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Abstract: Unsupervised hyperspectral unmixing methods aim to extract endmember spectra and
infer the proportion of each of these spectra in each observed pixel when considering linear mixtures.
However, the interaction between sunlight and the Earth’s surface is often very complex, so that
observed spectra are then composed of nonlinear mixing terms. This nonlinearity is generally bilinear
or linear quadratic. In this work, unsupervised hyperspectral unmixing methods, designed for the
bilinear and linear-quadratic mixing models, are proposed. These methods are based on bilinear
or linear-quadratic matrix factorization with non-negativity constraints. Two types of algorithms
are considered. The first ones only use the projection of the gradient, and are therefore linked to
an optimal manual choice of their learning rates, which remains the limitation of these algorithms.
The second developed algorithms, which overcome the above drawback, employ multiplicative
projective update rules with automatically chosen learning rates. In addition, the endmember
proportions estimation, with three alternative approaches, constitutes another contribution of this
work. Besides, the reduction of the number of manipulated variables in the optimization processes is
also an originality of the proposed methods. Experiments based on realistic synthetic hyperspectral
data, generated according to the two considered nonlinear mixing models, and also on two real
hyperspectral images, are carried out to evaluate the performance of the proposed approaches. The
obtained results show that the best proposed approaches yield a much better performance than
various tested literature methods.

Keywords: hyperspectral imaging; unsupervised bilinear or linear-quadratic spectral unmixing;
endmember spectra extraction; bilinear or linear-quadratic matrix factorization; nonnegativity constraints

1. Introduction

Following advances in the signal and image processing fields, remote sensing hyper-
spectral imaging systems are now widely adopted for many Earth observation applica-
tions [1-3]. Hyperspectral imaging sensors, which have a high spectral resolution, collect
narrow and contiguous spectral bands, at once, with wavelengths ranging from the visible
spectrum to the infrared region [4]. However, due to the relatively low spatial resolution of
these sensors, mixed pixels, characterized by mixed spectra of more than one pure material
(also called endmember), may occur in collected data [5-7]. Such a case can prevent direct
identification of endmembers and lead to inaccuracies in the quantification of the observed
areas, and therefore, requires further processing to unmix these mixed spectra.

Unsupervised spectral unmixing (SU) is one of the most used techniques for processing
hyperspectral data by achieving the separation of the observed mixed spectra [5-7]. These
approaches, also known as blind source separation (BSS) techniques in the field of signal
processing, typically aim at decomposing observed mixed spectra into a collection of
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endmember spectra and their corresponding proportions (also called abundance fractions)
with very limited prior knowledge, except on the number of endmembers, and with the non-
negativity property related to the manipulated data for some of these BSS methods [5-7].

BSS techniques intend to estimate unknown source signals from observed signals that
are mixtures of these source signals [8,9]. The majority of BSS techniques are designed
for the linear mixing model, and these techniques can be classified into three main cat-
egories. The first one includes approaches that are based on independent component
analysis (ICA) [8-12], which then consists of representing initial observations as linear
mixtures of statistically independent components, and therefore assumes the statistical
independence of source signals. It should also be noted that there are some ICA-based
approaches, called non-negative ICA (NICA), which are designed for non-negative source
signals [13-16]. Also, it is necessary to mention here that all ICA-based approaches are
not suitable for the hyperspectral unmixing process [7], since the sources (spectra or abun-
dance fractions) do not verify the main property (the statistical independence) of such
approaches. The second category includes sparse component analysis (SCA) techniques
that exploit sparsity properties of source signals in different representation domains [17-20].
Non-negative matrix factorization (NMF) approaches [21-25] belong to the third category.
NMF techniques consist of representing initial non-negative observations as non-negative
linear mixtures of non-negative components. Also, when considering remote sensing data,
still with a linear mixing model which assumes that there are no interactions between
endmembers, a fourth category of unmixing methods can be considered. This category
includes geometric methods under the existence/nonexistence, in the considered data,
of pure pixels (i.e., pixels which contain only one pure material) and the well-known
sum-to-one constraint (i.e., in each pixel, the sum of surface proportions occupied by pure
materials is equal to one) [7]. Among these geometric methods, the most popular are:
the automatic target generation process (ATGP) [26] algorithm, the pixel purity index
(PPI) [27] technique, the N-FINDR [28] method, the vertex component analysis (VCA) [29]
approach, the simplex growing algorithm (SGA) [4,30-32] approach, the minimum volume
constrained non-negative matrix factorization (MVC-NMEF) [33] technique, the minimum
volume simplex analysis (MVSA) [34] method, and the simplex identification via split
augmented Lagrangian (SISAL) [35] technique.

Although the above unsupervised linear SU methods have provided good unmixing
performance for some real-world scenes, there are many scenarios in which linear mixing
models are not appropriate. Indeed, these models are simplified ones which assume that
the reflected energy reaching the sensor interacted only with one pure material. These
models are suitable when facing flat landscape and irradiance homogeneity in the observed
scene [36]. However, when facing non-flat landscape and/or irradiance heterogeneity in
the observed area, linear mixing models considered in linear SU techniques are no longer
valid and should be replaced by nonlinear mixing models [36-38]. In this field, many works
are conducted on nonlinear mixing models, and several physical ones were proposed to
describe the phenomenon of multiple reflections occurring when the light scattered by a
given pure material is reflected on other pure materials before reaching the sensor. This
phenomenon usually occurs when 3D structures are present in the considered scene, such
as in urban environments [37-39]. Several classes of nonlinear models were proposed
in the literature, and most of them are related to bilinear and/or linear-quadratic (LQ)
models, which can be considered as extensions of the linear one, with additional terms
that describe the second-order interactions between different endmembers present in the
observed scene. It should be noted here that the bilinear mixing model is a subset of the
LQ model that does not include second-order auto-terms, i.e., products of an endmember
by itself (as opposed to the second-order cross-terms, which are products of two different
endmembers). This class of bilinear and/or LQ models includes the Nascimento model
(NM) [40], the Fan model (FM) [41], the generalized bilinear model (GBM) [42], the LQ
mixing model of [39], and the polynomial post-nonlinear mixing model (PPNMM) [43].
Based on various nonlinear mixing models, many nonlinear SU unmixing methods have
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been proposed, including Bayesian methods [43-45], gradient-based algorithms [42,46-48],
constrained least square methods [49], Kernel-based methods [50-54], and neural-network-
based methods [55-59].

