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Abstract: The spaceborne double-pulse integrated-path differential absorption (IPDA) light detection
and ranging (LIDAR) system was found to be helpful in observing atmospheric CO2 and understand-
ing the carbon cycle. The airborne experiments of a scale prototype of China’s planned spaceborne
IPDA LIDAR was implemented in 2019. A problem with data inversion caused by the detector
module nonlinearity was found. Through many experiments, the amplifier circuit board (ACB) of the
detector module was proved to be the main factor causing the nonlinearity. Through amplifier circuit
optimization, the original bandwidth of the ACB was changed to 1 MHz by using a fifth-order active
filter. Compared with the original version, the linearity of optimized ACB is improved from 42.6% to
0.0747%. The optimized ACB was produced and its linearity was verified by experiments. In addition,
the output waveform of the optimized ACB changes significantly, which will affect the random error
(RE) of the optimized IPDA LIDAR system. Through the performance simulation, the RE of more
than 90% of the global area is less than 0.728 ppm. Finally, the transfer model of the detector module
was given, which will be helpful for the further optimization of the CO2 column-averaged dry-air
mixing ratio (XCO2) inversion algorithm.

Keywords: spaceborne IPDA LIDAR; carbon dioxide; amplifier circuit optimization; linearity; ran-
dom error

1. Introduction

In the past few decades, Earth’s environment has been sacrificed for industrial de-
velopment. For human sustainable development, we need to protect the environment,
control pollution and live in peace with nature. Global warming is mainly caused by the
anthropogenic emission of greenhouse gases, and carbon dioxide (CO2) is one of the main
greenhouse gases [1–5]. Effective means of controlling greenhouse gases depend on accu-
rate and comprehensive monitoring. The passive spectrometers used by greenhouse gases
observing satellite (GOSAT) and orbiting carbon observatory-2 (OCO-2) require sunlit and
cloud-free conditions [6,7]. Their current observations over the tropical land biosphere,
the northern hemisphere high latitudes, and the Southern Ocean remain infrequent and
are subject to larger biases [6,7]. Therefore, due to the advantages of high-precision global
detection coverage, and day and night sampling, active CO2 measurement instruments are
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urgently needed. Several integrated-path differential absorption (IPDA) light detection
and ranging (LIDAR) instruments for active detection of CO2 were studied for the U.S.
National Aeronautical and Space Administration (NASA) Active Sensing of CO2 Emission
over Nights, Days, and Seasons (ASCENDS) and Advanced Space Carbon and Climate
Observation of Planet Earth (A-SCOPE) missions [8,9]. Although spaceborne active CO2
detection LIDAR has not yet been realized, the LIDAR system simulation and airborne
experiments have laid a good foundation for its development [10–17].

China plans to launch an atmospheric environment monitoring satellite with active
instruments to measure clouds, aerosols, and CO2. The active CO2 measurement instru-
ment is based on the principle of double-pulse IPDA, and its wavelengths are 1572.024 nm
and 1572.084 nm, respectively. Based on the preliminary system parameters, Han et al.
and Wang et al. evaluated the CO2 detection performance of China’s planned spaceborne
IPDA LIDAR in 2017 and 2020, respectively [18,19]. They carried out a detailed analy-
sis of the macro performance and simulation detection for the spaceborne IPDA LIDAR.
However, the accuracy effects of detection linearity have not yet been analyzed. Airborne
field experiments of the scale LIDAR prototype of the spaceborne IPDA LIDAR system
were conducted at an altitude of approximately 7 km in 2019 [20]. However, good inver-
sion results were only obtained with a signal amplitude below 400 mV in the airborne
experiments. The airborne experiments exposed a detection nonlinearity problem when
the signal amplitude is too large. We optimized and simulated the amplifier circuit board
(ACB), and put it into production and tested and verified it in May 2020.

