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Abstract: Due to its relation to the Earth’s climate and weather and phenomena like drought, flooding,
or landslides, knowledge of the soil moisture content is valuable to many scientific and professional
users. Remote-sensing offers the unique possibility for continuous measurements of this variable.
Especially for agriculture, there is a strong demand for high spatial resolution mapping. However,
operationally available soil moisture products exist with medium to coarse spatial resolution only
(≥1 km). This study introduces a machine learning (ML)—based approach for the high spatial
resolution (50 m) mapping of soil moisture based on the integration of Landsat-8 optical and thermal
images, Copernicus Sentinel-1 C-Band SAR images, and modelled data, executable in the Google
Earth Engine. The novelty of this approach lies in applying an entirely data-driven ML concept for
global estimation of the surface soil moisture content. Globally distributed in situ data from the
International Soil Moisture Network acted as an input for model training. Based on the independent
validation dataset, the resulting overall estimation accuracy, in terms of Root-Mean-Squared-Error
and R2, was 0.04 m3·m−3 and 0.81, respectively. Beyond the retrieval model itself, this article
introduces a framework for collecting training data and a stand-alone Python package for soil
moisture mapping. The Google Earth Engine Python API facilitates the execution of data collection
and retrieval which is entirely cloud-based. For soil moisture retrieval, it eliminates the requirement
to download or preprocess any input datasets.

Keywords: soil moisture; Sentinel-1 SAR; Landsat-8 optical/thermal data; machine learning; cloud-
based approach; Google Earth Engine

1. Introduction

The soil moisture content (SMC) is a crucial state variable in the complex global cycles
of water, energy, and carbon, and is therefore very relevant for studying the Earth’s climate
and weather [1]. Furthermore, SMC plays a crucial role in natural hazards like drought,
floods, and landslides [2]. Satellite remote sensing presents the only possibility for the
spatially continuous measurement of surface SMC over large areas. Current, widely used
approaches belong to two main categories: those based on active or passive microwave
remote sensing, and those based on optical (i.e., shortwave and thermal radiation) remote
sensing. The underlying methods for the estimation of SMC are fundamentally different.
Most microwave-based retrieval algorithms rely on the same principle, exploiting the
dielectric properties of water and its effect on the reflected microwave radiation [3]. For op-
tical remote sensing, many different approaches exist, exploiting the relationship between
SMC and surface reflectance, changes of vegetation indices, or surface temperature [4].
Independent of the type of underlying measurement, these approaches require complex
retrieval models, often relying on assumptions and approximations.

The essential advantages of microwaves are their low sensitivity to atmospheric condi-
tions, sun-illumination and clouds, and the fact that there is a direct, physical relationship
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between the moisture content of soil and the emitted and reflected energy [3]. However,
measurements are also strongly influenced by vegetation water content and structure and
surface roughness, which can be challenging to estimate. There are two main groups of
traditional modelling approaches: process-based models, encompassing physical models
like the integral equation model (IEM) [5]; semi-empirical models, e.g., from Oh et al. [6]
and Dubois et al. [7]; and change detection approaches, e.g., from Wagner et al. [8]. For
optical-based SMC estimations, many different approaches, distinguished by the used
frequency, exist. The main advantages of these methods are many existing optical satellites
and good data availability at different spatial and spectral resolutions. Methods based
on visible light and near-infrared often exploit the surface reflectance properties of bare
soil, for which studies have shown a negative correlation of the reflectance in water ab-
sorption bands and SMC [9]. Due to this dependency, various drought indices, like the
normalized-difference-vegetation-index (NDVI) or the normalized-difference-water-index
(NDWI), can serve as a proxy. The estimation of SMC based on thermal remote sensing
has been the subject of a large number of studies over the last few decades, which led to
the development of several different models and approaches, exploiting the relationship
to land-surface-temperature (LST) SMC [10–12]. The third category of approaches uses
the combination of LST and vegetation indices. Price [13] introduced the often applied,
so-called triangle model, which uses the distribution of values in a triangular representation
of the LST-vegetation index feature space to obtain SMC. The main drawback of optical
remote sensing approaches, compared to microwave-based approaches, is their sensitivity
to atmospheric conditions and clouds.

Currently available operational SMC products rely on data from coarse- to medium-
resolution passive or active microwave sensors like SMOS [14] (passive), SMAP [15]
(passive), or ASCAT [16] (active). As a component of the Copernicus Land Monitoring
Service, the Soil Water Index [17], based on a fusion of Sentinel-1 (S1) and ASCAT data,
offers medium resolution (1 km) SMC observations. The advantage of these coarse- to
medium-resolution sensors is their high temporal resolution, offering daily observations.
With S1, Sentinel-2 and Landsat-8 high resolution (<50 m) remote-sensing data, in the
microwave as well as the shortwave and thermal domains, are available operationally and
on an open access basis, providing the most important foundation for high resolution SMC
mapping [18,19].