The work reported in this paper extends and substantially complements the ap-
proaches described in [60] for the bilinear mixing model, and in [61] for the LQ one.
Moreover, it should be noted here that all introduced methods enrich the bilinear matrix
factorization (BMF) method described in [62] and take advantage of the identifiability
properties of the complete class of BMF methods [62,63].

The rest of this paper is organized in the following manner. The motivations of this
work and all contributions reported below are defined in Section 2. In that section, the
data models used in the proposed methods are introduced. Also, in the same section,
the proposed algorithms are presented, and the used realistic synthetic and real data
are described. In Section 3, the results of the experiments are presented. In Section 4,
the experimental results based on tested data are discussed. Finally, Section 5 concludes
these investigations.

2. Materials and Methods
2.1. Motivations and Contributions

As mentioned above, all introduced methods in this work extend the BMF method
proposed in [62]. Indeed, in that previous work, the focus was on the development of
a new bilinear unmixing principle and an associated cost function that was optimized
by using the standard Nelder-Mead algorithm. Here, the introduced approaches, which
are developed for the considered mixing models, are based on original optimization
algorithms using bilinear or linear-quadratic matrix factorization with non-negativity
constraints. This already constitutes a first novelty of this work. Moreover, the work
reported here substantially extends the approaches described in [60,61]. Indeed, the latter
approaches only use the projection of the gradient and require a “manual” selection of their
learning rates. Setting these rates to (nearly) optimal values remains the weak point of this
type of algorithm. Here, a second type of algorithm is developed. These new algorithms,
which overcome the above drawback, employ multiplicative projective update rules with
“automatically” chosen learning rates. This also constitutes one of the novel aspects of this
work. Furthermore, and as another novel aspect of this paper, the endmember abundance
fractions estimation step, with three alternative approaches, is also considered in this work,
whereas the methods described in [60,61] concern only the endmember spectra extraction
step. Moreover, it should be noted that the reduction of the number of manipulated
variables in the optimization processes constitutes another originality of all proposed
methods, as compared to the one reported in [47].

Finally, experiments are carried out to evaluate the performance of the proposed
approaches. These experiments are based on realistic synthetic hyperspectral data, gen-
erated according to the two considered bilinear and linear-quadratic mixing models, and
also on two real hyperspectral images (which also represent an extension from the work
reported in [60] and [61]). The obtained results are analyzed in a much more detailed way
than in [60,61], and are compared to those obtained using linear [29,30,64] and bilinear or
linear-quadratic [47,65] methods from the literature.

2.2. Data Models

As introduced and mentioned in [39,47,60,61], every observed spectral vector associ-
ated with a pixel in a hyperspectral image is here considered as a bilinear or linear-quadratic
mixture of different endmember spectra contained in the considered image. Thus, mathe-
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matically, the non-negative reflectance spectrum x; (column vector of size L), from pixel i of
the considered hyperspectral image, can be written in the following form for LQ mixtures:

M ) M M g..(i)s;: ®s,
o= Y oali)si+ ¥ ¥ (05 ©si

j=1 j=1l=j

szo, =1 M

where s; (column vector of size L) is the non-negative reflectance spectrum of the end-
member j (® corresponds to an element-wise multiplication, s; © s; is here considered as
a “pseudo-endmember” spectrum). The mentioned variables a;(i) and a;, (i) respectively
correspond to the linear and second-order abundance fractions. L and M respectively
correspond to the number of spectral bands in the considered hyperspectral image and
the number of endmembers contained in the imaged area. In order to better highlight the
linear and second-order auto- and cross-terms of the mixing models considered in these
investigations, the model presented in Equation (1) is rewritten as follows [61]:

M M-1 M M

xX; = Z a]-(z)s]-Jr Z Z a]'/l(l)Sj@Sl + Z Ll]',j(l)S]‘@S]‘ 2)
i=1 j=11=j+41 i=1

Mf

where )7 14;(i)s; represents the linear terms, DD Dy ].Ha],l(z)s] © s; represents the

second-order cross-term (s; © s; with j # [ corresponds to a “cross-pseudo-endmember”
M
j =
corresponds to an “auto-pseudo-endmember” spectrum).

As mentioned above, and since the bilinear model is considered as a subset of the LQ
one, (2) describes the general expression of the LQ model for a given observed non-negative
reflectance spectrum x; of a pixel i. In the case when the second-order auto-terms are not
considered (the last term in Equation (2)), this equation describes the expression of the
bilinear model. For P pixels, with P > 2, the model Equation (2) can be written in matrix
form as follows, by adapting [47]:

spectrum), and ). 14;,(i)s; © s; represents the second-order auto-terms (s; © s; here

X = AS = Ay Sa +Ap S, + Ac S 3)

with X = [x7... xp]T (matrix of the observed pixel spectra, with dimension P x L), where
[T corresponds to the matrix transpose, A is the linear and second-order (quadratic)
abundance fraction matrix, and S is the matrix containing the endmember spectra, cross-
pseudo-endmember spectra, and auto-pseudo-endmember spectra, with:

a1(1) am(1)
A, = S )
al(P) HM(P)
a12(1) a3(1) - am-1m(1)
Ap = : : ®)
a2(P) a13(P) -+ apm-1,m(P)
a11(1) az2(1) - amm(1)
Ac = : : ©®)
a11(P) a22(P) -+ amm(P)

A = [Aq Ap Al )
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Sa = [s1..-sm]" 8)
Sp = [$105251@83... Spm_1 @SM}T 9)
Sc = [S]@S]Sz@Sz...SMQSM]T (10)
Sa
S = Sy (11)
Sc

It is clear here that, in the proposed approaches, the location of the quadratic terms
in the considered mixing models is imposed: the cross-pseudo-endmember spectra are
contained in the matrix S, and the auto-pseudo-endmember spectra are contained in the
matrix S.. These two types of quadratic spectra are calculated by using the M spectra from
the linear part of S by means of an element-by-element multiplication operation. In the
bilinear mixing model (i.e., when the second-order auto-terms are not taken into account),
the matrices A, and S; do not appear in Equation (3).