This paper is organized as follows. In Section 2, the schematic diagram and main
parameters of the optimized spaceborne IPDA LIDAR system are introduced. In Section 3,
the dynamic range of laser pulse peak power before reaching the detector is simulated,
and the ACB was designed and optimized to meet the requirement of linearity in the
dynamic range. The transfer model of the detector module is established by SIMULINK
and CADENCE. The linearity of the ACB before and after optimization is compared by
simulation and experimental test results, respectively. In Section 4, under different surface
reflectance and atmospheric transmittance, the main noise is analyzed and the total global
noise distribution is given. Through the response and transfer model of the detector
module, peak voltage and integral voltage distribution of the echo signal pulse were
calculated theoretically, and then the signal-to-noise (SNR) distribution was obtained to
evaluate the global random error (RE). In Section 5, the transfer model of the detector
module established by SIMULINK is given to study the output waveform and algorithm
optimization in the future.

2. Spaceborne IPDA LIDAR Instrument and Principle

The active instrument for detecting carbon dioxide, clouds, and aerosols is called
aerosol and carbon detection LIDAR (ACDL). Figure 1 shows the schematic diagram of the
IPDA LIDAR system of ACDL for CO2 measurement. The transmitted laser of the IPDA
LIDAR system requires 1572 nm high-energy laser pulses with high-frequency stability.
There are many methods to stabilize laser frequency [21,22]. The 1572 nm seeder laser,
1572 nm frequency stabilization system, and the pulsed laser together generate the double-
pulsed 1572 nm with frequency stability less than 0.60 MHz [23,24]. Beam splitter mirror 1
(BSM1) divides the 1572 nm laser pulse into two parts. One part of the laser pulse enters the
atmosphere through the beam expander, and the other part is reflected into the monitoring
system. The monitoring system includes a beam axis monitoring module and an energy
monitoring module. To improve receiving efficiency, the beam axis monitoring module
makes the optical axis of the emitted light consistent with the optical axis of the telescope.
The energy monitoring module is composed of an integrating sphere (IS), an optical fiber,
and a collimator lens (CL), which is used for accurate monitoring of emitting laser energy.
The echo signals are received by the telescope and 1572 nm avalanche photodiode (APD)
detector. The main parameters of the spaceborne IPDA LIDAR system are listed in Table 1.
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Figure 1. Schematic diagram of the spaceborne IPDA LIDAR system. BSM1, 2, 3, 4: beam splitter
mirrors; RM 1, 2 and 3: reflecting mirrors; IS: integrating sphere; CL: collimating lens; LPC: laser
pointing control; F1: filter; APD: Avalanche photodiode.

Table 1. System parameters of the spaceborne IPDA LIDAR.

Category Parameter Value

1572 nm Laser Transmitter

Wavelength (On-/offline) 1572.024/1572.085 nm
Energy (On-/offline) 75/35 mJ

Pulse width 15 ns
Repetition frequency 20 Hz

Pulse separation 200 µs
Linewidth 30 MHz

Frequency stability 0.6 MHz
Spectral purity (OPA) 0.9995

Transceiver optics

Emission optical efficiency 0.9558
Beam divergence 100 µrad

Energy monitoring accuracy 0.9993
Receiver optical efficiency 0.7186

Telescope diameter 1 m
Field of view 0.2 mrad

Optical filter bandwidth 0.45 nm

APD Photoreceivers

Detector type InGaAs APD
Responsivity 4 MV/W@M = 10&RL = 50 Ω)

APD NEP 33 fw/
√

Hz (@5 ◦C)
Excess noise factor 5.5 (@M = 10)
APD Bandwidth 8.9 MHz

ACB

Small gain channel 10 times
High gain channel 60 times

Bandwidth 1 MHz
NEP at 10 times 38 nV/

√
Hz

Data acquisition (DA)
Sampling rate for 1572 nm 50 MS/s

Effective numbers of bit 11 bits
Voltage range 2 V

Satellite Platform
Orbit altitude 705 km

Spatial resolution of land 50 km
Spatial resolution of sea 100 km
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Figure 2 shows the timing relationship of return signals (including monitoring and
echo pulses) and schematic diagram of 1572 nm detector for the spaceborne IPDA LIDAR.
Monitoring pulses are online and offline pulses with a time interval of 200 µs and an energy
ratio of about 2:1. Echo pulses are received by the telescope after being reflected by the
target. The online echo pulse is attenuated by trace gas molecules during propagation
through the atmosphere. In contrast, the offline echo pulse is only weakly attenuated
because it is far away from the center of the absorption line [25].
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LIDAR. TEC: Thermo electric cooler. DC: Direct current.