Beyond the more traditional modelling approaches described above, machine learning
(ML) offers some alternative approaches. Due to the high complexity of physical models,
the popularity of ML for the remote-sensing based estimation of biophysical parameters
has grown significantly over the last decade [20]. The flexibility of ML approaches is further
highlighted by their potential to be used in various hydro-meteorological applications, from
the prediction of SMC to precipitation, temperature, or wind [21–25]. Compared to more
traditional approaches, these methods have two significant advantages: (1) they enable
the construction of more objective, purely data-driven retrieval models, independent
of necessary assumptions; and (2) they allow the combination of data from different
sources (like the combination of optical and microwave remote sensing), exploiting their
relationship with a target variable.

There are various ways to incorporate ML in the estimation approach. Often, it
is applied for model inversion or downscaling purposes. Moosavi et al. [26] presented
an example of how these concepts can be applied to MODIS and Landsat imagery for
the downscaling of land-surface-temperature measurements and the estimation of high-
resolution (100 m) SMC by applying support-vector-regression (SVR) and an adaptive
neuro-fuzzy inference system for model inversion. Srivastava et al. [27] applied an artificial
neural network (ANN) to downscale a SMOS product based on MODIS imagery. In
the context of microwave remote sensing, ML has been used to exploit high-resolution
Synthetic Aperture Radar (SAR) data for high-resolution mapping purposes [28–32]. In
most cases, these studies focused on a specific region or study area. Kolassa et al. [33]
were able to demonstrate the effectiveness of a data-driven approach, for building a more
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generally applicable model, by modelling SMC with an ANN using coarse resolution
(36 km) SMAP data as an input. ML presents an effective way to combine or fuse different
types of data (e.g., from remote sensing, in situ measurements, or models). Results from
a study by Liu et al. [34] show that the SMC estimation accuracies, for a farmland test
area, by a combination of Sentinel-1 and Sentinel-2 and several different ML algorithms
(SVR, deep neural networks, and generalized regression neural networks) were higher
than those by traditional semi-empirical models based on either Sentinel-1 or Sentinel-2.
Another example for data fusion was presented by Bhuyian et al. [35], with a study in
which SMAP data were combined with MODIS data in an ML model to improve the
estimation of precipitation.

The increasing availability of open data (e.g., from the Copernicus program), paired
with the emergence of platforms like Google Earth Engine (GEE), which offer analysis-
ready data and server-side processing capabilities, has further increased the popularity
of ML for the estimation of biophysical parameters in recent years [36–38]. Due to the
high volume of data from modern satellite missions, access and processing have become
more complex [39], which means that this shift in the data exploitation strategies has
become necessary.

The study presented hereafter followed a similar approach to that of Pasolli et al. [30],
who used in situ SMC measurements as a target variable for the ML algorithm and the
construction of an empirical model. One of the novel aspects of this work is to propose a
data-driven approach that can be applied regardless of location, to be globally applicable
but locally relevant. Instead of focusing on a specific study region like in previous studies,
the model was trained and tested on the International Soil Moisture Network (ISMN),
with global coverage. Chatterjee et al. followed a similar aim with the work presented
in [38]. They introduced an approach to training a model for SMC estimations within the
entire continental United States of America using US Climate Reference Network (USCRN)
measurements as a training target. Some limitations described in [40] were related to
the lack of accurate auxiliary data (e.g., land cover, soil type). The article presented here
demonstrates how some of these limitations can be overcome by (1) further increasing
the size of the training dataset using measurements from the International Soil Moisture
Network (ISMN) and (2) combining Sentinel-1 SAR data with optical data from Landsat-8.
It shows how ML can be applied in a data-driven approach to estimate high-resolution
SMC based on a spatially dispersed training dataset. The proposed solution tackles a gap
of the currently available operational datasets regarding their spatial resolutions. Existing
operational satellite-based soil moisture products focus on the mapping at medium to
coarse spatial resolutions [14–17]. Furthermore, one of the study outputs is a software
toolbox allowing the fully cloud-based mapping of the SMC, enabling easy access for data
users and integration in other studies.

2. Data and Study Area

The following section describes the datasets used in the present study, i.e., in situ data
of the ISMN Network [41,42], S1 backscatter measurements, Landsat-8 (L8) shortwave
reflectance and thermal radiance, and modelled surface parameters from the global land-
surface model GLDAS. The analysis focuses on the period from October 2014 until mid-
2020. Google Earth Engine (GEE) provided all datasets except ISMN. The training set
encompassed approximately 30,000 samples.

The study area extent is, in principle, global (restricted to specific land-cover classes).
Based on the Copernicus Global Land Layer (see Section 2.2.2), masking was carried out
to include only the following classes (Section 3.2 describes the masking process in more
detail): shrubs, herbaceous vegetation, cropland, bare/sparse vegetation, open forest.

2.1. The International Soil Moisture Network

The ISMN is an initiative to establish and maintain a global in situ soil moisture
database. Through its website (https://ismn.geo.tuwien.ac.at, accessed on 28 February
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2020), data from hundreds of monitoring stations worldwide from many providers are
available. This network’s primary goal is to provide the basis for the large-scale validation
of satellite-derived soil moisture products. All data provided through the ISMN are free to
use for scientific purposes.