2.3. Proposed Methods

In these investigations, the designed hyperspectral unmixing methods aim towards
modeling the mixing function defined by Equation (3). The variables involved in the
considered unmixing methods consist of two matrices A and S, which respectively aim at
estimating A and S. The rows of the matrix S are used to decompose the row vectors of
the matrix X, while the matrix A contains the linear and second-order abundance fraction
coefficients of this decomposition. Moreover, it should be noted here that the matrix S is
constrained as described in Equations (8)—(11), whereas only the top M rows of S, which
contain the estimated endmember spectra, are free; all the rows that follow are element-
wise products of the above master M rows [62], making them slave rows. The proposed
approaches minimize the following cost function:

1 ——
ho= SlIx-As| (12)

where ||.||r denotes the Frobenius norm. As explained above, since only the elements
of the first M row vectors of the matrix S are considered as master variables, they are
freely tuned, while all slave subsequent row vectors of this matrix are updated by using
element-wise products together with the above top M row vectors. Furthermore, the matrix
A is considered as a slave variable and it is defined by its optimum least square solution,
which minimizes the cost function J; for a considered value of S (assumed to have full row
rank). Thus, the matrix A is predetermined as follows:

Ao = X§7(387) (13)

where (.)7l denotes the matrix inverse. Replacing the matrix A by its optimal value Aopt
in Equation (12), the cost function to be optimized becomes:

1 e\ =1
J = 511X —x87(35T) 8 (14)

In the latter equation, A and the considered cost function J» are defined by a closed-
form expression, which permits the calculation of the gradient expression of J, with respect
to the master part of matrix S. After deriving this expression for each mixing model, this
gradient is used in the endmember spectra extraction step of the proposed methods. To
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simplify the calculation of the gradient expression of the considered cost function, this
function is rewritten by using standard matrix and Frobenius norm properties as:

1 ~ -1
o= 3T (XXT — X §7(887) SXT) (15)

where Tr(.) denotes the matrix trace. By considering the case when the matrix S has more
~ -1 ~
columns than rows, ST (S§T ) is replaced by ST (the Moore-Penrose pseudo-inverse

matrix of S) in (15). This yields the following new expression for J, that is used, hereafter,
in the endmember spectra extraction step:

I = %Tr(XXT - x§+§XT) (16)

As detailed in [60,61], using Equation (16), the gradient expressNion of ], with respect
to an element s,,,; of row m among the M master rows of the matrix S can be expressed as:

o> 1 ST <1 umr O [mor
O _ I (x®2 sxT4 x5+ (5x 17
%, 2 r( s,y X TS 5 (5x7) (17)

The above expression contains two derivative terms. The first one is:

a5+ e\ 95T rear\ 1 &y 0S &
—— = (I-§'S)——(SsT) —st_—=s&* 18
T (1-575) o (ss7) -8 T (18)
where I denotes the identity matrix with the appropriate dimension. The second derivative

term is:

d /=or\ _ 9S 1
fml(sx)_f’mx (19)

Thus, the gradient expression of [, with respect to s, is given as follows:

o s ANTo= [ S
o = Tr<(xs+5—x> XSt <B'§mz>> (20)

Consequently, the final form of Equation (20) can be calculated by deriving the expres-
sion of %, which depends on the considered mixing model, among the bilinear [60] and
LQ [61] ones. For both models, the same M x M symmetric matrix B, whose main diagonal
is unused and whose upper part is organized as follows, is introduced. Each element [B],,,
corresponding to position (r, ) with t > r in B, concerns the cross-pseudo-endmember
sy @ s¢ and is equal to the index of the row, within S; , which contains that cross-pseudo-
endmember. Due to the structure Equation (9) of that matrix, these values [B],;, stored
from left to right and top to bottom in the upper part of B, are integers in increasing order,
thatis 1 to (M — 1) on the first row, M to (2M — 3) on the second row, and so on. These
values can be expressed as follows (for ¢ > r):

[Bl,: =

rt

MM—1)—(M—r)(M—r+1)]+(t—71) (21)

N~
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When considering the bilinear mixing model, the values of %S[ form a matrix with

{M + w} rows and L columns. The value of an element [%Sz} of this matrix in the
mlpgq

position (p, ¢q) is equal to:

1 ifp =mandqg = I
~ ifdm e {1,..., M}, m' £m/
S Hoooe M 7 @)
p = M+[B]mm’/ andq =1
0 elsewhere
Similarly, for the LQ mixing model, %“E’Z yields a matrix with dimensions |2M + w
and L, and the value of the element {%gz} in that matrix is equal to:
m pq
1 ifp = mandg =1
_ ifdm e{1,..., M}, m' £#m/
Sm'l
" p = M+[B],,,, andq = I 23

25,1 ifp:M+w+mandq:l

0 elsewhere

The first designed approach, in the endmember spectra extraction step, uses the
projected-gradient descent algorithm, with a fixed positive scalar learning rate a. Thus,
for this first approach, two algorithms are proposed for the considered mixing models.
The first algorithm, called Grd-NS-LS-BMF for “gradient-based non-negative spectra least
squares bilinear matrix factorization” [60], is designed for the bilinear mixing model. The
second algorithm, which is designed for the LQ mixing model, is called Grd-NS-LS-LOMF
for “gradient-based non-negative spectra least squares linear-quadratic matrix factoriza-
tion” [61]. Therefore, for both gradient-based algorithms, the final form Equation (20)
yields, for the master elements 3, of the top M rows of S, the following preliminary
iterative update rule:

B
05,1

This update rule does not ensure non-negativity and, therefore, it is not sufficient. To
guarantee this constraint, an iterative projected-gradient update rule, derived from the one
above, is considered. This rule consists of projecting the value obtained from Equation (24)
onto the non-negative real number subspace R. This projection, denoted [¢]_, can be
achieved by replacing ¢, if it is negative, by zero, or in practice, by a small positive number

Sml < Sy — & (24)

¢, in order to avoid numerical instabilities. Thus, the projection becomes [¢], = max[e, ],
and the final iterative projected-gradient update rule reads:
~ - 92
Sml < [Sml - aa~7] (25)
Sml 4