Without considering the ground fluctuations, the width of laser pulses before reaching
the detector is about 15 ns. Due to the satellite altitude of 705 km, the time interval
between the echo pulse and the monitoring pulse is about 4.7 ms. When laser pulse is
focused on the APD photosensitive surface, photoelectric conversion occurs. The APD
photoreceiver is widely used in various fields [16,26,27]. The preamplifier is a reverse
amplifier with a bandwidth of 8.9 MHz. Therefore, after the APD photoreceiver, the
signal is reversely broadened to about 40 ns. A fifth-order active filter is used to filter the
signal and improve the linearity of the ACB. Finally, through CADENCE simulation, the
optimized ACB bandwidth is designed as 1 MHz. After optimizing the ACB, the signal is
further broadened to about 390 ns.

3. Optimization of Linearity and Amplification of the ACB

The nonlinearity of detector is not mentioned in many spaceborne IPDA LIDAR simu-
lations [16–20]. However, due to the great variation in surface reflectance, the amplitude
of the echo signal may vary greatly. Therefore, detector linearity is an important factor to
determine the detection accuracy of the spaceborne IPDA LIDAR. There are two methods
to improve detector linearity: One is to optimize the detector hardware to meet the require-
ment of linearity in the required dynamic range; the other is to calibrate the nonlinear curve
of the detector in the required dynamic range and to correct the measured data. The second
method will lead to the complexity of the inversion algorithm. Therefore, we chose the first
method to optimize the ACB of the detector. First, the peak of laser pulse power before
reaching the detector is simulated under different surface reflectance and atmospheric
transmittances. Second, the ACB is designed to meet the requirement of linearity in the
dynamic range of peak power, and the transfer model of the detector module is established
by SIMULINK and CADENCE. The linearity before and after optimization is compared
through simulation and experiment.
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3.1. Dynamic Range of the Global Echo Signal

Echo signal power can be calculated by the hard target LIDAR equation [28], which
can be written as

Pe(λ, RA) = ηr ·Or ·
A

(RA − RG)
2 ·

E(λ)
∆t(λ)

· ρ∗ · Tm · exp[−τCO2(λ, RA)] (1)

where Pe is the echo signal power, ηr is the product of emission and receiver optical
efficiency, Or is the overlap function, A is the area of the telescope, RA is the satellite
altitude, RG is the altitude of the hard target above sea level, E is the transmitted laser
energy, ∆t is the effective pulse width of the return pulse, ρ∗ is the target reflectivity
defined as the reflected power per steradian toward the receiver divided by the incident
power [3], τCO2 is the total integrated double-path optical depth caused by atmospheric
CO2 molecules, and Tm is the atmospheric transmission efficiency. Here, we assume that
the altitude of the hard target is 0 km.

The surface reflectance of 1572 nm can be obtained by interpolating band 6 (1628~1652 nm)
and band 7 (2105~2155 nm) of the moderate-resolution imaging spectroradiometer
(MODIS) [29,30]. The central wavelength of band 6 is 1640 nm, and the central wave-
length of band 7 is 2130 nm. The reflectance of 1572 nm can be calculated by [30]

ρ1572nm = 0.727 · ρ1640nm + 0.309 · ρ2130nm (2)

where ρ1640nm and ρ2130nm are the reflectance of 1640 nm and 2130 nm, respectively.
Figure 3a shows the annual average of global surface reflectance in 2018. The atmospheric
transmission efficiency at 1572 nm is mainly caused by the absorption of atmospheric
aerosols. The aerosols optical depth (AOD) at 1572 nm can be calculated by the relationship
between AOD and Angstrom’s exponent at two known wavelengths. Figure 3b shows
the annual average of global AOD at 1572 nm in 2018. The total integrated double-path
optical depth caused by atmospheric CO2 molecules is calculated from an assumed CO2
column-averaged dry-air mixing ratio (XCO2) of 400 ppm and the spectroscopy database
HITRAN 2016 [31]. Furthermore, the echo power of online and offline signals calculated
by Equation (1) is shown in Figure 4. Figure 4 shows that the minimum echo power of the
spaceborne IPDA LIDAR system is 10 nW and the maximum echo power is 690 nW. The
dynamic range of echo signal power is approximately 70.
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3.2. Linearity Simulation and Test