The ISMN dataset is heterogenous, i.e., stations are operated by different providers,
using various measurement techniques at different depths, and the stations are located
in different land-cover types and climate zones. Therefore, some of the ISMN data may
not be suitable because it represents SMC variability that cannot be detected by satellite
remote sensing. Due to the large number of stations, individual selection was impossible.
Therefore, based on the known limitations of used satellite datasets, a set of rules was
defined to filter the dataset (Section 3.2 describes the masking procedure). The number of
461 globally distributed ISMN stations from 13 in situ networks met the requirements to
provide target measurements for the algorithm training. Most of the stations are located
in North America. Table 1 shows a list of the used monitoring networks (with their
location, provider, and available references) and Figure 1 their geographic distribution.
The remaining measurement errors and uncertainties are part of the inherent noise, and
contribute to the general uncertainty of the retrieval model. The open source python
package pytesmo [43] provides reading and postprocessing tools for the ISMN dataset.
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Table 1. A list of the soil moisture networks of which provide data to train the SMC estimation model.

Network Name No. of Stations
Used in the Study Country Provider Reference

USCRN 102 USA NOAA NCDC [45]
OZNET 12 Australia University of Melbourne [46,47]

PBO-H2O 138 USA University of Colorado [48]
SOILSCAPE 80 USA University of Southern California [49,50]

HOBE 25 Denmark Hydrological Observatory [51]
SMOSMANIA 20 France CNRM/GAME, METEO-FRANCE, CRNS [52,53]
REMEDHUS 20 Spain Universidad de Salamanca -

RSMN 18 Romania National Meteorological Administration -
FR-Aqui 2 France Institute of Agricultural Research -

BIEBRZA-S-1 18 Poland Instytut Geodezji i Kartografii -
RISMA 13 Canada Agriculture and Agri-Food Canada [54]
iRON 8 USA Aspen Global Change Institute [55]

TERENO 4 Germany Helmholtz Gemeinschaft
Forschungszentrum Jülich [56]

DAHRA 1 Senegal Copenhagen University [57]

2.2. Google Earth Engine

S1 A and B produce more than 1 TB of data daily [58]. During its operational lifespan,
S1 will generate an enormous amount of data. Consequently, the user would have to handle
a substantial volume of data and invest a significant amount of time for the preprocessing
of low-level satellite data to fully exploit the potential of the S1 archive. For many other
satellite, model-based, or geospatial datasets, users are facing the same problems. This
problem has sparked a paradigm shift for the large-scale analytics of geospatial datasets.
Recent years have shown the emergence of more and more providers offering cloud pro-
cessing and online access to analysis-ready data. One of these platforms is GEE. GEE hosts
the satellite and auxiliary data for this study. The GEE Python Application Programming
Interface (API) allows convenient access to its data and processing functionality [39].

2.2.1. Sentinel-1

S1 is a C-Band Synthetic Aperture Radar (SAR) operated within the Copernicus
program, which is a joint initiative of the European Commission (EC) and the European
Space Agency (ESA). The standard acquisition mode over land is the Interferometric Wide
Swath Mode (IW), with acquisitions at a 250 km wide swath and a spatial resolution of
5 by 20 m. S1 flies in a near-polar, sun-synchronous orbit with a 12-day repeat cycle. The
two satellites A and B share the same orbit plane with a 180◦ orbital phasing difference,
which results in a 6-day repeat cycle for the S1 constellation. A description of all sensor
and platform details can be found in ESAs S1 user handbook [59]. The data available
on GEE provide σ0 based on the dual-polarization (VV + VH) Ground Range Detected
(GRD) product.

2.2.2. Copernicus Global Land Cover Layer (CGLS-LC100)

The CGLS-LC100 [60] delivers global-land cover maps at a spatial resolution of 100 m,
derived from optical satellite remote sensing data. These include a discrete classification
and the fractional cover for specific land-cover types. These maps are updated annually,
starting from 2015. Land-cover data provided input for masking and were a feature
candidate for the SMC retrieval model.

2.2.3. The Global Land Data Assimilation System (GLDAS)

GLDAS [61] ingests satellite and ground-based observational data products and uses
advanced land surface modelling and data assimilation techniques to simulate many land-
surface parameters. The dataset in version 2.1 covers the period from 1 January 2000, to
the present, with about one month latency. Soil temperature and snow-water-equivalent
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(SOILTMP0_10cm_inst and SWE_inst) were required to mask in situ measurements and
satellite data.

2.2.4. Landsat-8 Shortwave Reflectance and Thermal Radiance

L8 is a satellite operated by the USGS, providing imagery of the entire Earth every
16 days with a spatial resolution of 30 m to 100 m. It is acquiring data using two instruments,
the Operational Land Imager (OLI) and the Thermal Infrared Sensor (TIRS). Data in the
GEE data collection USGS L8 Surface Reflectance Tier 1, which consists of atmospherically
corrected surface reflectance for five visible and near-infrared (NIR) bands, two short wave
infrared bands, and two thermal infrared bands [62], were considered as potential features
for the retrieval model (Table 2).