It is important to mention here that, unlike with the update rule (24), there is no theo-
retical convergence guarantee with the above final iterative projected-gradient update rule
Equation (25). However, this rule Equation (25), like those used in standard NMF methods,
minimizes, practically and globally, the considered cost function J, throughout iterations.
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For the second designed approach, still in the endmember spectra extraction step,
and unlike the work done in [60,61], an iterative, multiplicative and projective update rule
derived from the gradient-based update rule Equation (24) is proposed in the present paper
for the two considered mixing models. To this end, this approach first uses the procedure
which has been proposed in the literature for developing “standard” (i.e., nonprojective)
multiplicative versions of various algorithms. This procedure is, e.g., detailed in [3] for
another type of algorithm, and may be transposed as follows to the present context. First,
the above fixed scalar learning rate « is replaced by a matrix, whose terms «,,; are used
as learning rates, respectively, for each of the considered adaptive scalar variables s,,;.
Then, the gradient expression of |, with respect to 5,,; is rewritten as the difference of two
functions such that:

o _ " -
agml B aFsvml aFsvml

(26)

a]z

where the function is obtained by keeping the terms of (20) preceded by a plus sign,

whereas e KRS obtamed by keeping the terms preceded by a minus sign. Each learning
rate a,,; is then set to:
Sml
= 27
tai = (27)
051

Thus, the update rule Equation (24) becomes:

(28)

where ¢ is a very small and positive value that is added to the denominator of the above
multiplicative update rule to prevent possible division by zero. For the methods reported

in the literature, this procedure is relevant because the counterparts of a%z,l and aashl

in those methods are non-negative (since they are elements of products and sums of
non-negative matrices), so that the counterparts of the learning rates «,,; and the new
value assigned to the counterparts of 5,,, as in the right-hand term of Equation (28), are

also non-negative, provided all these counterparts of s,,; are initialized to non—negative

values. In contrast, when applying this general procedure here, the expressions of 8]2

and 2 fz ~ contain one matrix which is not necessarily non-negative, namely the Moore—
m

Penrose pseudo-inverse matrix ST, which appears in Equation (20). Therefore, to take
advantage of the preliminary, purely multiplicative rule Equation (28), while ensuring
that s, remains non-negative, here, heuristic algorithms are introduced by replacing the

quantities aajz and aag—hl ~ in Equation (28) by modified versions that are guaranteed to be
non-negative. This may be achieved in Various ways. The first version is obtained by first

projecting the complete expressions 5 a] 2 and ahl onto Ry, as in Equation (25), and then

using these completely projected quantltles in Equation (28), instead of the orlgmal ones.

]2 a a@#
Sml

so as to separately project some of their terms that may be negative, thus 1 usmg “partly

projected functions”. The first approach based on such partial projections (denoted [.]

Other versions are derived by analyzing the structure of the expressions P

ppl
hereafter) operates as follows. Equation (20) shows that ah and ah are matrix traces.
One, therefore, modifies these derivatives by first pro;ectmg each of the considered matrix

elements onto R... This yields (taking into account that (XS +S) = §t5XT):

8]2*} = STSXTXS* 95
|:a§ml ppl B ( aSml + (29)
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ah_} = Tr | [XTxS*t a—g 30

The rule Equation (28) is then replaced by:

~ o, —
Smi X [T]HZH }ppl
Sl < T (31)
[% } +e
asm, pp1
The second approach based on partial projections (denoted prz hereafter) is obtained
ap *

by only replacing S* by its projection [St]. in the quantities P
is sufficient for making them non-negative. Equation (20) shows that this second type of

and azlﬁ ~, because this
Sl

' i 2 T KA :
partly projected functions, denoted as [ o ]ppz and [ P }pp2/ reads:
o) T = sy (28
== = Tr( [ST].SX'X[ST], [ =— (32)

o, ~ B S aS
{a‘s“mz LPZ = Tr<x x[s+}+<a§w>> (33)

The corresponding multiplicative projective adaptation rule reads:

~ 9 -
~ Sml X |:a§]"211 LapZ
Sl < T (34)
[% } + €
aSml pp2

Here also, and as mentioned above, there is no theoretical convergence guarantee with
the above-defined completely/partly projected multiplicative adaptation rules. Neverthe-
less, these rules, like those used in standard multiplicative NMF algorithms, also practically
and globally optimize the used cost function |, throughout iterations.

In the conducted tests (described hereafter), the rule Equation (31) resulted in better
performance than the rule Equation (34), as well as the first version, based on completely
projected functions. Therefore, hereafter, only the rule Equation (31) is considered. Thus,
for this multiplicative approach (which is also projective; this is implicit in the names
of the methods below), and for the considered bilinear and LQ mixing models, two al-
gorithms are also proposed. The first one, called Multi-NS-LS-BMF for “multiplicative
non-negative spectra least squares bilinear matrix factorization”, is designed for the bilin-
ear mixing model. The second algorithm, proposed for the LQ mixing model, is called
Multi-NS-LS-LQMF for “multiplicative non-negative spectra least squares linear-quadratic
matrix factorization”.

Moreover, in all of the above four proposed algorithms, the slave variables of S are
updated together with the master ones. When considering the bilinear mixing model,
cross-pseudo-endmember slave elements si; are updated as follows:

Skl < Sy X Sy, withm € {1,..., M—1}, m' € {m+1,...,M},

k= M+ (B, l€{1,...,L}. (35)

mm'”

When considering the LQ mixing model, and in addition to updating cross-pseudo-
endmember slave elements sj; by using the update rule (35), auto-pseudo-endmember
slave elements s,; are also updated as follows:

M(M-1)

§n1<—gmlz,withmG{l,...,M},n:M_|_ 5

+m,1€{1,...,.L}.  (36)
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In this endmember spectra extraction step, the master variables (i.e., the hyperspectral
endmember spectra) may be initialized by one of the standard linear methods. Indeed,
although these methods are designed for linear mixtures, their estimation results may be
considered as first approximations to be injected as an initialization of nonlinear methods.
After a number of tests (described below in the experimental results section) by using three
techniques in this step, the linear VCA method [29] is chosen for initializing the master
variables. Moreover, still in this endmember spectra extraction step, the slave variables (i.e.,
the hyperspectral cross/auto-pseudo-endmember spectra) are initialized from the initial
master variables by using only Equation (35) when considering the bilinear mixing model,
or Equations (35) and (36) when considering the linear-quadratic one.

The adaptation of all master and slave variables is stopped when the number of
iterations reaches a predefined maximum value, or when the relative modification of the
criterion J, takes a value below a predefined threshold as follows:

]z(t) . ]2(t+1)

< thresh (37)
](f)
2

where t corresponds to an iteration.