In the airborne experiment, a problem of data inversion caused by nonlinearity was
found [20]. The signal with peak voltages greater than 400 mV could not be used to
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retrieve CO2 with high accuracy. Figure 5 shows the detector linearity test setup and
instruments. Figure 6a shows the output peak voltage of the airborne prototype detector
varying with input power. Figure 6b shows the output integral voltage of the airborne
prototype detector varying with the input power. The actual output voltage in Figure 6
is negative. For descriptive convenience, the absolute values of output peak and integral
voltage are taken here. The integral voltage value is obtained by adding the voltages of
all points on the pulse, and its value depends on the sampling rate. Figure 6 proves that
when the peak voltage is greater than 400 mV, there is a serious nonlinear phenomenon.
The expression of linearity is

δ =
∆Ymax

Y
× 100% (3)

where ∆Ymax is the maximum deviation between the output curve and the fitting line, and
Y is the full scale output. The linearity in the dynamic range reaches 42.60%. Therefore, it
is very important to find out the cause of nonlinearity and optimize the performance of
detector to meet the requirement of linearity.
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Through many experiments, the ACB of the detector was found to be the main factor
causing nonlinearity. To optimize the ACB, SIMULINK and CADENCE software were used
to model the detector. First, the transfer model of the APD photoreceiver is established by
SIMULINK. Second, CADENCE software is used to simulate the output signal of the ACB.
The APD photoreceiver converts a laser pulse into an electrical signal. The responsivity of
the APD photoreceiver is 4 MV/W in its bandwidth range. Due to the narrow pulse width
of the laser pulse, the frequency distribution of the converted signal is much larger than
the bandwidth of the APD photoreceiver. Hence, the APD photoreceiver transfer model
needs to be equivalent to the product of the response and transfer function. The transfer
function can be expressed by

H(jω) =
1

1 + jω
2πB

(4)

where B is the bandwidth of the APD photoreceiver. Let S = jω, then

H(S) =
2πB

S + 2πB
(5)

Therefore, the transfer model of the APD photoreceiver can be expressed as Figure 7a.
Figure 7b shows a laser pulse which is used to verify the accuracy of the transfer model.
The laser pulse waveform was detected by a broadband detector and the laser pulse power
was detected by a dynamometer. The blue line in Figure 7c is the direct output signal of
the laser pulse passing through the APD photoreceiver, and the red line is the simulated
signal of the laser pulse passing through the transfer model. It can be seen from the figure
that the blue line and the red line are very consistent, which proves the accuracy of the
transfer model.