Table 2. Overview of the Landsat-8 bands with their respective spatial resolution and spectral width.

Landsat-8 Bands Spatial Resolution [m] Spectral Width [µm]

Band 1—Coastal/Aerosol 30 0.435–0.451
Band 2—Blue 30 0.452–0.512

Band 3—Green 30 0.533–0.590
Band 4—Red 30 0.636–0.673

Band 5—Near-Infra-Red 30 0.851–0.879
Band 6—Shortwave-Infrared-1 30 1.566–1.651
Band 7—Shortwave-Infrared-2 30 2.107–2.294
Band 10—Thermal-Infrared-1 100 10.60–11.19
Band 11—Thermal-Infrared-2 100 11.50–12.51

2.2.5. MOD13Q1 Enhanced Vegetation Index

The MODIS Enhanced Vegetation Index (EVI) is an improved version of the Normal-
ized Difference Vegetation Index (NDVI), which minimizes canopy background variations
and maintains better sensitivity over dense vegetation conditions by including also the
blue band and information about atmospheric influences. The MOD13Q1.005 [63] product
provides 16-day temporal composites at a spatial resolution of 250 m with global cov-
erage. With its consistent temporal information, the EVI complemented L8 to capture
vegetation dynamics.

2.2.6. OpenLandMap (OLM) Soil Information

The spatial distribution and patterns of SMC have a strong link to soil properties. The
soil texture class [64], soil bulk density [65], clay content [66], and sand content [67] for the
0 cm layer of the OLM collection were acting as training feature candidates. This dataset
provides maps with global coverage at 250 m spatial resolution.

3. Methods

This section describes the applied methods, covering feature extraction, data masking
and merging, data preprocessing, and the ML model training (Figure 2). The subsections
describe the individual steps in more detail.

3.1. S1 Preprocessing

Several SAR preprocessing steps were already pre-applied to the data, which are
available on GEE [68]:

1. Apply orbit file
2. Thermal noise removal
3. Radiometric calibration
4. Terrain correction using the SRTM 30, or the ASTER DEM for areas beyond ±60◦

latitude, where SRTM is not available
5. Resampling to a 10 m grid

Beyond these steps above, the following custom processing steps were applied:
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1. Multitemporal speckle filter
2. Radiometric terrain correction
3. Feature extraction
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3.1.1. Multitemporal Speckle Filter

SAR imagery is prone to a specific type of noise, i.e., the characteristic salt and pepper
effect called speckle. Speckle is not a type of noise introduced by measurement system
errors, but by the actual physical properties of the observed target, which cause a noise-
like signal. It results from constructive and deconstructive interference of the coherent,
but phase-shifted (caused by the random orientation of subpixel scatterers) returned
signal. The GEE preprocessing does not include any speckle filtering. Quegan et al. [69]
demonstrated the effectiveness of a multitemporal approach that incorporates both the
spatial and temporal pixel neighborhood to determine the local value. The corrected
intensity J at the pixel location (x, y) for image k, with the original pixel value I, and the
spatial average of the pixel neighborhood denoted as <.> is defined as

Jk(x, y) =
Ik
N ∑N

i = 1
Ii(x, y)

Ii
, 1 ≤ k ≤ N. (1)

3.1.2. Radiometric Terrain Correction

Due to the side-looking viewing geometry of S1, the data are particularly affected by
topography, causing geometric and radiometric distortions. Vollrath et al. [70] developed a
GEE based approach for the angular-based radiometric slope correction to correct these
distortions. It employs two reference models, for volume- or surface-scattering dominated
surfaces, computing the radiometrically corrected γ0

f . The following equation is applied,
in case of volume-scattering [71]:

γ0
f = γ0 tan(90 − θi)

tan(90 − θi + αr)
, (2)

with the slope steepness in range direction αr and the incidence angle θi. In case of surface-
scattering case, the approach exploits a model by Ulander [72],

γ0
f = γ0 cos(αaz) cos(90 − θi + αr)

cos(90 − θi)
, (3)
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which adds the tilt in azimuth direction αaz as an additional quantity. The incidence angle
corrected backscatter γ0 is derived from the normalized radar cross-section σ0:

γ0 =
σ0

cos θi
. (4)

The Shuttle Radar Topography Mission [73] (SRTM) digital elevation model (DEM)
V3 provides the topographic reference.

3.1.3. Computation of Temporal Statistics

For bare soil, the backscatter intensity is determined mainly by SMC and surface
roughness [3]. The structure and water content of vegetation, if present, create a signal,
which adds to that of the soil. In [74], the authors demonstrated that in extreme cases,
caused, for example, by the row patterns in agricultural fields, the effect of roughness
could be as strong as 10 dB, dominating the SMC signal by far. The effect depends strongly
on the local incidence angle but on average, a roughness related σ0 variability of not
less than 2 dB can be expected. Furthermore, in an experiment based on C-Band VV
data from ERS-1, the sensitivity of σ0 to SMC was quantified as 0.26 dB/0.01 m3·m−3,
which shows that roughness information is crucial for the retrieval of SMC. For the change
detection approach, Wagner et al. [75] assume that surface roughness remains constant
over time or that changes occur on very large time scales, i.e., it is responsible for a constant
background signal. Temporal backscatter statistics, median and second, third, and fourth
central statistical moments were computed to characterize these static effects caused by
surface roughness.