Furthermore, and as mentioned in Section 2, in the present paper and contrary to
the works reported in [60,61], the estimation of endmember abundance fractions is also
considered. Indeed, in this work, three alternative approaches are proposed for estimating
the endmember abundance fractions. In the first approach, the matrix Aopt, defined by
Equation (13) and containing linear and second-order abundance fractions, is constrained
and used to obtain the considered coefficients (the corresponding four complete unmixing
methods are, therefore, called “Grd-NS-LS-BMF + constrained Aopt”, and so on). The
constraints, defined hereafter, imposed on this matrix are those related to the non-negativity
of variables obtained by using the projection approach, the sum-to-one property of linear
coefficients, and the upper bounding of second-order coefficients, as defined in Equation (1).
These constraints respectively read:

gopt <~ [gopt}Jr (38)

[Gopty (i) - - Bopty ()] = [dopty (1) -+ Goptyy ()] / M 4dopy; (i), Vi = 1...P  (39)
Gopty (1) < Min[0.5, Gopry ()], i = 1...P (40)

The second approach for estimating endmember linear and second-order abundance
fractions consists of running a modified version of the iterative multiplicative LQNMF
(Multi-LONMF) method of [47], restricted to the bilinear mixing model when this one is
considered, or fully used when the LQ mixing model is considered. This technique, which
jointly estimates spectra and abundance fractions, is initialized by (i) the endmember and
pseudo-endmember spectra contained in the matrix S, obtained by using one of the above
four proposed algorithms, and (ii) the constrained ﬁopt matrix obtained by using Equations
(13), (38) and (39). Unlike in [47], only linear and second-order abundance fractions are here
updated with this Multi-LQNMF algorithm that also contains the constraints defined by
(39) and (40), whereas endmember and pseudo-endmember spectra are not updated here.
The corresponding four complete unmixing methods, hereafter called “Grd-NS-LS-BMF +
post-Multi-LONMF1” and so on, therefore yield exactly the same estimated spectra as the
associated above-defined methods “Grd-NS-LS-BMF + constrained Aopt” and so on, but
they result in different estimated abundance fractions.

The third and last approach, which leads to the four methods called “Grd-NS-LS-BMF
+ post-Multi-LQNMEF2” and so on, is similar to the second one, but it jointly updates spectra
and abundance fractions using the iterative Multi-LONMEF algorithm, again restricted to
the bilinear mixing model when this model is considered, or fully used when the LQ
mixing model is considered.
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In the above second and third approaches, the adaptation of the considered variables
is stopped when the number of iterations reaches a predefined maximum value.
The complete pseudo-code of the proposed algorithms is provided below.

Pseudo-code: hyperspectral unmixing methods based on constrained bilinear or linear-quadratic
matrix factorization.

Input: hyperspectral image X.

1.

Endmember spectra extraction step

1.1.

1.2

Initialization stage

1.1.1.  Initialize master variables of S from X by means of the VCA method.

1.1.2. Initialize slave variables of S from the initial master variables by using only
Equation (35) when considering the bilinear mixing model, or Equation (35)
and Equation (36) when considering the linear-quadratic one.

Optimization stage (until convergence)

1.2.1.  Update master variables of S by using Equation (25) for the gradient-based
methods, or Equation (31) for the multiplicative ones (using the appropriate
formula when calculating aa Ssml in 8837],,2,1 according to the considered mixing
model: bilinear or linear-quadratic).

1.22.  Update slave variables of S from the updated master variables by using only
Equation (35) when considering the bilinear mixing model, or Equations (35)

and (36) when considering the linear-quadratic one.

Abundance fractions estimation step

2.1.

2.2.

Initialization stage: initialize linear and second-order abundance fractions by using
Equation (13), and considering the above extracted endmember spectra.
Optimization stage (until convergence): update only abundance fractions by using
Equations (38)—(40) for the first approach, or update only abundance fractions by
using the Multi-LONMEF algorithm for the second approach, or jointly update
endmember spectra and abundance fractions by using the Multi-LQNMEF algorithm.

Output: endmember and cross/auto-pseudo endmember spectra, and their associated linear and
second-order abundance fractions.

2.4. Tested Data

In this section, used realistic synthetic and real hyperspectral data are described. These
data are used, hereafter, to evaluate the performance of the proposed approaches, and ob-
tained results are then compared to those obtained by other techniques from the literature.

2.4.1. Synthetic Data

For realistic synthetic hyperspectral data, two sets of eight hyperspectral endmember
spectra are selected from spectral libraries, with 184 spectral bands in the 0.4 to 2.5 pm
region. The first set contains eight randomly selected spectra (Figure 1) from the spectral
library compiled by the United States Geological Survey (USGS) [66]. The second set
contains eight spectra (Figure 2) of materials used in urban areas, selected from the spectral
library compiled by the Johns Hopkins University (JHU) [67].
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Figure 1. The eight considered endmember spectra randomly selected from the USGS spectral library.
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Figure 2. The eight considered urban material spectra selected from the JHU spectral library.

The above spectra are used to create two realistic synthetic hyperspectral images.
These two 100 x 100 pixel hyperspectral images are generated according to the considered
mixing models; the first one is created by considering the bilinear mixing model, whereas
the second image is generated by using the LQ model. The considered linear abundance
fractions are created from a real classification of land cover, with eight classes, by averaging
pixel classification values on a nonoverlapping sliding 4 x 4 pixel window. The second-
order abundance fractions are generated from the linear ones by using the Fan model [41].
Besides, it is useful to mention here that the maximum purity of the considered linear
abundance fractions does not exceed 0.75 (i.e., without the presence of pure pixels for each
endmember), which makes, from the outset, the used synthetic data realistic, with more
complex configurations than those with the presence of pure pixels for each endmember.

2.4.2. Real Data

In these investigations, two real hyperspectral images are also considered. The first one
consists of the “Samson” data of [68]. This 95 x 95 pixel hyperspectral image (Figure 3a)
contains 156 spectral bands ranging from 0.4 to 0.9 um. Moreover, this first image is
provided with the corresponding linear abundance fraction ground-truth, which is used to
manually extract, from supposedly pure pixels, three reference endmember spectra (soil,
tree, and water: Figure 3b). The second real hyperspectral image consists of the “urban”
data of [68]. This image, which is one of the most widely used hyperspectral data sets, was
acquired by the HYperspectral Digital Imagery Collection Experiment (HYDICE) sensor
over the Copperas Cove, near Fort Hood, Texas, USA. This 307 x 307 pixel hyperspectral
image, with 2 m spatial resolution, contains 162 spectral bands (after removing the water
absorption bands from the 210 spectral bands of the original data) ranging from 0.4 to
2.5 um. This image (Figure 4a), which is provided with the corresponding linear abundance
fraction ground-truth, mainly contains four pure materials: asphalt, grass, tree, and roof.
By considering the provided ground-truth, the reference endmember spectra (Figure 4b)
are manually extracted.
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Figure 3. (a) The first considered “Samson” real hyperspectral image (true color composite). (b) The three reference

endmember spectra of the “Samson” data.
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Figure 4. (a) The second considered “urban” real hyperspectral image (true color composite). (b) The four reference

endmember spectra of the “urban” data.