In order to detect accurately in this dynamic range, the noise of the amplifier chip and
the linearity of the signal response should be considered simultaneously. The high-speed,
low-noise operational amplifier (OA) was selected as the amplifier chip. On the basis of the
original airborne ACB design, CADENCE simulation at twice amplification is carried out
for the ACB of spaceborne IPDA LIDAR, as shown in Figure 8. The CADENCE simulation
for ACB consists of six parts: simulation signal input, impedance matching, OA, DC blocks,
signal output, and power supply. The cyan line in Figure 7c is generated by the simulation
signal input part in Figure 8, which is almost consistent with the blue line in Figure 7c. The
green line (the same as the cyan line in Figure 7c) and the red line in Figure 9 are the input
signal and output signal of the ACB in simulation. Combining the APD photoreceiver
model in Figure 7a with the CADENCE simulation of ACB in Figure 8, we can get the
output voltage of the detector when it changes with input power. Figure 10 shows the
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curve of the output voltage changing with the input power. In the simulation, the transfer
function H(S) of the APD photoreceiver is linear. By comparing the curve change trend in
Figure 10 with Figure 6, it can be concluded that the ACB is the main factor leading to the
nonlinearity of the IPDA LIDAR system.
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After a detailed analysis of the ACB, the nonlinear problem has been located. Figure 11a
shows the optimized ACB. The optimization adds a fifth-order active power filter with
1 MHz bandwidth in front of the OA. This reduces the slew rate requirement of the OA
so that the optimized ACB can meet the requirement of linearity. Figure 11b shows the
output waveform of the optimized ACB. Because the fifth-order active power filter reduces
the peak value of the signal, the amplification factor of the OA is increased to adapt to
the voltage range of the DA. Figure 12a shows the simulated output peak voltage of the
optimized ACB varying with input power. When the maximum power is 690 nW, the
corresponding output peak voltage is about 1.70 V. As can be seen from Figure 12b, the
maximum voltage deviation between the simulation data and the fitting curve is −1.27 mV.
Therefore, the output peak voltage linearity of the optimized ACB is 0.0747%. Figure 12c
shows the simulated integral peak voltage of the optimized ACB varying with input power.
The sampling interval used in the CADENCE simulation is 1 ns. According to Equation (3)
and Figure 12d, the output integral voltage linearity of the optimized ACB is 0.0877%.
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The CADENCE simulation results show that the linearity of the optimized ACB meets
the requirements of IPDA LIDAR detection. For further verification, the optimized ACB is
produced according to the CADENCE design, and its linearity is verified by experiment test.
Figure 13 shows the test flow chart. The input of the optimized ACB is given by a signal
generator, and incident light power change is simulated by changing the output amplitude
of the signal generator. The output of the signal generator is sent to the optimized ACB.
The optimized ACB has two channels to amplify the signal, and finally output to a high-
precision oscilloscope for signal acquisition. The high-precision oscilloscope has 12 effective
bit numbers, and the sampling rate reaches 3.125 GS/s. To reduce the influence of error,
we chose the oscilloscope mode with the highest precision. The small gain channel is
responsible for amplifying the signal with high echo power (from 55 nW to 700 nW), and
the large gain channel is responsible for amplifying the signal with weak echo power (from
10 nW to 120 nW). The design reduces the influence of quantization noise on weak signals.

Figures 14 and 15 show the test results in small and large gain channels, respectively.
The optimal amplification of the small gain channel is 10 times, and that of the large
gain channel is 60 times. However, due to individual differences of devices in the actual
production process, such as error between the actual value and the nominal value of
resistance of ±5%, or no resistance is equal to the design value, there may be a 10% error
between the amplification and the design value. This does not affect the performance of
the optimized ACB. Using Equation (3) and Figure 14, the output peak voltage linearity of
the small gain channel is calculated as 0.149% and the output integral voltage linearity is
0.135%. Using Equation (3) and Figure 15, the output peak voltage linearity of the large
gain channel is 0.127% and the output integral voltage linearity is 0.085%. Small changes in
the instrument and environment during the experiment will lead to poor results. Therefore,
compared experimental results with simulation results, the linearity of the optimized
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ACB can meet the detection requirements. The optimal amplification is determined in the
simulation process, which is 10 times in the small gain channel and 60 times in the large
gain channel. To avoid the state change of the spaceborne IPDA LIDAR system during
operation, we set four gain levels. The small gain channels are 5 times, 10 times, 15 times,
and 20 times, and the large gain channels are 30 times, 60 times, 90 times, and 120 times.
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4. System Performance of Spaceborne IPDA LIDAR

Several groups have analyzed the performance of the IPDA LIDAR system [18,19,32],
including the influence of system error on precision. However, effects on accuracy caused
by nonlinearity have not been studied. The system performance of spaceborne IPDA
LIDAR depends on detection accuracy and precision. Nonlinearity of the detector is the
main factor affecting the inversion accuracy of the system, whereas random and systematic
errors are the main factors affecting inversion precision. The output waveform of the
optimized ACB changes obviously, which will affect the RE of the optimized IPDA LIDAR
system. Therefore, after detector linearity is optimized to meet accuracy requirements as
described in Section 3, the impact of RE on the precision of the optimized system should be
analyzed again. Compared with the relative systematic error (RSE) simulation results of
Han and Wang [18,19], there is no obvious change in other aspects, except that the spectral
purity of the laser transmitter is optimized to 99.95%. The detector optimization in this
paper does not affect the RSE. Therefore, RSE analysis is not repeated here.