3.2. Feature Extraction, Masking, and Merging

The feature extraction was carried out in GEE based on the ISMN station locations and
the measurements dates. Each dataset was resampled to a spatial resolution of 50 m using
bilinear interpolation. Values were then extracted based on the average of all pixels touched
by a 50 m diameter circular buffer around the sampling location. After applying the filtering
criteria listed in Table 3, the training database contained approximately 30,000 samples in
62 features (Table 4)

Table 3. Summary of the filtering criteria applied to the training database.

Variable Valid If

ISMN temporal overlap >0
ISMN sensing depth ≤5 cm

S1 layover and foreshortening masks [56] 0
L8 pixel quality band Not affected by clouds, terrain occlusion, or radiometric saturation

EVI <0.5
CGLS-LC100 class 20, 30, 40, 60, 121, 122, 124, 125, 126 1

GLDAS SoilTMP0_10cm_inst >275 K
GLDAS SWE_inst 0 kg/m2

1 20: shrubs; 30: herbaceous vegetation; 40: cropland; 60: bare/sparse vegetation; 121–126: open forest.

Table 4. The complete list of features, which were extracted from the input datasets.

# Feature Name # Feature Name

1 S1 γ0
VVvol. 22 % of moss and lichen

2 S1γ0
VHvol. 23 % of urban areas

3 S1γ0
VVsur f . 24 % of permanent water bodies

4 S1γ0
VHsur f . 25 % of seasonal water bodies

5–13
Median and standard deviation S1 γ0

VVvol., S1 γ0
VHvol.,

S1 γ0
VVsur f ., S1 γ0

VHsur f .
26–35 L8, bands 1–7; 10–11
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Table 4. Cont.

# Feature Name # Feature Name

14 S1 Local-Incidence-Angle 36 No. of days between S1 and L8 acquisitions
15 S1 orbit direction (ascending/descending) 37–55 Median and standard deviation L8, bands 1–7; 10–11
16 Land-cover class 56 MODIS EVI
17 % of bare areas 57–58 Median and standard deviation MODIS EVI
18 % of crop areas 59 OLM bulk density
19 % of tree cover 60 OLM clay content
20 Forest type 61 OLM sand content
21 % of grassland 62 OLM texture class

3.3. Model Training

Studies [76,77] show that the choice of the best ML algorithm for retrieving biophysical
parameters varies significantly, depending on the target variable and the structure of the
training dataset. This study used a Gradient Boosted Regression Trees (GBRT) algorithm.
GBRT belongs to the ensemble methods, which means several weak learners are built
and combined into one powerful ensemble. Weak learners are combined sequentially,
and each newly added model tries to correct the prediction bias of all previous models
combined [78,79]. GBRT, like Random Forest, belongs to the family of tree-based methods,
which means that it is naturally compatible with different data types and ordinal scales.
Further advantages are its insensitivity to differently scaled features and the low compu-
tational cost associated with algorithm training and target prediction. Moreover, it has
proven to perform very well in similar applications [80–82]. A comparison of GBRT with
three other popular ML methods is provided in supplementary document S1. GBRT uses
an additive model to combine weak learners:

F(x) = ∑M
m = 1 γmhm(x), (5)

where M is the total number of models, γ is a multiplication factor (the so-called step size),
and h(x) is the weak learner. An iterative process is building the model using decision trees
of fixed size as weak learners. The loss L is minimized (with a least-square loss function, in
this case) for each tree hm given the previous ensemble Fm−1:

hm = argmin
h

∑n
i = 1 L(yi, Fm−1(xi) + h(xi)), (6)

where xi and yi are the feature and target values of the training dataset. GBRT solves
the minimization problem numerically via steepest descent [83]. The following equation
determines the value of γ, based on line-search [84]:

γm = argmin
γ

∑n
i = 1 L(yi, Fm−1

(
xi − γ

∂L(yi, Fm−1(xi))

∂Fm−1(xi)

)
. (7)

An in-depth discussion of GBRT is beyond the scope of this article. For further details,
the reader should refer to [85]. This study used the algorithm implementation of Scikit-
Learn [86]. Figure 3 shows the detailed workflow of the training procedure, which consists
of the following steps:

1. Generation of training and test datasets: the test dataset consisted of 20% of the sam-
ples and was randomly selected. The remaining 80% represented the training dataset.