3. Results
3.1. Performance Evaluation Criteria

In order to evaluate the performance of the tested methods, the following criteria
are considered. The spectral angle mapper (SAM), the spectral normalized mean square
error (NMSE,), and the spectral information divergence (SID) [69] are used as spectral
performance criteria. The spatial normalized mean square error (NMSE;) is used as a spatial
performance criterion only by considering the linear abundance fractions. A smaller value
of these criteria indicates a better endmember spectra or abundance fraction estimation.

These criteria read:

SAM; = arccos I (41)
BRI
~ 112
o 3
NMSE,: = lls; =il (42)
! [EA:
JIF
SID; — sTlog<57> +§Tlog<§j> 43)
PR T
a; — ;||
NMSEs; = lla; — (44)
! la;]|2
JUF

where s; is the original spectrum of the endmember j and §; is its estimate, ||.| denotes
the vector norm, log (.) corresponds to the natural logarithm, © stands for element-wise
division, and g; is the vector composed of the original linear abundance fractions of the
endmember j in all image pixels and 4; is its estimate.
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3.2. Results

The proposed methods, and methods from the literature are applied to the considered
realistic synthetic and real hyperspectral data. The considered literature methods belong
to two groups. The first one contains linear spectral unmixing methods: the NMF and
the Lin-Ext-NMF (linear-extended non-negative matrix factorization) [47] techniques. It
should be noted here that, for the NMF method, only the endmember spectra and linear
abundance fractions are considered, while, for the Lin-Ext-NMF technique, in addition to
the endmember spectra and linear abundance fractions, the pseudo-endmember spectra
(resp. second-order abundance fractions) are considered as additional endmember spec-
tra (resp. additional linear abundance fractions). The VCA [29] and the SGA [4,30-32]
combined with the fully constrained least squares (FCLS) [64] methods, which belong to
this first group, are also considered in the conducted tests. The second group contains
spectral unmixing methods based on bilinear or linear-quadratic mixing models. These
methods are: the BiPSO (bilinear spectral unmixing using particle swarm optimization)
technique [65], the Grad-LONMF (gradient-based linear-quadratic non-negative matrix
factorization), and the Multi-LQNMF (multiplicative linear-quadratic non-negative matrix
factorization) algorithms [47] (restricted to the bilinear case when the considered mixing
model is bilinear).

In all tested iterative algorithms, a maximum of 1000 iterations are considered in
the endmember spectra extraction step, as well as in the abundance fraction estimation
step. The convergence tolerance threshold, defined in Equation (37), is set to 107°. In
addition, in order to determine the optimal value of the learning rate « for all tested
gradient-based algorithms, many tests are conducted and « is empirically fixed to 10~2 for
all of these algorithms in the results reported below. It should be remembered here that
this empirically optimal choice of the learning rate value constitutes, as mentioned above,
the main limitation of these gradient-based methods.

3.2.1. Initialization and Partial Projection Choices

The proposed methods have limitations, as well as all tested NMF-based and the
BiPSO literature methods; they are not guaranteed to provide a unique solution, and their
convergence points depend on their initialization. Therefore, in order to avoid the random
initialization of the considered variables, and as mentioned above, three standard linear
techniques are tested, only on the considered realistic synthetic datasets, to select the
most suitable one to derive the initial estimated hyperspectral endmember spectra. These
standard linear techniques are: the VCA [29] and the SGA [4,30-32] techniques, combined
with the FCLS [64] algorithm, and the NICA [16] technique. Furthermore, in order to
minimize the random effect of these initialization techniques, 10 runs are performed for
each considered dataset and for each considered standard linear initialization technique,
and the mean values of the used performance evaluation criteria are reported in the
following results tables.

Based on the results of Tables 1 and 2, it clearly appears that VCA is the most suitable
standard linear initialization technique that can be used in order to derive initial estimated
hyperspectral endmember spectra. Thus, this technique is considered to initialize all
proposed methods; all tested NMF-based and the BiPSO literature techniques in the tests
reported below.
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Table 1. Mean values of the considered performance criteria for the synthetic data generated accord-
ing to the bilinear mixing model and for the tested initialization methods (bold values correspond to

best performances).

SAM (°) NMSE, (%) SID NMSE; (%)

VCA+FCLS 9.63 23.39 6.53 55.49

With the first — g AL pCLs 15.71 32.06 19.97 107.55
set of spectra

NICA 92 .48 140.27 124.59 267.09

With the VCA+FCLS 10.23 48.41 4.71 49.07

second set of SGA+FCLS 10.75 42.77 16.19 108.10

spectra NICA 89.34 316.72 201.96 266.59

Table 2. Mean values of the considered performance criteria for the synthetic data generated
according to the LQ mixing model and for the tested initialization methods (bold values correspond
to best performances).

SAM (°) NMSE, (%) SID NMSEs; (%)

VCA+FCLS 6.23 43.68 15.73 32.60

With the first — oA ECLS 1431 60.41 30.30 85.51
set of spectra

NICA 26.16 68.10 62.67 104.54

With the VCA+FCLS 7.01 21.28 5.56 61.81

second set of SGA+FCLS 12.12 59.72 46.62 120.75

spectra NICA 29.78 96.79 4219 172.55

Moreover, for the proposed multiplicative projective methods, as explained above, two
partly projected functions ([.],,; and [.],,) are introduced to take advantage of the multi-
plicative rule Equation (28) and to ensure the non-negativity constraint. In order to choose
the most adequate partial projected function to be considered in these proposed methods,
experiments are conducted, again only on the described realistic synthetic datasets, by
using these multiplicative projective methods, and by only considering the first approach
for estimating abundance fractions (i.e., methods called “Multi-NS-LS-BMF/LQMF + con-
strained gopt”). From the obtained results (Tables 3 and 4), it clearly appears that the first
partly projected function (noted [.] ;) is the most adequate one that can be considered
in the proposed multiplicative projective methods. Consequently, this function is the one
considered hereafter in these proposed methods.