When the gain (M) of APD photoreceiver is 10, and the amplification (F) of optimized
ACB is 10, the peak voltages of the online and offline monitoring signals are set to 1.40 V
and 0.70 V, respectively. According to the detector model in Section 3, the peak voltages of
online and offline echo pulses are in the range of 0.025–0.78 V and 0.055–1.70 V, respectively.
Figure 16 shows the global online and offline echo peak voltage distributions. Signal noise,
background noise, APD photoreceiver noise, ACB noise, and quantization noise are the
main factors causing RE. The expressions of these noises are given by Ehret et al. [25] and
Kiemle et al. [33]. The calculation of noise is not repeated here. Because signal noise and
background noise are related to the intensity of light, they are affected by surface reflectance
and atmospheric transmittance. Figure 17 shows the global signal noise distribution of
online and offline echo signals, and global background noise distribution. When the high
voltage of the APD photoreceiver is constant, the APD photoreceiver noise is constant. The
noise of the ACB varies linearly with its amplification. When the measurement range of
the DA remains unchanged, the quantization noise is also a fixed value. Table 2 shows the
values of four signals and all noise sources.
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The SNR is an important index of the evaluation system. The SNR for signals can be
expressed as

SNRi =
Vi√

V2
NS

+ V2
NB

+ V2
NA

+ V2
NC

+ V2
NQ

(6)

where i represents online monitoring, offline monitoring, online echo or offline echo signal;
Vi is the peak voltage of each signal; VNS represents the signal noise; VNB represents the
background noise; VNA represents the APD photoreceiver noise; VNC represents the ACB
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noise; and VNQ represents the quantization noise. Because the noise is uncorrelated, the
total SNR can be expressed as

1
SNRtotal

=

√
∑

i

1
SNR2

i
(7)
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Table 2. The values of four signals and all noise sources at M = 10, T = 5 ◦C and F = 10.

Laser pulse (@M = 10, F = 10) Peak Voltage Unit

Online monitoring 1.40

V
Offline monitoring 0.70

Online echo 0.025–0.78
Offline echo 0.055–1.70

Noise (@M = 10, T = 5 ◦C, F = 10) STD Unit
Signal noise 1.40–12.0

mV
Background noise 0.39–1.80

APD photoreceiver noise 2.00
ACB noise 0.38

Quantization noise 0.98
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When land and ocean spatial resolutions are 50 km and 100 km, respectively, the corre-
sponding average times can be calculated as 148 and 296 pulses, respectively. The number
of pulses is calculated according to satellite speed and the laser transmitter repetition
frequency. The final SNR can be expressed as

SNR = SNRtotal ·
√

Nshots (8)

where Nshots is the number of pulses. Figure 18a shows the global SNR calculated us-
ing MODIS data and cloud-aerosol LIDAR and infrared pathfinder satellite observation
(CALIPSO) data from 2018. The relative RE (RRE) in XCO2 can be approximated as

δXCO2

XCO2
≈ 1

∆τCO2 · SNRtotal ·
√

Nshots
(9)

where ∆τCO2 is total integrated double-path differential absorption optical depth caused
by atmospheric CO2 molecules. Figure 18b shows the corresponding global RRE. The
proportion of RRE of different segments is listed in Table 3.
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Figure 18. (a) Global SNR calculated by using MODIS data and CALIPSO data from 2018 and Equation (8). (b) The
corresponding global RRE.

Table 3. Proportion of RRE or different segments.

RRE (%) δXCO2 (ppm) Proportion

>0.3 >1.2 1.12%
0.25–0.3 1.0–1.2 25.66%

0.15–0.25 0.6–1.0 47.38%
<0.15 <0.6 25.84%

The analysis results in Table 3 are based on the MODIS annual average of global
surface reflectance in 2018. According to the probability distribution of global surface
reflectance in Figure 19 calculated by kiemle et al. using MODIS land data and GMAO sea
surface data, the sea surface reflectance given in Figure 3a is low [34]. Because there are
many clouds on the sea surface, and the effect of cloud removal is not good, the reflectivity
of the sea surface processed by MODIS data may be low. Kiemle et al. gave that the
area with surface reflectivity greater than 0.03 sr−1 accounted for more than 90% of the
world [34]. Using aerosol AOD distribution in Figure 3b for calculation, the sea surface
reflectivity of 0.03 sr−1 corresponds to an average RE of 0.182% (0.728 ppm). Therefore,
more than 90% of the global RE can be less than 0.728 ppm.
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5. Discussion