2. Tuning and training: cross-validation (CV) and a grid-search approach drove the
optimization of hyperparameters [87]. To be specific, Leaf-One-Group-Out-Cross-
Validation (LOGO-CV) was applied to find the optimal setting of hyperparameters.
Table 5 shows which parameters were tuned and how the search space was defined.
The hyperparameters, which are not listed in the table, were set to the default values
of the Scikit-Learn implementation. Following the LOGO approach for calculating
the validation score, the training dataset was split up into N groups (according to
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the 461 ISMN stations). Iteratively, the algorithm training was performed based
on data from N-1 groups and validated against the left-out group. The average
based on all iterations gave the final score. The validation score was calculated for
every possible hyperparameter configuration. The LOGO-CV approach allows for
estimating the trained model’s generalization capabilities, favoring hyperparameter
settings, configuring the algorithm to be less prone to overfitting. The grouping of
samples based on the ISMN stations simulates the estimation model’s application for
an unseen location.

3. Feature selection: the training procedure was further nested in an automatic feature
selection routine wherein the training was repeated iteratively with the least essential
feature removed in each step. The ranking was based on the impurity-based feature
importance, which is provided as an output of the Scikit-Learn implementations.

4. Testing: the final assessment of the SMC estimation accuracy (the test score) was
performed based on the independent test dataset extracted from the whole dataset
before the training procedure. Therefore, the test dataset constituted an unseen set
and allowed estimating the model’s generalization capabilities. A sizeable negative
difference between the validation score and the test score would indicate overfitting
of the model to the training dataset.

Table 5. Definition of the search space for hyperparameter tuning.

Algorithm Hyperparameters

GBRT

Learning-rate 0.01, 0.1, 0.2
Number of estimators 100, 500, 1000

The fraction of samples used for fitting 0.2, 0.5, 1
Maximum depths of individual regression trees 3, 5, 10
Early stopping after n iterations with no change 10
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3.4. Implementation

For the training, ISMN data were prefiltered, downloaded and stored locally. Based on
the in situ locations (in space and time), the S1, L8, GLDAS and other auxiliary data were
retrieved from GEE using the Python API. All preprocessing and filtering steps were carried
out server-side, i.e., only the filtered and preprocessed training data were downloaded to
the local workstation. Scikit-learn [86] was used to solve the regression problem and derive
the GBRT model. Figure 4 gives a schematic overview of the architecture. Depending on
the number of training samples, the training procedure can be time-consuming, mainly due
to GEE’s data retrieval. The GEE based mapping of SMC was implemented as a stand-alone
Python package, the PYthon Sentinel-1 Soil-Moisture Mapping Toolbox (PYSMM) [88].
PYSMM is freely available as open-source software and was delivered as Supplementary
Material to this article.
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4. Results and Discussion

The following chapters present the algorithm training results, assess the GBRT perfor-
mance, and evaluate the SMC validation results.

4.1. Algorithm Training and Validation Results

Table 6 presents the results of the LOGO-CV based hyperparameter selection described
in Section 3.3.

Table 6. Result of the hyperparameter selection.

Algorithm Hyperparameters

GBRT

Learning-rate 0.1
Number of estimators 100

The fraction of samples used for fitting 0.5
Maximum depths of individual regression trees 10
Early stopping after n iterations with no change 10



Remote Sens. 2021, 13, 2099 12 of 21

A summary of validation and test scores is presented in Table 7. The similarity of the
coefficient of determination (R2) and the Root-Mean-Squared-Error (RMSE) based on the
cross-validation average and based on the test set dataset shows that the GBRT model is not
subject to overfitting. It is noteworthy that a model with a relatively low level of complexity
(100 base estimators and a maximum depth of the individual trees of 10) achieved the best
results. Fewer and shallower regression trees lead to a low computational cost of model
training and target estimation.

Table 7. The validation and test-score for the estimation model.

Method LOGO R2 LOGO RMSE
[m3·m−3] Test-Set R2 Tet-Set RMSE

[m3·m−3]
Training Time *

[s]
Prediction Time (Test-Set)

[s]

GBRT 0.726 0.054 0.812 0.044 5.20 0.05

* Excluding LOGO-CV and feature selection.

The sound overall predictive power of the GBRT model is evident in Figure 5, which
consists of a scatterplot showing a comparison of actual versus estimated values of SMC
(SMC versus SMC*). The evaluation with R2 = 0.81 and MAE = 0.03 m3·m−3 suggests that
the model can accurately predict the test dataset’s SMC. The scatterplots show a slight
tendency for underestimation in general but especially for higher SMC values.
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on the independent test set.

4.2. Assessment of the Temporal Accuracy

Validation and test scores presented above represent the overall prediction accuracy,
combining spatial and temporal errors. The results presented in this section were based
on a separate analysis of temporal and spatial variabilities to estimate the associated error
components. Table 8 reports the median scores obtained by calculating R2, RMSE, and MAE
(the Spearman correlation ρ, the Pearson correlation R, and the Kling-Gupta Efficiency
KGE [89] were included in the table as well to make the results comparable to other SMC
products and the comparison in Section 4.5) for each location contained in the test dataset
separately, in order to reflect the sensitivity of predicted SMC to temporal variations. The
results were averaged over all locations to estimate the overall temporal error and grouped
by the land-cover classes. Figure 6 visualizes the same analysis with box and whisker plots,
which describe the distribution of RMSE and R2
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Table 8. Median temporal R2, ρ, R, KGE, RMSE, and MAE overall and grouped by the available land-cover classes.