Table 3. Mean values of the considered performance criteria for the synthetic data generated according to the bilinear
mixing model depending on the partly projected function (bold values correspond to best performances).

SAM (°) NMSE, (%) SID NMSE; (%)

Ml NS LS-BME [lppt 7.83 17.64 3.43 90.43

ulti-NS-LS-
With the first sct of . prz 25.45 100.00 2.56 x 103 86.95

i e first set of spectra
P Multi-NS-LS-LOMEF prl 7.87 17.69 3.44 81.99
[] 81.02 100.00 425 x 103 122.13
pp2

Multi.NS-LS-BME prl 3.68 15.06 0.87 77.34

ulti-NS-LS-
. pr2 16.49 100.00 1.28 x 10° 86.97

With the second set of spectra

Multi-NS-LS-LQMF prl 3.63 15.00 0.86 90.69
[] 88.74 100.00 3.28 x 103 110.56
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Table 4. Mean values of the considered performance criteria for the synthetic data generated according to the LQ mixing
model depending on the partly projected function (bold values correspond to best performances).

SAM (°) NMSE, (%) SID NMSE; (%)

MultNSLS-BME [opt 5.48 33.83 9.99 58.75

ulti-NS-LS-
With the firet set of soect [op2 25.70 100.00 2.56 x 10° 86.91

1 € I1rst set o1 spectra
P Multi-NS-LS-LOMF [opt 5.83 34.44 10.15 70.74
[] 78.21 100.00 6.34 x 103 136.2
pp2

MultNSL S BME [opt 5.10 13.79 2.62 72.71

ulti-NS-LS-
. [op2 16.76 100.00 1.28 x 10° 86.96

With the second set of spectra

Multi-NS-LS-LQMF [opt 4.81 13.33 2.54 94.72
[op2 82.32 100.00 227 x 103 116.65

3.2.2. Results on Synthetic Data

Tables 5-8 show the mean values of the considered performance criteria obtained for
the realistic synthetic data created according to the bilinear and linear-quadratic mixing
models (after performing 10 runs for each considered dataset).

Table 5. Mean values of the considered performance criteria for the synthetic data generated according to the bilinear
mixing model and with the first set of spectra (bold values correspond to best performances).

SAM (°) NMSE, (%) SID NMSE; (%)
Grd-NS-LS-BMF + constrained ﬁopt 7.63 17.37 3.36 31.28
Grd-NS-LS-BMF + post-Multi-LONMF1 7.63 17.37 3.36 35.98
Grd-NS-LS-BMF + post-Multi-LQNMF2 4.17 9.13 1.21 28.00
Multi-NS-LS-BMF + constrained A, pt 7.83 17.64 343 90.43
Multi-NS-LS-BMF + post-Multi-LONMF1 7.83 17.64 343 77.30
Multi-NS-LS-BMF + post-Multi-LONMF2 12.03 29.21 14.59 86.35
Grd-NS-LS-LQMF + constrained Zlopt 7.63 17.37 3.36 30.89
Grd-NS-LS-LQMEF + post-Multi-LOQNMF1 7.63 17.37 3.36 35.57
Grd-NS-LS-LQMEF + post-Multi-LOQNMF2 4.11 8.92 1.18 27.27
Multi-NS-LS-LOQMEF + constrained Zlopt 7.87 17.69 3.44 81.99
Multi-NS-LS-LQMEF + post-Multi-LONMF1 7.87 17.69 3.44 75.75
Multi-NS-LS-LQMF + post-Multi-LONMF2 15.40 33.35 21.19 79.58
VCA+FCLS 9.63 23.39 6.53 55.49
SGA+FCLS 15.71 32.06 19.97 107.55
NMF 12.88 32.05 8.90 59.44
Lin-Ext-NMF 12.13 28.45 11.15 59.05
BiPSO 8.59 19.91 5.36 39.76
Grd-LONMF 8.39 25.44 10.09 67.85

Multi-LQNMF 12.35 27.27 9.96 56.92
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Table 6. Mean values of the considered performance criteria for the synthetic data generated according to the bilinear
mixing model and with the second set of spectra (bold values correspond to best performances).

SAM (°) NMSE, (%) SID NMSE; (%)
Grd-NS-LS-BMF + constrained Zlnpt 3.55 14.95 0.86 39.60
Grd-NS-LS-BMF + post-Multi-LOQNMF1 3.55 14.95 0.86 39.54
Grd-NS-LS-BMF + post-Multi-LQNMF2 2.54 9.88 0.32 38.34
Multi-NS-LS-BMF + constrained A, ot 3.68 15.06 0.87 77.34
Multi-NS-LS-BMF + post-Multi-LOQNMF1 3.68 15.06 0.87 68.54
Multi-NS-LS-BMF + post-Multi-LQONMF2 10.03 39.21 6.84 76.15
Grd-NS-LS-LQMF + constrained ;{opt 3.55 14.95 0.86 38.40
Grd-NS-LS-LQMEF + post-Multi-LQONMF1 3.55 14.95 0.86 38.37
Grd-NS-LS-LOMF + post-Multi-LQONMF2 2.51 9.72 0.31 36.83
Multi-NS-LS-LQMEF + constrained A, ot 3.63 15.00 0.86 90.69
Multi-NS-LS-LOMF + post-Multi-LQNMF1 3.63 15.00 0.86 84.43
Multi-NS-LS-LQMEF + post-Multi-LQNMEF2 11.05 46.80 9.78 92.22
VCA+FCLS 10.23 48.41 471 49.07
SGA+FCLS 10.75 42.77 16.19 108.10
NMF 12.49 34.73 322 64.40
Lin-Ext-NMF 12.05 32.02 4.78 65.39
BiPSO 6.83 17.14 1.23 42.99
Grd-LQNMF 6.09 17.82 1.07 68.33
Multi-LQNMEF 13.48 28.30 3.47 66.38

Table 7. Mean values of the considered performance criteria for the synthetic data generated according to the LQ mixing
model and with the first set of spectra (bold values correspond to best performances).