This paper analyzes the problem of nonlinearity, which is seldomly mentioned in
system performance simulations of the spaceborne IPDA LIDAR [18,19]. Continuous
hardware updating and iterating can achieve better system performance. For spaceborne
IPDA LIDAR, the most important thing is the performance and lifetime of the transmitter
and receiver. The performance of the detector also plays an important role in a long-term
operation of the spaceborne IPDA LIDAR. The choice of detector is very difficult because it
needs to maintain linearity and low noise in a large dynamic range. This paper presents
the design and test method of a detector ACB, which has certain reference value for other
LIDAR systems. An optimized detector has been installed, debugged and will be used in
airborne experiments in the near future. Although the linearity of the ACB has been tested
in the laboratory and can meet requirements, we are now preparing to use a test scheme
similar to that in Figure 5 to test the linearity of the whole detector under the vacuum
conditions of its future operation. After the spaceborne IPDA LIDAR launched, nonlinear
curves under different pulse widths (due to surface fluctuations) will be given for data
correction. This work helps improve the inversion accuracy of spaceborne IPDA LIDAR
data in the future.

In prior system simulation work, the conversion process of the laser pulse in detector
was unknown. According to LIDAR system parameters, only signal amplitude and the
root mean square value of noise can be calculated. The actual pulse signal waveform and
noise characteristics cannot be obtained from simulations. According to the principle of the
optimized ACB in Section 3, the transfer model of the detector is established by SIMULINK,
as shown in Figure 20a. The transfer function of impedance matching depends on the
extent of matching with APD photoreceiver output impedance and first-order high pass
filter characteristics. The first transfer function of the fifth-order active power filter is a
first-order low-pass filtering characteristic, as shown in Equation (4). The second transfer
function of the fifth-order active power filter is a second-order low-pass Sallen-key type
filter, which can be expressed by

H4(S) =
1

R27 · R28 · C28 · C27 · S2 + (R27 + R28) · C27 · S + 1
(10)

where R27, R28, C28, and C27 are the resistance and capacitance values in Figure 11a,
respectively. The third transfer function of the fifth-order active power filter is expressed in
the same way as Equation (10). Because the bandwidth of the fifth-order active power filter
is the smallest, it determines the bandwidth of the whole ACB, and the OA can be directly
regarded as its amplification. As shown in Figure 20a, the transfer function in SIMULINK
replaces the corresponding part in Figure 11a. The output waveform from the transfer
model in Figure 20b is consistent with that in Figure 11b. In this way, the simulation process
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is simplified, and the signal conversion process inside the detector can be completed using
SIMULINK without learning CADENCE software. Using the transfer model of the detector
to analyze the real pulse waveform and amplitude-frequency characteristics of noise, we
can further study the inversion algorithm to improve inversion accuracy and precision.
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output from the transfer model.

Comparing the final output waveform of airborne experiments in Figure 21 with
that of the optimized ACB in Figure 11, it can be seen that pulse shape and pulse width
have changed significantly. This will affect the RE and data inversion algorithm of the
optimized IPDA LIDAR system. In Section 3, system linearity is optimized to meet accuracy
requirements, and linearity in the dynamic range is 0.0747% (0.30 ppm). In Section 4, the
impact of RE on the precision of the optimized system is analyzed. The RRE of 25.84%
of the global area is less than 0.15% (0.60 ppm). The RRE of 47.38% of the global area
is between 0.15 and 0.25% (0.60–1.00 ppm), and the RRE of 25.66% of the global area is
between 0.25 and 0.3% (1.00–1.20 ppm) Only 1.12% of the global area exceeded 0.3% RRE
(1.20 ppm), mainly concentrated in the ocean near Africa due to its relatively high aerosol
concentration. We require that the error of the land part should not exceed 0.60 ppm.
Land accounts for about 29% of the global area, indicating that data efficiency is high.
Kiemle concluded that more than 90% of the world’s surface reflectance is greater than
0.03 sr−1. Through the performance simulation by the optimized system parameters and
Kiemle’s conclusion, the RE of more than 90% of the global area is less than 0.728 ppm.
Compared with the results of the airborne experiments in 2019 [20], the performance of
optimized system has improved. Compared with the simulation results of Han et al. and
Wang et al. [18,19], RE of the optimized IPDA LIDAR system does not increase. However,
the influence of ground undulations on waveforms is not considered here, which needs to
be analyzed in future research. It can be combined with the transfer model of the detector
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in Figure 20 to study the inversion algorithm or neural network learning to get better
inversion results.
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6. Conclusions

The airborne experiments of a scale prototype of China’s planned spaceborne IPDA
LIDAR was implemented in 2019. A problem with data inversion caused by nonlinearity
was found. The results of detector linearity tests show that when the peak voltage is greater
than 400 mV, there is a serious nonlinear phenomenon. Through many experiments, it
is found that the detector was the main factor causing the nonlinearity. In order to find
the cause of the nonlinearity, SIMULINK and CADENCE software are used to model
the detector. The model of APD photoreceiver is established by using SIMULINK. The
model of ACB is established by CADENCE. Comparing nonlinear curve obtained from the
simulation with experiments, it can be concluded that ACB is the main factor leading to
the nonlinearity of the IPDA LIDAR measurement system.

According to the requirements of the spaceborne IPDA LIDAR system for CO2 con-
centrations measurements, the ACB is optimized. First, the global echo signal power
distribution is simulated using average annual surface reflectance and average annual
aerosol concentration from other sensors in 2018. The minimum echo power of the space-
borne IPDA LIDAR system is 10 nW and the maximum echo power is 690 nW. The dynamic
range of echo signal power is approximately 70. Second, the ACB is optimized by adding
a fifth-order active power filter with 1 MHz bandwidth in front of OA. The purpose of
this method is to reduce the slew rate requirement of the OA and make the optimized
ACB meet the requirement of linearity. The CADENCE simulation results show that the
output peak voltage linearity of the optimized ACB is 0.0747% and the output integral
voltage linearity of the optimized ACB is 0.0877%. For further verification, the optimized
ACB is produced, and its linearity is verified by experiments. To reduce the influence of
quantization noise on weak signals, small gain channel and large gain channel are set in



Remote Sens. 2021, 13, 2007 19 of 21

the optimized ACB. The signal is amplified 10 times in the small gain channel and 60 times
in the large gain channel in the simulation. The output peak voltage linearity of the small
gain channel is 0.149% and the output integral voltage linearity is 0.135%. The output peak
voltage linearity of the large gain channel is 0.127% and the output integral voltage linearity
is 0.085%. Because small changes of instruments and environments in the experimental
process will lead to poor results, the simulation is taken as the final result. Therefore, the
linearity of the optimized ACB in the dynamic range reaches 0.0747%, which is much better
than the original version, with a linearity of 42.60%. The accuracy of the optimized IPDA
LIDAR system can be controlled within 0.30 ppm. In order to avoid the influence of the
state change of the spaceborne IPDA LIDAR system during operation, we set four gain
levels. The small gain channels are 5, 10, 15, and 20 times, and the large gain channels are
30, 60, 90, and 120 times.

System performance of the spaceborne IPDA LIDAR depends on detection accuracy
and precision. Nonlinearity of the detector is the main factor affecting the inversion
accuracy of the system, while random and systematic errors are the main factors affecting
inversion precision. The output waveform of the optimized ACB changes significantly,
which will affect the RE of the optimized IPDA LIDAR system. Therefore, the global RE
distribution of the optimized IPDA LIDAR system is simulated. Kiemle concluded that
more than 90% of the world’s surface reflectance is greater than 0.03 sr−1. Through the
performance simulation by the optimized system parameters and Kiemle’s conclusion, the
RE of more than 90% of the global area is less than 0.728 ppm. Finally, the transfer model of
the detector module was given, which will be helpful for the further optimization of XCO2
inversion algorithm.

7. Patents

An amplifier design circuit for avalanche photodetector, patent for invention, applica-
tion No.: 202011039567.1 (2020).
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