Median
R2

Median
ρ

Median
R

Median
KGE

Median RMSE
[m3·m−3]

Median MAE
[m3·m−3]

Overall 0.476 0.702 0.756 0.510 0.037 0.029
Shrubs (20) 0.360 0.650 0.698 0.396 0.033 0.026

Herbaceous vegetation (30) 0.426 0.679 0.742 0.519 0.040 0.033
Cropland (40) 0.518 0.732 0.765 0.542 0.033 0.027

Bare/sparse vegetation (60) 0.258 0.443 0.600 0.240 0.027 0.022
Open forest, evergreen (121) 0.486 0.515 0.756 0.565 0.057 0.045
Open forest, unknown (126) 0.489 0.713 0.750 0.499 0.042 0.035
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With a median of 0.476, the average temporal correlation is significantly lower than
the overall value (Figure 5), which hints at a reduced sensitivity to temporal variations
compared to spatial variations. The plot in Figure 6b groups the same results by land-cover
classes (see Table 3 for an overview of class labels). Locations belonging to the herbaceous
vegetation or cropland class (30 or 40) or the two open-forest lasses (121 and 126) show
similar R2 values. However, the quartile range for herbaceous vegetation is large. The
average temporal correlation was negatively impacted by the significantly worse results for
the class bare/sparse vegetation (60). The boxplots in Figure 6c,d present the same analysis
results with respect to MAE and RMSE. Overall, the errors are low, and the differences
between the land-cover classes were less distinct compared to those in the analysis based
on R2. It is interesting to note that bare/sparse vegetation performed better, in terms of
the error, than the other classes, even though it showed relatively low R2 values. The low
correlation in combination with a low error can be explained by the also low average SMC
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of 0.07 m3m−3 for this land-cover class, which indicates that it belongs to an area associated
with an arid climate. In [90], Morrison and Wagner demonstrated that the relationship
between SMC and radar backscatter in such areas is fundamentally different, caused by the
strong effect of surface roughness and the response to subsurface features. Furthermore,
the analysis showed that the forest classes have a higher error than vegetation or cropland,
even though the results were similar in terms of R2.

By analyzing the temporally averaged SMC, the discrepancy between the tempo-
ral accuracies presented above and the overall accuracy can be explained. The correla-
tion between the average of all actual and estimated SMC values of the same location
(Figure 7) shows a very accurate estimation of the static spatial differences (R2 = 0.97,
RMSE = 0.01 m3m−3, MAE = 0.01 m3m−3), which contributes to the high overall accuracy
of the results.
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4.3. Feature Importances

These results were achieved by building the GBRT model based on an automatic
feature selection from a large pool of 62 candidate features. Table 9 shows a list of the
16 optimal features. Omitting any of these features would result in a degradation of the
predictive power of the estimation model. In the table’s far-right column, the relative
feature importance is reported, which is a direct output of the GBRT algorithm. It is based
on the number of times a feature is used to decide in one of the tree nodes. The importance
scores of all features sum up to 1. Figure 8 enables a better interpretation of this relative
contribution based on the accumulation by the sources of the features. It emphasizes the
significant contribution of optical data and auxiliary datasets and that, despite the proven
physical relationship between SMC and S1, estimations could not be based on backscatter
intensities without these.
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Table 9. Overview of the automatically features ordered by their importance for the retrieval model.

Variable Name Variable Type Importance

In situ surface SMC from the ISMN covering the topmost layer of soil (0 to 5 cm) target -

Temporal median of L8, band 10 feature 0.134
Percentage of cropland feature 0.095

Temporal median of S1 γ0
VVvol. feature 0.078

Percentage of grassland feature 0.066
Temporal median of EVI feature 0.060

Percentage of moss and lichen feature 0.058
L8, band 4 feature 0.057

EVI feature 0.056
Temporal median of L8, band 5 feature 0.051

L8, band 7 feature 0.050
Temporal median of L8, band 1 feature 0.047

Soil bulk density feature 0.047
No. of days between L8 and S1 acquisitions feature 0.044

S1 γ0
VVvol. feature 0.043

L8, band 5 feature 0.041
Percentage of sandy soils feature 0.040

L8, band 3 feature 0.032

Similar results were achieved in other studies [30], which showed the high impact of
auxiliary and optical data on SAR-based retrieval of SMC. The authors demonstrated that
this phenomenon is due to the combination of an indirect relationship between vegetation
properties and SMC and their high impact on the backscatter intensities. Research presented
in several other articles [29,91,92] confirmed these findings by analyzing the impact of the
vegetation phenology and surface roughness on Sentinel-1 backscatter intensities.