SAM (°) NMSE, (%) SID NMSE; (%)
Grd-NS-LS-BMF + constrained ﬁopt 5.37 33.70 9.93 35.22
Grd-NS-LS-BMF + post-Multi-LQNMF1 5.37 33.70 9.93 33.81
Grd-NS-LS-BMF + post-Multi-LONMF2 3.99 17.85 4.55 31.86
Multi-NS-LS-BMF + constrained ;lopt 5.48 33.83 9.99 58.75
Multi-NS-LS-BMF + post-Multi-LQNMF1 5.48 33.83 9.99 55.80
Multi-NS-LS-BMF + post-Multi-LQNMF2 11.10 30.45 15.86 57.02
Grd-NS-LS-LQMF + constrained }L,pt 5.37 33.70 9.93 24.69
Grd-NS-LS-LQMF + post-Multi-LONMF1 5.37 33.70 9.93 27.43
Grd-NS-LS-LQMEF + post-Multi-LOQNMEF2 3.63 17.74 4.48 23.40
Multi-NS-LS-LOMEF + constrained Aopt 5.83 34.44 10.15 70.74
Multi-NS-LS-LOMEF + post-Multi-LQNMF1 5.83 3444 10.15 56.56
Multi-NS-LS-LOMF + post-Multi-LQNMF2 12.01 30.94 20.66 68.07
VCA+FCLS 6.23 43.68 15.73 32.60
SGA+FCLS 14.31 60.41 30.30 85.51
NMF 12.41 32.72 10.69 52.30
Lin-Ext-NMF 12.10 26.73 10.23 51.70
BiPSO 5.30 35.13 10.74 17.25
Grd-LQNMF 15.80 33.75 65.01 60.98

Multi-LQNMEF 11.83 25.24 9.03 49.57
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Table 8. Mean values of the considered performance criteria for the synthetic data generated according to the LQ mixing

model and with the second set of spectra (bold values correspond to best performances).

SAM (°) NMSE,, (%) SID NMSE; (%)
Grd-NS-LS-BMF + constrained Aopt 4.72 13.21 2.52 33.17
Grd-NS-LS-BMF + post-Multi-LQNMF1 472 13.21 2.52 35.18
Grd-NS-LS-BMF + post-Multi-LOQNMEF2 3.03 8.52 1.10 33.07
Multi-NS-LS-BMF + constrained A(,pt 5.10 13.79 2.62 72.71
Multi-NS-LS-BMF + post-Multi-LONMF1 5.10 13.79 2.62 65.93
Multi-NS-LS-BMF + post-Multi-LONMF2 9.18 25.00 9.33 75.61
Grd-NS-LS-LQMEF + constrained }iopt 4.72 13.21 2.52 30.41
Grd-NS-LS-LOMF + post-Multi-LONMF1 4.72 13.21 2.52 33.72
Grd-NS-LS-LOMF + post-Multi-LONMEF2 2.99 8.42 1.08 30.35
Multi-NS-LS-LOMEF + constrained ﬁopt 4.81 13.33 2.54 94.72
Multi-NS-LS-LOMEF + post-Multi-LQONMF1 4.81 13.33 2.54 88.27
Multi-NS-LS-LQMF + post-Multi-LQNMF2 7.15 19.23 6.04 79.87
VCA+FCLS 7.01 21.28 5.56 61.81
SGA+FCLS 12.12 59.72 46.62 120.75
10.14 27.79 10.75 46.93
Lin-Ext-NMF 9.44 20.78 10.24 48.79
7.76 20.21 4.62 35.90
Grd-LQNMF 7.60 18.69 8.29 61.12
Multi-LQNMF 10.48 20.41 8.75 45.55

Furthermore, in order to study the effect of noise on the performance of the proposed
methods, in particular on their endmember spectra extraction step (by only considering
the proposed methods that use “constrained Aopt”), and as an illustration, white Gaussian
noise with different signal-to-noise ratio (SNR) values, ranging from 15 to 45 decibels (dB)
with a step of 5 dB, is added to the created synthetic data generated according to the LQ
mixing model and with the urban material spectra. This synthetic dataset is chosen because
it is the one which represents the most complete configuration, from the point of view
of the mixing model, and it is the most realistic one for LQ mixtures since it considers
urban material spectra. The next figure (Figure 5) shows the obtained mean values of the
considered performance criteria on the tested synthetic data.

From these results, it clearly appears that the considered proposed methods remain,
overall, robust to the considered noise (with different SNR values), and also offer, globally,
better performances than those provided by the tested approaches from the literature.
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Figure 5. Mean values of the considered performance criteria, for the proposed methods that use “constrained Aopt”, and

for the tested synthetic data, including white Gaussian noise with different SNR values.

3.2.3. Results on Real Data

The test results obtained for the two considered real hyperspectral images are provided

in Tables 9 and 10 (after performing 10 runs for each considered dataset).

Table 9. Mean values of the considered performance criteria for the real Samson data (bold values correspond to best performances).

SAM (°) NMSEj (%) SID NMSE; (%)
Grd-NS-LS-BMF + constrained A,p; 4.65 16.05 127 31.26
Grd-NS-LS-BMF + post-Multi-LQNMF1 4.65 16.05 1.27 26.01
Grd-NS-LS-BMF + post-Multi-LQNMF2 7.94 2541 4.01 30.46
Multi-NS-LS-BMF + constrained Aoy 5.41 22.32 1.24 48.10
Multi-NS-LS-BMF + post-Multi-LQNMF1 5.41 22.32 1.24 36.82
Multi-NS-LS-BMF + post-Multi-LQNMF2 14.48 89.43 13.44 53.45
Grd-NS-LS-LQMF + constrained A, 371 14.24 0.91 61.62
Grd-NS-LS-LQMF + post-Multi-LQNMF1 371 14.24 091 46.78
Grd-NS-LS-LQMF + post-Multi-LQNMF2 9.33 36.65 6.98 72.22
Multi-NS-LS-LOMEF + constrained Aopt 2.98 12.77 0.83 53.50
Multi-NS-LS-LQMF + post-Multi-LQNMF1 2.98 12.77 0.83 4341
Multi-NS-LS-LQMF + post-Multi-LQNMF2 10.21 42.49 7.88 63.41
VCA+FCLS 3.46 16.77 2.01 36.47
SGA+FCLS 23.16 72.60 5.40 166.49
NMF 11.79 38.23 6.43 86.31
Lin-Ext-NMF 7.43 51.83 14.32 23.74
BiPSO 28.52 58.57 425 57.56
Grd-LQNMF 5.69 18.19 1.99 25.02
Multi-LQNMF 5.76 20.80 3.04 2841
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Table 10. