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Abstract: With the ability to provide long range, highly accurate 3D surrounding measurements,
while lowering the device cost, non-repetitive scanning Livox lidars have attracted considerable
interest in the last few years. They have seen a huge growth in use in the fields of robotics and
autonomous vehicles. In virtue of their restricted FoV, they are prone to degeneration in feature-
poor scenes and have difficulty detecting the loop. In this paper, we present a robust multi-lidar
fusion framework for self-localization and mapping problems, allowing different numbers of Livox
lidars and suitable for various platforms. First, an automatic calibration procedure is introduced
for multiple lidars. Based on the assumption of rigidity of geometric structure, the transformation
between two lidars can be configured through map alignment. Second, the raw data from different
lidars are time-synchronized and sent to respective feature extraction processes. Instead of sending all
the feature candidates for estimating lidar odometry, only the most informative features are selected
to perform scan registration. The dynamic objects are removed in the meantime, and a novel place
descriptor is integrated for enhanced loop detection. The results show that our proposed system
achieved better results than single Livox lidar methods. In addition, our method outperformed novel
mechanical lidar methods in challenging scenarios. Moreover, the performance in feature-less and
large motion scenarios has also been verified, both with approvable accuracy.

Keywords: multiple lidar; non-repetitive scanning; Livox; mapping and odometry; multi-sensor

1. Introduction

The past decade has seen a rapid rise in the use of high definition (HD) maps for
high level autonomous driving; with mobile mapping systems (MMS) and simultaneous
localization and mapping (SLAM) being two approaches in this field [1]. As a direct geo-
referencing method, the fundamental requirement for MMS is high-precision localization.
Although an accurate position can be obtained by applying real time kinematic (RTK)
measurements in open sky areas, various sensors need to be utilized to compensate for
global navigation satellite system (GNSS) blackouts or multipath problems in downtown
areas, under urban viaducts, or in the tunnels. With the framework of estimating both
the odometry and mapping at the same time, SLAM gives a solution to this challenging
conundrum [2]. Though great efforts have been devoted to the study of visual SLAM [3–7],
light detection and ranging (LiDAR) SLAM is still of great importance [8]. Compared with
cameras, lidars are not sensitive to illumination variations, robust for diverse lighting
conditions.

The focus of recent research has been on lowering lidar cost, while increasing its
detection range [9,10]; with solid state lidar (SSL) having the greatest interest and potential.
Inspired by the Risley prism design, Livox lidar is attracting considerable interest with its
desirable price and accuracy. Unlike traditional mechanical lidars, the Livox lidars have
limited FoVs and an irregular scan pattern, bringing new challenges for lidar mapping and
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odometry. One of the first examples of Livox based approach is presented in [11], typically
designed for Livox Mid series lidars. Here, similarly to in [8], the features are extracted by
calculating local smoothness, the scan-matching is done by computation of edge-to-edge
and plane-to-plane residuals, and a [12] based loop detection is added to the back-end.
Thanks to implementation parallelization, the proposed system can achieve an improved
runtime efficiency, with comparable accuracy.

With a more generic scan pattern and a 81.7◦ × 25.1◦ FoV, Livox Horizon is more
applicable to automated vehicles [13,14], while the Livox Mid tends towards robots and
small platforms. An optimization based tightly-coupled system Lili-om was developed
in [15]. Primarily, a two-stage feature extraction method is performed in the time domain
of every scan, then the front-end odometry is solved by point-to-edge and point-to-plane
metrics. The whole process is further optimized by a keyframe based sliding window
approach. A key limitation of this research is the vulnerability to feature-less scenes,
especially in high-speed applications such as railroads and highways. A filter based tightly-
coupled system was proposed in [16]; although lightweight and with a high computation
efficiency, this approach is unable to reveal sharp turnings and is over sensitive to height
variations. Furthermore, this method relies on self-initiation and requires that the system
keeps still for dozens of seconds for every dataset, which is inconvenient for MMS.

The aforementioned drawbacks are partially limited by the restricted FoV, which can
be eliminated by deploying multiple lidars [17–22]. On the one hand, increasing sensing
range and density helps to prevent degeneracy in the registration process. On the other
hand, extra consideration of sensor communication, system distribution, and computation
efficiency is needed for the dramatically increasing measurements. This leads to concerns
about cooperation, with centralized approaches and decentralized ones. In the first phase,
all the data are sent to a central unit and estimated as a whole [23,24], while the second re-
quires each sensor to rely on its dedicated computer for processing and communication via
a network [25–27]. A centralized framework is described in [22], the perceptual awareness
is maximized by introducing multiple lidars. Feature points are extracted from separate
lidars and sent to the odometry module for pose estimation, calibration refinement, and
convergence identification. As it only relies on pre-set thresholds and online calibration,
this method is not applicable for some typical applications, such as railroad scenes. Based
on an external Kalman filter (EKF), a decentralized system is proposed in [21]. With the
aim of potentially distributing the intensive computation among computation units, this
approach treats each lidar as an independent module for pose estimation. However, the
communication delay and message loss of real cases are not considered, as this method is
only simulated on a high-performance computer.

Summarizing the discussion above, the fusion of multiple lidars is crucial for improv-
ing the mapping and positioning accuracy in SLAM. And in this paper, we present a robust
framework that allows different types and numbers of Livox lidar for pose estimation. The
main contributions of the paper are as follows:

• An accurate and automatic calibration of multiple non-repetitive scanning lidars with
small or no overlapping districts.

• A novel feature selection method for multiple lidar fusion, which not only increases
computation efficiency, but also raises the awareness against degeneracy.

• A self-adaptive feature extraction method for various lidars; both the close-to-rectangle
and circular scanning pattern of Livox lidar can be satisfied.

• A scan context [28] for the place description of lidars with irregular scan patterns.
Experimental results show that this method is robust in challenging areas.

The remainder of the paper is organized as follows: Section 2 presents the calibration,
feature selection, and optimization methods applied in this research; Section 3 describes
the detailed experiments and analyzes the results; Finally, Section 4 draws the conclusions.
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2. Materials and Methods
2.1. Syetem Overview

The structure of the system is shown in Figure 1, mainly comprised of two parts: the
front-end fusion and back-end optimization. In the front-end process, the algorithm first
automatically detects the number and type of lidar inputs regarding different lidar IDs,
with a separate synchronization status measured against IMU. Then the point clouds are
sent to parallel threads for feature extraction. Subsequently, the good feature sets are picked
using pre-defined thresholds. Lastly, a scan registration procedure iteratively optimizes
the lidar pose due to the non-repetitive scanning patterns. In the back-end module, the
system fuses the results from the front-end and outputs the final pose estimation. The scan
context integrated loop closure is checked through maintained keyframes.

Figure 1. Overview of multi-lidar based mapping and odometry system.

2.2. Automatic Calibration of the System

The extrinsic features of a multi lidar system need to be carefully configured before an
experiment. This is generally done by detecting coincident feature points and solving the
relative pose between different lidars by utilizing a target-based calibration method [29,30].
As this approach requires coincident FoVs among lidars, this is not applicable for non-
overlapping systems, and thus a map-based online calibration method is often used [31–34].
As shown in Figure 2a, although the five lidars on the UGV platform do have overlapped
areas, we still adopt the automatic calibration method for fast deployment.

Given two lidar coordinates, PlidarA and PlidarB, the goal of calibration is to determine
the tranlation and rotational relation between them, denoted as TA

B and RA
B . With the

assumption of an isomorphic constraint model for the environment, these two matrices can
be iteratively solved using continuously constructed submaps. The Fast-lio [16] is applied
for creating a precise local map, and the generalized-ICP [35] is used for map alignment.
We obtain the first TA

B and RA
B from a coarse manual physical measurement, and they

act as the initial guess for estimation of the exact calibration matrix. As the generalized-
ICP becomes unstable and encounters mismatching errors, where obvious geometrical
features are insufficient, both the calibration processes were carried out in an underground
parking garage. With large registration outliers removed by random sample consensus
(RANSAC) [36], the final calibration matrices could be determined after a one-minute slow
driving around the garage. As can be seen in Figure 3, the geometrical structures were
maintained well with the computed calibration matrix, and the best calibration accuracy
was at millimeter-level after several trials.
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Figure 2. The sensor configuration of our two multiple-lidar systems. The extrinsic is refined to the front-view lidar in (a),
and the geometric center in (b), respectively. Five Livox Horizon lidars were included in the UGV platform, composing
a 360◦ FoV. While, the passenger vehicle platform had two Livox Tele-15 and six Livox Horizon lidars, with no overlaps
between any two lidars.

Figure 3. Visual illustration of the calibration result for the passenger vehicle platform, with eight colors representing the
respective point clouds. (a) is from the top view, while (b) is from the back view, and (c) is a 3D overview with the zoom in
of a pillar shown in (d). It can be noticed that the upper half and lower half of the pillar match well with each other.
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2.3. Feature Extraction

As shown in Figure 4, two different types of Livox series lidars are applied, the
Livox Tele-15 and Livox Horizon. The first one is a long-range, high-density lidar, with
structured circular scan pattern, the FoV is 14.5◦ × 16.2◦. While the Horizon is totally
different from Tele-15 with six laser scan diodes ‘brushing’ arbitrarily in the 81.7◦ × 25.1◦

FoV. Various lidars can be connected, either with a Livox Hub or a switch, and we used the
time synchronizer in robot operation system (ROS) [37] to fuse and synchronize the lidars.

Figure 4. Visual illustration of the two different patterns.

With the aim of allowing an arbitrary number and type of lidars to qualify for our
system, we designed a parallel feature extraction process with computational efficiency.
Each incoming raw lidar frame is sent to a respective thread for feature extraction, according
to its ID, and the extraction methods differ between Tele-15 and Horizon.

• Tele-15:
The feature points can be extracted through counting the local smoothness. Moreover,
in view of the limited feature points in the tiny FoV, point reflectivity is also employed
as an extra determinant. If the reflectivity of a point is different from the neighboring
one for a threshold, it is also treated as an edge point.

c =
1

|S|·
∣∣∣∣∣∣XL

(k,i)

∣∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣ ∑

jεS, j 6=i

(
XL
(k,j) − XL

(k,i)

)∣∣∣∣∣
∣∣∣∣∣, (1)

where S contains the points in the recent district, and XL
(k,j) and XL

(k,i) represent the
specific coordinates of points.

• Horizon:
We deployed a purely time domain feature extraction method for Horizon. All the
raw point cloud data in a single frame are divided into patches with a 6 × 7 point, and
an eigendecomposition is performed for the covariance of the 3D coordinates. All the
42 points are extracted as surface features if the second largest eigenvalue is 0.4 times
larger than the smallest one. Then the points with the largest curvature on each scan
line are found for non-surface patches, and an eigendecomposition is performed. If
the largest eigenvalue is 0.3 times larger than the second largest one, the six points
are extracted as edge features. Although highly accurate for feature extraction, this
method can only solve low speed occasions due to the limited patch size. Therefore,
a time-domain-based method is selected for the UGV platform, while a traditional
approach is adopted for the passenger vehicle platform.
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2.4. Feature Selection

Multiple-lidar fusion maximizes the awareness of surroundings, but inevitably ex-
tends the computation time, and data association is highly time-consuming if all the
features are exploited. Furthermore, the numerous measurements from side lidars are
prone to degeneration, such as the walls with planar environment and feature-poor areas
in Figure 5. It would be better if only the informative features are selected and sent for
optimization.

According to [38], well-conditioned constraints should distribute in different direc-
tions, constraining the pose from different angles. For instance, parallel constraints are
more susceptible to degeneracy than their orthogonal counterparts. We therefore adopted
a feature selection algorithm following [39]. Features that are most valuable for estimation
are selected as good features, and both the data association and state optimization should
utilize only them. Denoting FK as the number of extracted features in one sweep, GK as
the amount of good features set, andMK as the maximum number of selected features,
the feature selection problem can be expressed as:

argmax
GK⊂FK , GK≤MK

logDet[Λ(GK)], (2)

where Λ(GK) is the information matrix of the good feature set and logDet represents the log
determinant. As a NP-hard problem, low-latency data association is guaranteed through
lazier–greedy algorithm [40]. The idea is simple: at each round, the current best feature is
identified only from evaluation of a random subset, while all the n candidate set is searched
for the simple greedy approach. With a predefined decay factor ε, the size s of a random
subset can be expressed as:

s =
FK
MK

log
(

1
ε

)
. (3)

In this way, the time complexity is reduced fromO(MK(1− ρ)FK) toO
(

log
(

1
ε

)
FK

)
,

where ρ is the constant rejection ratio. As reported in [41], the approximation ratio of a
greedy approach was proven to be 1− 1/e, thus the lazier greedy reaches a (1− 1/e− ε)
approximation guarantee in expectation of the optimal solution.

Figure 5. A qualitative example of the good feature selection method. The UGV runs into a narrow district, where the
surroundings are blocked by walls. With the lazier–greedy algorithm, only the surface features providing strong geometric
constraints are picked in (a), and the local map is well maintained in (b). On the other hand, once all the surface features are
imported in (c), the local map in (d) is blurred due to textureless regions. The amount of surface points in (a,c) are 1125 and
11,243, respectively.
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Let f (·) be the non-negative monotone and submodular function, and set the size
of the random set as s. Differently from the adaptive adjustment of MK with online
degeneracy evaluation in [42], we set a constant ratio of all featuresMK = 0.1FK for time
efficiency. Let G∗K be the optimal set and Gsub

K the result of the lazier–greedy algorithm; Gsub
K

achieves the approximation guarantee in expectation:

E
(

f
[
Λ
(
Gsub

K

)])
≥ (1− 1/e− ε) f [Λ(G∗K)]. (4)

The detailed process of feature selection is summarized as follows:

1. Down sample the current fused point cloud Pk with voxel filter [43] and extract all
the feature points FK. Set Gsub

K as empty at the beginning of each frame.
2. For each lidar input, obtain a random subsetR containing s elements from FK. For

each feature point pi inR, search the correspondence and compute the information
matrix Λi from residuals calculated from (6) and (7). Add any pi to Gsub

K that leads to

maximum enhancement of the objective, pi ← argmax
pi⊂FK

logDet
[
Λ
(
Gsub

K

)
+ Λi

]
. Then

the Λ
(
Gsub

K

)
is updated and replaced with Λ

(
Gsub

K

)
+ Λi.

3. For each lidar input, stop step 2 untilMK good features are found.
4. Send all the good feature sets to scan registration after every thread finishes step 3.

2.5. Scan Registration

The extracted edge and surface features from different lidars are synchronized and
treated as a whole. Point-to-edge and point-to-plane metrics are calculated with respect to
lidar IDs and optimized together.

The scan registration starts with projecting the current point cloud Pk into the global
map PW , with the predefined rotational and translational relationship (Rk, Tk):

PW = RkPk + Tk. (5)

Suppose that Ek+1 denotes the set of all edge features in the time k + 1, for each edge
feature Ei in Ek+1, the five nearest edge points in the PW are found, with their mean value
p5. To make sure that they indeed form a line, the covariance matrix is computed and an
eigendecomposition is performed based upon it. If the biggest eigenvalue is four times
larger than the second biggest one, the five points are on a line where Ei should lie. The
point-to-edge metric is defined as follows:

Yp2e =
|(Ei − p5)× (p5 − p1)|

|p5 − p1|
, (6)

here p1 is a point among the five points, and similarly to the point-to-edge residual
calculation, the five nearest surface points are searched for each surface feature Si in
Sk+1. The eigendecompositions of the covariance matrix are also computed; if the smallest
eigenvalue is four-times less than the second smallest one, the five points form a plane,
and the point-to-plane distance can be calculated by:

Yp2p =
(Si − p1)

T((p3 − p5)× (p3 − p1))

|(p3 − p5)× (p3 − p1)|
, (7)

where p1 and p3 are the two points in the five points. The two residuals are also introduced
as a measurement for dynamic object filtering. Residuals computed from (6) and (7) are
sorted with one quarter of the largest residuals being removed. The pose estimation is
finally performed after this process.

In the back-end, keyframes are established for global optimization, and we introduce
two criteria for keyframe selection. The first is the time variation, a new keyframe is
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selected when the current time difference to the last keyframe exceeds 5 s, and the second
is the odometry displacement, where a new keyframe is added if the distance to the last
keyframe surpasses 10 m.

2.6. Scan Context Integrated Global Optimization

Place recognition provides candidates for loop closure optimization, which is critical
for correcting long-term accumulating drift over a path. This is a challenging task on point
cloud, as loss of textures and colors means only the geometric information is available.
The well-known histogram-based methods only provide a stochastic descriptor of the
scene [12], making it less discernible for place recognition problems. Thus, we follow a
novel place descriptor scan context [28,44], targeting 3D lidar scan data.

With the idea of encoding the geometrical shape of the point cloud into an image, the
scan context first divides a laser scan into azimuthal and radial bins in the lidar coordinate.
As shown in Figure 6a, Ns and Nr are the number of sectors and rings. Suppose that the
maximum detection range of a lidar is Lmax, then the central angle of a sector in the polar
coordinate is 2π

Ns
and the radial distance between two rings is Lmax

Nr
. Therefore, for each

point Pk = [xk, yk, zk], we have (8) describing the set of points belonging to each bin Bij.

P =
⋃

i∈{1,2,...,Nr},j∈{1,2,...,Ns}
Bij,

Bij =
{

Pk ∈ P
∣∣∣ i·Lmax

Nr
≤ Pk <

(i+1)·Lmax
Nr

, j·2π
Ns
− π ≤ θk <

(j+1)·2π
Ns

− π
}

,
(8)

where θk = arctan yk
xk

, and a scan context Ω(i, j) can be encoded by assigning the maximum
height of the 3D points within each bin through:

Ω(i, j) = max z
(

Bij
)
. (9)

Lmax is set as 130 m (detection range of Livox Horizon at 20% reflectivity), Ns = 60
and Nr = 40. As seen in Figure 6b, the scan context partitions whole points into equally
distributed intervals. Thanks to the regular encoding pattern, far points and nearby
dynamic objects can be treated as sparse noise and discarded for estimation.

As can be seen in Figure 7, the place re-identification can then be simplified as column-
wise similarity matching. Given a scan context pair Iq and Ic, the geometric similarity
function can be defined as:

ϕg(Iq, Ic) =
1

Ns

Ns

∑
j=1

(1−
cq

j ·c
c
j∣∣∣∣∣∣cq

j || ||cc
j

∣∣∣∣∣∣ ), (10)

where cq
j and cc

j are the object and candidate column vectors at the same index. Since the
column vectors describe changes in the azimuthal direction, they may be shifted even in
the same place for a change of view-point. On the other hand, the row vector is dependent
on the sensor location, and always consistent for the identical location. In this respect,
the performance of scan context is limited in indoor environments, where variations in
the vertical direction are insignificant. The change of view-point can be determined by
column shifts:

Φg(Iq, Ic) = min
k∈{1,2,...,Ns}

ϕg(Iq, Ic
k), (11)

k∗ = argmin
k∈{1,2,...,Ns}

ϕg(Iq, Ic
k), (12)

where Ic
k is Ic shifted by kth column. The pair Iq and Ic can be filtered out by an empirically

defined threshold, Φg(Iq, Ic) describes the best alignment of them, and k∗ is the optimal
distance.



Remote Sens. 2021, 13, 2015 9 of 21

Remote Sens. 2021, 13, x FOR PEER REVIEW 9 of 22 

Place recognition provides candidates for loop closure optimization, which is critical 
for correcting long-term accumulating drift over a path. This is a challenging task on point 
cloud, as loss of textures and colors means only the geometric information is available. 
The well-known histogram-based methods only provide a stochastic descriptor of the 
scene [12], making it less discernible for place recognition problems. Thus, we follow a 
novel place descriptor scan context [28,44], targeting 3D lidar scan data. 

With the idea of encoding the geometrical shape of the point cloud into an image, the 
scan context first divides a laser scan into azimuthal and radial bins in the lidar coordinate. 
As shown in Figure 6a,  and  are the number of sectors and rings. Suppose that the 
maximum detection range of a lidar is , then the central angle of a sector in the polar 
coordinate is  and the radial distance between two rings is 	 . Therefore, for each 
point , , , we have (8) describing the set of points belonging to each bin . ⋃∈ , ,…, , ∈ , ,…, , 

∈ 	 ∙ 	 1 ∙ , ∙ 2 1 ∙ 2 ,	 (8)

where , and a scan context Ω i, j  can be encoded by assigning the maxi-
mum height of the 3D points within each bin through: 

(a) Camera view and bin division of the same place. The yellow and cyan area in the right image
indicate sectors and rings, respectively. The intersection of sectors and rings is a bin, in red.

(b) Scan context, with yellow and cyan column representing the same sector and ring in the above,
while the bin is in black.

Figure 6. Visual illustration of a challenging example of scan context. 

 is set as 130 m (detection range of Livox Horizon at 20% reflectivity), 60 
and 40. As seen in Figure 6b, the scan context partitions whole points into equally 

Figure 6. Visual illustration of a challenging example of scan context.

Figure 7. Illustration of place recognition for scan context.



Remote Sens. 2021, 13, 2015 10 of 21

As a scan context is calculated for each keyframe, the candidate query will increase
rapidly as vehicle moves around, and we set up a KD-tree for the fast-search of possible
candidates. A local place re-identification score is defined by incorporating N temporal
frames into the verification:

Φlg(Pm,Pn) =
1
N

N

∑
i=1

Φg(Im−i, In−i), (13)

where Pm and Pn are the query scan and candidate scan. This temporal score may further
serve as an initial value for scan-to-scan ICP refinement.

3. Results

The performance of our approach was validated by extensive experiments on different
platforms. All the datasets were processed by an onboard computer, DJI Manifold 2C, with
i7-8550U, 8 GB RAM, with no GPU-accelerated computing. The proposed system can reach
real-time performance with up to three lidars, and 90% and 70% real-time efficiencies are
satisfied for five and eight lidars, respectively. GNSS outputs were set as ground truth for
further comparison throughout all the experiments. Lever-arms were measured with a
tape and stored in the hardware settings for online estimation. Results were also compared
with the state-of-the-art (SOTA) following [45], with detailed description as follows.

3.1. Passenger Car Downtown Experiments
3.1.1. System Setup and Scenario Overview

Presented in Figures 2b and 8, the platform consists of six Livox Horizon lidars, two
Livox Tele-15 lidars, and a Livox Hub in charge of lidar connection. All the lidars are
synchronized through gps-pps signals with a u-blox M8T the GNRMC format. With radio
technical commissions for maritime services (RTCM) corrections from a Qianxun D100, the
MTi-680G can provide RTK localizations.

The up–down placement of the two front-view Livox Horizon lidars has a significant
advantage in the suburbs. When heavy traffic congestion is encountered, only the upper
one is introduced for mapping and map-based re-localization, ensuring accurate mapping
and odometry results in highly dynamic environments.

Figure 8. Passenger car platform overview.

As shown in Figure 9, two experiments were carried out on this platform: the first one
was in a low-speed, low-kinematic urban scene, with the overall length and time cost of
1.5 km and 342 s. The second one tried to assess the mapping consistency in tunnels, and a
long acoustic barrier on the overpass was chosen. The path is around 2 km long, with a
time consumption of 141.5 s.
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Figure 9. Map illustration of the two experiments, with the red line denoting GNSS trajectory.

3.1.2. Results of Experiment #1

As the GNSS signals were occasionally blocked along the path, we only evaluated the
horizontal accuracy of the proposed system with Livox Horizon Loam (official release),
Lili-om, and Fast-lio. All the eight lidars were fused in our system, while only a front lidar
was used for the other three methods. The following can be observed from Figure 10.

• The advantage of integrating point clouds from multiple lidars is manifest; much
more environmental information can be obtained and presented. While the front
lidar mapping merely depicts the road shape, multi-lidar fusion generates generous
supplementary geometrical features. Thanks to the long-range Tele-15 lidar, the
playground is completely preserved on the map shown in Figure 10e. As feature
quality has a great impact on lidar odometry, multi-lidar fusion should be a better
approach for degeneracy problems.

• The multi-lidar fusion system was more robust than the single lidar system in dynamic
scenes. The system encountered heavy congestion at the beginning, with vehicles,
bicycles, and people moving irregularly. Hence the scan-to-scan correlation was diffi-
cult to determine in a severely limited FoV. We can see from Figure 10c and the upper
right corner of Figure 10d that the scan registration died with front lidar only, which
was the reason for the loss of other three trajectories. This is an increasingly common
situation in the suburbs; with limited observable features, single lidar mapping is
vulnerable to dynamic scenes. From our experience, it could be easily misled by a
truck or a bus passing by, especially at crossroads, while waiting for traffic lights. With
the auxiliary features from side lidars and feature filtering for front lidars, our method
had the highest accuracy in these scenarios. It can be noticed from Figure 10c that the
incorrect matching of dynamic objects at the beginning ruins the entire odometry. For
other three single-lidar-based approaches, the initial translational error had already
surpassed 10 m. While for our system, the position errors always stayed at a low level
along the trajectory.

For quantitative analysis, the absolute position and orientation errors are plotted in
Figure 10d for detailed reference, showing that multi-lidar fusion had a great impact on
improving the positioning accuracy. The mean and the root mean square error (RMSE) of
position error were 2.452 m and 3.618 m. In addition, the mean and RMSE of attitude error
were 11.967◦ and 5.675◦.
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Figure 10. Cont.
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Figure 10. Evaluation of mapping and odometry results for experiment #1.

3.1.3. Results of Experiment #2

Tunnels are a great challenge to lidar odometry due to their repetitive features; with
the help of an initial guess from IMU and additional feature points from side lidars, our
approach was able to generate a map of tunnels with a medium length. We choose the
noise barrier fence on the overhead viaducts for quantitative analysis. The selected acoustic
barrier wall was blank on the top, allowing GNSS signal penetration. The laser beam
was unable to go through the surrounding walls, making it share a similar pattern with
traditional tunnels. The mapping and odometry result are presented in Figure 11. The
RMSEs of position (3D) and attitude (RPY) error were 6.520 m and 14.567◦.

3.2. Small Platform Campus Experiments
3.2.1. System Setup and Scenario Overview

The small platform is shown in Figures 2a and 12a, comprised of five Livox Horizon
lidars, a MTi-680G integrated navigation unit, and a Livox Hub for lidar connection. The
small platform ran at up to 5 m/s in the campus, and we used a laptop to collect all the
data for fast implementation.

Two loops in Wuhan university were performed to validate our approach, shown in
Figure 12b, the first one is a small loop around the main building, with a time consumption
of 283 s and overall length 600 m, while the second one is a big loop, 852 s in all, and
around 1.8 km. As there are trees and buildings blocking the GNSS signals along the path,
we only evaluated the horizontal position and roll-pitch attitude accuracy in this case.
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Figure 11. Mapping and odometry results of experiment #2.

Figure 12. Small platform setup: (a) platform overview; (b) illustration of the two loops. (blue and red trajectories).
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3.2.2. Effects of Lidar Number

Since our scheme supports an arbitrary number of lidars for optimization, we first
investigate the performance variation with respect to lidar number. The small loop is
selected for illustration here, and Figure 13 describes the results from various numbers of
lidars. With each of them carrying out pure odometry, no global optimization was enabled.
As a result, the following was discovered.

• A five-lidar fusion could eliminate the exaggerated height ramp of a single lidar
approach. There were six speed bumpers on the path, causing large vertical vibrations
to the vehicle. Some of these perpendicular motions are fatal to lidar odometry,
as vertical displacement will be enlarged by incorrect registrations. The front lidar
trajectory in Figure 13a encountered a vertical dump in the left corner, which was the
result of two consecutive speed bump. With limited FoV from only the front view, the
single lidar odometry was unable to correct these errors; it was further affected by
error propagation in Figure 13c. Extending extra constraint features from side lidars,
our approach was able to correct these errors and maintain a flat terrain.

• The geometry of multiple lidar placement made a significant improvement to the
system performance. We can notice from Figure 13a that the results from one front
view lidar and two back view lidars had the most proximal accuracy with the five-lidar
fusion. On the other hand, the positioning error of two back lidars was worse than the
single front view lidar. Therefore, pentagon-like and triangle-like multi-lidar setups
should deliver better mapping and positioning results in real cases.

Figure 13. Illustration of multi-lidar fusion improvements.

3.2.3. Effects of Loop Closure Optimization

As shown in Figure 14, the big loop was taken into consideration here, and two other
place representations were selected for comparison: a pose-information-based loop detec-
tor [46] and a histogram-based loop detector. The pose-information-based loop detection
encountered the most exaggerated errors, in the top left corner. With the assumption of
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small pose deviations along the path, the pose-information-based approach took keyframes
of similar poses as a detected loop. Therefore, this method is unable to handle large-scale
mapping, where pose deviation is inevitable. Histogram-based loop detection also failed
to close the loop, and the part in the green circle distorted seriously. As a feature-based
method, it is hard to avoid the influence of dynamic objects and view angle variations
with this approach. Since only a Nr × Ns scan context was encapsulated for each scan,
this descriptor had the best accuracy for challenging scenes, with the 2D translational and
roll-pitch rotational RMSEs of 1.997 m and 7.198◦.

Figure 14. Description of the effects on loop closure optimization.

3.2.4. Comparison with Mechanical Lidar

Each Livox Horizon lidar has a horizontal view of 81.7◦, with five of them completing
a full coverage of 360◦, which is similar to traditional mechanical lidars. Here, two widely
known lidars, Ouster OS1-64 and Velodyne VLP-16, were chosen for evaluation with our
multi-lidar method. We selected three popular algorithms for demonstration, a tightly
coupled Lio-sam [47], an advanced implementation of LOAM (A-LOAM), and LeGO-
LOAM. Both the Lio-sam and LeGO-LOAM were also integrated with scan context as a
global descriptor. The experiments on two loops are illustrated here, with the mapping
results presented in Figure 15, and the following information can be observed.

• Multi-lidar fusion had a commendable mapping accuracy and retained abundant
features in the meantime. In the current market, the five Livox Horizon kit is (5 Livox
Horizons and a Livox Hub) almost the same price as a VLP-16, and half the cost of
an OS1-64. Moreover, the horizontal odometry results in Figure 15b and Table 1 also
indicate that our approach had an accuracy comparable with Lio-sam.
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• Multi-lidar fusion had a better performance in challenging scenarios. Shown in
Figure 15c,d we carried out an experiment of small loop at class breaktime, with
students and vehicles blocking the paths. Therefore, our vehicle had to avoid collisions
with irregular motions, such as moving back and forth, sharp turnings, and fast
accelerations. Lio-sam had the most significant failure in such areas, because of loss of
landmark constraints. Since the IMU pre-integration process of the system depends
heavily on lidar odometry [48], the system was liable to fail once the landmark
constraint information was insufficient. The maximum error of A-LOAM came from
back-and-forth motions, causing a more than 90◦ deviation to the trajectory. The
starting area was a crowded pathway with vehicles on both sides; as our platform was
much lower than common sedans, most of the surface points were cast on vehicles.
Once the front view is blocked by pedestrians, the loops cannot be detected or are
mismatched, hence LeGO-LOAM failed to close the loop. A crucial benefit of multi-
lidar fusion is the capability of manipulating each lidar input freely. With a pre-set
empirical threshold for the amount of edge points, all the edge and surface features
from the individual lidars after selection were further down sampled to 10% of
their original size once the threshold was reached. This is similar to shutting down
some typical view angles of a mechanical lidar, and thus alleviating bad impacts in
certain areas. Moreover, the major part of dynamic objects in the front view can be
removed by point-to-edge and point-to-plane residuals. With the help of the two
mentioned improvements, our multi-lidar fusion solution had a strong capability in
severe situations, and the end-to-end errors were small, as presented in Table 2.

Table 1. Horizontal position error statistics of the big loop. (Compared with Velodyne VLP-16).

Lio-sam A-LOAM LeGO-
LOAM Lili-om Livox Horizon

Loam
5 Livox
Horizon

Mean 3.287 m 6.369 m 4.363 m 6.268 m 54.852 m 1.812 m

RMSE 2.354 m 8.973 m 6.251 m 9.347 m 60.623 m 1.997 m

Table 2. End-to-end position and attitude errors for the small loop at severe situations. (Compared
with Ouster OS1-64).

Lio-sam A-LOAM LeGO-LOAM 5 Livox Horizons

Position 463.185 m 88.043 m 33.139 m 0.302 m
Attitude 32.745◦ 79.330◦ 11.081◦ 2.711◦
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Figure 15. Mapping and odometry evaluation of 5 Livox Horizons and mechanical lidar.

4. Conclusions

In this work, we proposed a robust mapping and odometry algorithm for multiple
non-repetitive scanning lidars. The robustness is ensured mainly through two approaches,
the first is good feature selection against massive data and degeneracy, and the latter is the
novel place descriptor against dynamic objects and view angle variations. Extensive exper-
iments on two platforms were conducted. The results show that the proposed algorithm
delivers superior accuracy over SOTA single lidar methods.

There are several directions for future research. Adding additional GNSS measure-
ments into our system is conceivable, which would further compensate for accumulated
drifts and maintain the global map. Another research direction concerns map reuse. With
a great variety of lidars on the market, challenges still remain for map-based re localiza-



Remote Sens. 2021, 13, 2015 19 of 21

tion. It would be desirable if we could use low-cost lidars or even cameras to register
high-definition maps.
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