4.4. Training Performance

Figure 9 presents further insights into the estimation model performance. The learning
curve compares the training and cross-validation scores which are dependent on the size of
the training dataset. It shows that a large dataset is necessary to increase the generalization
capabilities of the retrieval model. In this case, the cross-validation score curve still shows
a positive trend, even with the maximum number of samples; therefore, an increased
estimation accuracy could be expected with a more extensive training dataset. The model’s
scalability shows that the cost (in terms of computational time) of increasing the number
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of training samples is linear. However, the gain, in terms of increased score, shows a
nonlinear behavior. Due to the linear relationship between the number of training samples
and computational effort, this curve shows identical behavior as the curve given by the
cross-validation score.
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4.5. Comparison to Established Methods and Other Experimental Results

This section compares results presented in this article to those from established SMC
products, as well as results in recently published articles. Certain limitations apply: quan-
tification of the differences is difficult because the underlying SMC products are funda-
mentally different, for example, in terms of spatial resolution or the characteristics of the
underlying remote-sensing data, and the validation approaches apply different methods
and reference datasets. The numbers presented in Table 10 are, therefore, intended for a
qualitative assessment.

Table 10. Comparison of correlations between actual and estimated SMC, based on the method introduced in this article
(called PYSMM in the table) with validation results of other established soil moisture products and experimental results.

Median Temporal R2 Median Temporal ρ Median Temporal R Overall R2 Reference

PYSMM 0.476 0.702 0.756 0.81
CSSM - 0.315 - - [93]
SMAP - - 0.752 - [94]
RFS1 0.682 [40]

One of the freely available operational SMC products with the highest spatial reso-
lution is the Copernicus Surface Soil Moisture (CSSM) product [19], based on Sentinel-1
data. It provides a mapping of the SMC with a spatial resolution of 1 km. A validation
report [93] presents an assessment of the temporal correlation between estimated SMC and
measurements from several in situ networks, which are part of the ISMN. The result was a
median temporal correlation of ρ = 0.315. Like in the analysis presented in Section 4.2, the
range of ρ values for the individual sites is significant.

The Soil Moisture Active Passive (SMAP) mission [15] provides several SMC products
derived from passive only and a combination of active and passive microwave data.
The L2SMAP product is providing SMC data at a spatial resolution of 9 km. In [94],
Colliander et al. performed the validation of several SMAP products based on the so-called
core validation sites, which are in situ networks established explicitly to validate SMAP. In
terms of the Pearson correlation coefficient (R), the reported median temporal correlation
for the L2SMAP product was R = 0.752.

Chatterjee et al. [40] presented a study with a similar aim, as presented in this article.
The authors tested several ML approaches to estimate SMC for the continental USA,
also based on Sentinel-1 data. Training and validation were performed based on in situ
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measurements from the USCRN network. The overall correlation between actual and
estimated SMC, derived with a Random-Forest based model (RFS1), was R2 = 0.682.

5. Conclusions

This study introduced an approach to estimate SMC at a high spatial resolution on a
quasi-global scale. The novelty of this approach is the application of a data-driven model
in a large-scale context. One of its strengths is that the mapping of SMC is cloud-based,
which means that newly available reference data can be easily integrated, and the model
retrained without the necessity to process further satellite data. A Python package, called
PYSMM [88], for the online retrieval of SMC and a demonstrator dataset was developed
to supplement this study. The validation demonstrated that, within certain boundary
conditions, an overall high accuracy could be achieved. Compared to the performance of
available SMC products as well as similar studies, the results are promising. The overall
accuracy fulfils SMC monitoring requirements set by the Global Observing System (GCOS)
in [95], which specifies an overall retrieval error of fewer than 0.04 m3m−3. Certain main
limitations do apply: (1) the irregular distribution of samples within the feature space leads
to variable accuracies (as the results in Section 4.2 show based on the example of the land-
cover class bare/sparse vegetation); (2) the approach is limited to low vegetation density
areas. Based on the CGLS classification, this reduces the mappable area, for example, in
Europe, to about 55% of the total land area and about 66% in the USA, and as low as
15% in Indonesia, which is further reduced by masking high NDVI values, frozen soil,
or snow; (3) the training dataset covers only some of the global climate zones (Figure 1).
Especially point 1 could be tackled in future research by identifying and targeting the low
sampled areas of the feature space. Future work should also focus on extending the model
to incorporate other remote-sensing sensors like Sentinel-2 and the collection of reference
data for currently missing climate zones.

Two studies achieved promising results based on SMC estimations derived with
PYSMM, demonstrating spatial and temporal mapping potential. Lei et al. [96] showed
how SMC maps could be assimilated into a hydrological model to improve the spatial
details of the model simulations, and Greifeneder et al. [97] combined time-series of
estimated SMC with GLDAS soil moisture climatologies to derive temporal anomalies.

Supplementary Materials: The comparison of GBRT with three further ML algorithms is pro-
vided in S1: Algorithm Comparison, available online at: http://doi.org/10.5281/zenodo.4742678;
S2, the PYMM source code is available online at http://doi.org/10.5281/zenodo.4552813 The doc-
umentation (S3) is available directly here: https://pysmm.readthedocs.io/en/latest/. Two SMC
demonstrator data sets (S4) can be viewed and downloaded through a Google Earth Engine App
(https://felixgreifeneder.users.earthengine.app/view/sm-explorer).
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