues at their respective order of magnitude. Thus,
RCs (2,3), RCs (5,6), and RCs (7,8) are three pairs of periodic signals. Their characteristics are
shown in Figure 4 in detail. Applying the Fast Fourier Transform analysis, we can determine
the amplitudes and periods of the three pairs of signals which are the annual, 10.6-year,
and semi-annual signals. The annual signal has a much larger amplitude than the 10.6-year
and semi-annual signals. As illustrated in Figure 4 and Table 2, the amplitude of the annual
signal is almost five times larger than those of 10.6-year and semi-annual periods.

Table 2. The periodic signals in J2 detected by SSA with a window length of 18.6 years.

RC-Index Period Frequency (1/year) Amplitude

RC (2 + 3) annual 1 2.67 × 10−10

RC (5 + 6) 10.6-year 0.0938 5.01 × 10−11

RC (7 + 8) Semi-annual 2 5.56 × 10−11

3.2. Geophysical Signals Detected by Lomb-Scargle Periodogram

L-S periodogram, as a widely analysis tool used for the astronomical observation, has
the simplest statistical behavior, which is important to assess the reliability of the possible
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detection, and is believed to distinguish between the strictly periodic and nonperiodic
signals [42,43]. In addition, the study by Reegen [47] indicates that L-S is based on the
identification of the highest peak in a chosen frequency interval, while discrete Fourier
transform suffers from systematic deviations of peak frequencies [48]. Reegen [47] also
elaborates that L-S is more stable against aliasing and shows improved frequency accuracies
than Fourier transform. In this study, the L-S periodogram, is applied for the first time to
further analyze the Earth’s oblateness variation after the removal of the tidal theoretical
value. The L-S periodograms of the observed ∆J2 time series after removing a linear trend
and after removing the secular trend with the frequencies from 0 to 5 cycles per year are
illustrated in Figures 5 and 6, respectively.
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Figure 6. Lomb-Scargle periodogram with the frequency from 0 to 5 cycles per year after removing
the secular trend.

Apart from the significant annual signal, the semi-annual signal and the interannual
fluctuations from 4 to 7 years are also detectable in Figure 5. Using this method, a quite
small tidal signal with a period of 18.6-year can be detected from the residual time series
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after removing the 18.6-year theoretical tidal signal and the linear trend from the time
series, which was also found by Ding and Chao [26] when the AR-z spectrum was analyzed.
Unfortunately, the signal of 10.5 years cannot be found, while a broadband signal with
a peak of approximately 12 years is visible. The peak of 47.6 years in Figure 5 cannot be
reasonably explained since it is very challenging to determine whether there is power at
wavelengths near the length of the time series (44 years in this paper). For similar reason,
no clear explanation can be made by Ding and Chao [26] for the cause of the nominal
~56-year peak shown in the time series from 1976 to 2019. The peak of 47.6 years may be
from the artificial signal, which is probably attributed to the sensitivity of the used method
to the signal hard to be detected and may explain why different methods show varying
abilities to detect some particular signals. According to Cheng et al. [1] and as shown
in Figure 1, the Lomb-Scargle periodogram is implemented to the ∆J2 time series after
removing the secular trend. The signal of 10.6 years is obvious, and the peak of 47.6-year
disappears in Figure 6, indicating that the 47.6-year signal may be part of the secular term.
Besides, the disappearance of the 18.6-year signal verified Cheng Minkang’s description [1]
that the nature of the secular trend is characterized by a quadratic term imposed on a
period tidal signal of 18.6 years. In this case, the L-S method does have an advantage over
the Fourier transform in detecting the weak 18.6-year signal, which is the same as Chao’s
research on finding this 18.6-year signal in the de-linear ∆J2 time series [9]. However, the
Fourier transform cannot find this signal.

3.3. Discussions

Cheng and Ries [2] detected the dominant period of about 10.4 years from the J2
time-series, Cheng and Tapley [10] and Seo et al. [13] found a similar period of 10.6 years
based on wavelet decomposition, which is determined with the amplitude of 5.01 × 10−11

in this study using SSA. Seo et al. [13] also showed that solar activity, measured by the
number of sunspots, varies for about 11 years, by comparing the modeled J2 time series
and the number of sunspots from 1979 to 2010. Chao et al. [9] suggested a relationship
between the solar cycle and climate change by analyzing the wavelet spectrum of the
sunspot variations with 10.5 years. Because solar radiation pressure is quite stable in a solar
cycle, it is unlikely that solar activity will directly affect the SLR solutions via the variations
in solar radiation pressure [13]. The more acceptable explanation may be that solar activity
somehow affects the redistribution of atmospheric or water mass by altering climate change
or other unknown causes, which are not included in climate models. Consequently, the
causes of 10 years variation still need to be further investigated, as well as convincing
observations to understand the effects of the solar activities on climate change and the
global gravity field variations.

Although the ∆J2 time series may contain the dominant effects of the 18.6-year tide
related to the nutation and Earth–Moon tidal interactions [2] which may be a cause of
multiyear variations [10], Cheng and Ries [2] found a significant signal of 18.6 years before
removal of the 18.6-year tide from the ∆J2 time series. Although the residual tidal signal
of 18.6 years in the ∆J2 time series becomes quite small after the theoretical values are
removed, it is still expected to be detected in the analysis of Ding and Chao. In this
paper, we get the same results of the small residual tidal signal of 18.6 years using the
L-S periodogram. However, we cannot find this signal using the SSA approach, even if
adopting the length window of 18.6 years, which is the same as that of Seo et al. [13].

4. Reconstruction and Interpretation of the Variations in the Earth’s Oblateness
4.1. ∆J2 Reconstruction with Climate-Driven Sources

Variations in J2, due to changes in surface mass density (∆σ0(θ, λ, t)), can be com-
puted by [11]:

∆J2(t) = −
1 + k2

5
R2

M

∫
∆σ0(θ, λ, t)P2(cos θ)dS (11)
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where k2 is the Earth’s load Love number for degree 2; M denotes the Earth’s mass and R
is the Earth’s mean radius; θ, λ, t and P2(cos θ) are the colatitude, longitude, time and the
Legendre polynomial, respectively.

In this study, we derive contributing sources of ∆J2 including Antarctic (ANT) and
Greenland (GRE) ice sheets, atmosphere (ATM), ocean bottom pressure (OBP) as well
as continental glaciers (GLA) by using the geophysical models for the first time, similar
to the research of geocenter motion by Zhang and Sun [49]. Readers can refer to Zhang
and Sun [49] and the appendix of this study for detailed information of the adopted
geophysical models. However, models for terrestrial water storage (TWS) and glacial
isostatic adjustment (GIA) still have large uncertainties. Therefore, in a way different from
that in Zhang and Sun [49], we take solutions from Sun et al. [39,50–52] that estimates
contributing sources of ∆J2 including TWS and GIA using GRACE data combined with a
suitable set of fingerprints (fingerprints approach, FPA) covering the period Jan. 2003 to
Jun. 2014. As a novel way to interpret temporal variations of the Earth’s gravity field, FPA
was proposed by Rietbroek et al. [53] and improved by Sun et al. [39] (refer to Appendix A).

4.2. Comparison and Interpretation of Reconstructed and Observed ∆J2

Figure 7 shows seven climate-driven ∆J2 components. ATM, OBP, and TWS signif-
icantly contribute to seasonal signals in ∆J2, while GIA, ANT, GLA, and GRE mainly
influence the linear trend in ∆J2. Due to ice melting, ANT, GLA, and GRE are all charac-
terized by a positive linear trend. As an ongoing response of the solid Earth to the past
glaciations [15,54], GIA is dominated by a negative trend. We then reconstructed ∆J2 by
summing all climate-driven components and comparing them to the observed ones for the
period January 2003 to June 2014 (Figure 8). The reconstructed ∆J2 is markedly in line with
that of the observed value from SLR in terms of the linear trend and the amplitude and
phase of the annual term, as shown in Table 3 and Figure 8. We employ the SSA method,
as described in Sections 2.1 and 3.1 to extract the annual and semi-annual signals of ATM,
OBP and TWS for the analysis of their amplitudes and phases, while the trends for GIA,
ANT, GLA and GRE are calculated. The absolute values of the trends of GIA and GRE are
equivalent, and ANT and GLA have the same positive trend. The annual amplitude of
TWS is slightly larger than those of ATM and OBP with almost the same phase, while the
semi-annual amplitude of TWS is almost twice as large as the other two components.

Table 3. Annual variations in the observed and reconstructed ∆J2 time series.

Linear Trend
Annual Semi-Annual

Correlation
Amplitude Phase Amplitude Phase

OBS (3.81 ± 0.75) × 10−11/yr (2.79 ± 0.36) × 10−10 204.6 ± 7.4
92%MOD (3.34 ± 0.65) × 10−11/yr (2.91 ± 0.31) × 10−10 202.1 ± 6.1

GIA (−2.78 ± 0.00) × 10−11/yr
ANT (1.62 ± 0.04) × 10−11/yr
GLA (1.69 ± 0.01) × 10−11/yr
GRE (2.80 ± 0.07) × 10−11/yr
TWS (1.07 ± 0.40) × 10−11/yr (1.01 ± 0.19) × 10−10 203.2 ± 10.8 (3.75 ± 0.90) × 10−11 206.0 ± 14.3
ATM (0.89 ± 0.20) × 10−10 199.0 ± 13.0 (1.61 ± 0.49) × 10−11 188.1 ± 17.8
OBP (0.83 ± 0.14) × 10−10 201.3 ± 9.8 (1.51 ± 0.41) × 10−11 186.2 ± 16.0

In addition, the variance V of the observed ∆J2 explained by the reconstructed ∆J2 can
be calculated according to

V = 1− var 〈 OBS−MODX 〉 /var 〈 OBS 〉 (12)

where <> denotes variance operator; X represents reconstruction; OBS and MODX represent
the observed and reconstructed ∆J2, respectively. In order to quantify the contribution of
each component to ∆J2, the variance of the observed ∆J2 explained by each contributing



Remote Sens. 2021, 13, 2004 12 of 18

source is calculated when X denotes the component and MODX represents the individual
contributing component.
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The results of the variance V (Table 4) show that the observed ∆J2 is 81.5% explained
by the reconstructed solution, suggesting that all the main characteristics of ∆J2 have been
well explained. In addition, the correlation coefficient between the two time series is 92%
(Table 3). Both Antarctica ice sheet and continental glaciers account for less than 15% of
the variance of the observed ∆J2. Greenland ice sheet has a slightly larger contribution,
but still explains less than 25% of the variance. The TWS and atmosphere, on the other
hand, are the two largest climate sources causing periodic signals in ∆J2, which explain up
to 31.9% and 40.1% of the variance of the observed ∆J2, respectively. Besides, the results
of SSA show that the TWS, ATM and OBP can contribute to the annual and semi-annual
variations of the observed ∆J2 up to 30.8% and 1.0%, 30.1% and 1.6%, as well as 25.4% and
0.7%, respectively.

Table 4. The variance of the observed ∆J2 explained by climate-driven components and the recon-
structed ∆J2.

Sources Total ANT ATM GLA GRE OBP TWS

V (%) 81.5 11.0 40.1 13.5 22.6 26.3 31.9
V (%, Annual) 30.1 25.4 30.8

V (%, Semi-annual) 1.6 0.7 1.0

The L-S periodogram of the climate-driven components is illustrated in Figure 9 for
further interpreting the corresponding climate or geophysical sources of the observed J2
variabilities. The ATM, OBP, and TWS are the most significant driving sources for annual
variation, while they contribute to the semi-annual variations of ∆J2 time series in a very
small order of magnitude. The peaks at the periods of about 3, 4, 6, and 7 years originate
from the mass variations of Greenland and Antarctica ice sheets and continental glaciers,
while the OBP makes no contributions to these fluctuations. This fact may imply that the
strong ENSO [10] with 4- to 7-year fluctuations leads to the mass variations of Greenland
and Antarctica ice sheets and continental glaciers to alter J2. However, ENSO has no
impact on OBP and the 4–7-year signals in GIA could be artificial, resulting from the L-S
periodogram. Besides, it is noteworthy that TWS dominates an evident period of 12.2-year,
which could either probably explain the existence of this periodic signal in Figure 5, but
a further study may be needed. Due to the short ∆J2 time series during the GRACE era,
those long-period variations cannot be verified.
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5. Conclusions

The variations in J2 reflect the mass redistributions within the Earth system, rou-
tinely characterized by a superposition of a secular trend, seasonal variations, interannual
variations, decadal variations, and longer-period variations. ∆J2 of more than 44 years
from 1976 to 2020 is analyzed by SSA and L-S for the first time. The results show that
the secular linearly decreases a rate of approximately (−5.80 ± 0.08) × 10−11/yr and an
obvious quadratic rate of (2.38 ± 0.02) × 10−13/yr2 derived from SSA is consistent with
the results from Cheng et al. [1] by quadratic polynomial fitting. Besides the seasonal
variations, the variations at the ~10.6-year period, related to the solar activities, can be
notably detected, determining its amplitude of 5.01 × 10–11 for the first time, whereas there
is no 18.6-year periodic signal after removal of the theoretical tidal value from J2 even if
the 18.6-year window size is selected by applying SSA. However, in the spectrum analysis
of L-S, the 18.6-year periodic variations and ~3 to ~6-year fluctuations are all detectable in
the de-linear time series. This fact suggests that the advantages of different methods used
will lead to different sensitivity to the particular signals that are hard to detect. SSA can
maintain the stochastic behavior of the signals it separated to the greatest extent, while
small long-period signals can be detected in the spectrum analysis of L-S.

In any case, the ∆J2 time series during the GRACE era is reconstructed based on
the geophysical models and FPA by considering the mass variations from GIA, ANT,
ATM, GLA, GRE, OBP, and TWS. The reconstructed ∆J2, by summing all the climate-
driven components, is markedly close to that of the observed ∆J2 with a high correlation
coefficient of 92%. The reconstructed ∆J2 can also explain up to 81.5% of the variance of
the observed value. The most significant climate-driven sources for seasonal signals in
the ∆J2 time series mainly originated from ATM, TWS, and OBP, which explains up to
40.1%, 31.9%, and 26.3% of the variance, respectively. These three components, in total,
can account for the annual and semi-annual variations in the observed ∆J2, up to 86.3%
and 3.3%, respectively. However, GRE, ANT, and GLA dominate the positive linear trend
with interannual periodic fluctuations of ~3 to ~7-years and GIA contributes to a large
negative trend.
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Appendix A

Climate contributions to ∆J2 can be predicted by geophysical models. Here, the
climate contributions to ∆J2, including GRE, ANT, ATM, OBP as well as GLA are consid-
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ered and predicted by geophysical models during the GRACE era from August 2002 to
June 2014 [49]. The input–output method [55], altimetry measurements [56] and GRACE
gravimetry measurements [19] are the popular methodologies to estimate mass variations
over continental glaciers and ice sheets. Here, the input–output method is utilized to
estimate the mass changes in both Greenland and Antarctica ice sheets [57]. The Regional
Atmospheric Climate Model (RACMO) 2.3 surface mass balance (SMB) [58] is used as
an input, and the ice discharge acceleration with 6.6 Gt year−1 for Greenland [55] and
9.0 Gt year−1 for Antarctica [59] is the output. The contribution of continental glacier mass
balance (GLA) to ∆J2 is estimated according to Marzeion et al. [60]. In addition, ocean
bottom pressure (OBP), inducing the ∆J2, is derived from the GAD and the continental
atmosphere (ATM) is based on the result of GAC deducting GAD product. GAC and GAD
are based on the European Center for Medium-Range Weather Forecasts (ECMWF) [61]
and the Ocean Model for Circulation and Tides (OMCT) [62].

TWS and GIA are computed by using the fingerprints approach (FPA) with the
GRACE-Level2 RL06 data from the Center for Space Research (CSR). Assuming that a unit
mass change occurs at a certain point or a certain area, the global mass variation caused by
it can be expressed as fM [63]. When the mass change α f M

occurring at a point or local area
is not the unit mass, the global mass variation can be expressed as α f M

fM. According to the
conversion between the mass coefficient and the spherical harmonic coefficient, the global
mass change G caused by the sum of the mass variation of each point can be estimated via

G
(n−4)×1

= T
(n−4)×n

F
n×m

α
m×1

(A1)

where F, a matrix of spherical harmonic analysis with m columns, is the set of fingerprints
f M. In this study, the C10, C11 and S11 are co-estimated together with the C20, thus G is a
matrix with n-4 rows. T is the truncation matrix to eliminate C10, C11, S11, and C20 in F,
which is expressed as follows:

T =



0 0 0 0 1 0 · · · · · · 0

0 0 0 0 0
. . . . . . . . .

...
...

...
...

...
...

. . . . . . . . .
...

...
...

...
...

...
. . . . . . . . . 0

0 0 0 0 0 · · · . . . 0 1


(A2)

For a better understanding, suppose that only five fingerprints are needed, i.e., ANT,
GRE, GLA, TWS and GIA, then Equation (A1) can be further expanded as follows:

CGLA
21 CGRE

21 CANT
21 CTWS

21 CGIA
21

SGLA
21 SGRE

21 SANT
21 STWS

21 SGIA
21

CGLA
22 CGRE

22 CANT
22 CTWS

22 CGIA
22

...
...

...
...

...
SGLA

lm SGRE
lm SANT

lm STWS
lm SGIA

lm


︸ ︷︷ ︸

TF


αGLA

αGRE

αANT

αTWS

αGIA


︸ ︷︷ ︸

α

=


∆C21
∆S21
∆C22

...
∆SLm


︸ ︷︷ ︸

G

(A3)

where α can be obtained by using the least-squares method. Therefore, the contributing
sources to ∆C20 can be computed by


∆C10
∆C11
∆S11
∆C20

 =


CGLA

10 CGRE
10 CANT

10 CTWS
10 CGIA

10
CGLA

11 CGRE
11 CANT

11 CTWS
11 CGIA

11
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11 SGRE
11 SANT

11 STWS
11 SGIA

11
CGLA

20 CGRE
20 CANT

20 CTWS
20 CGIA

20


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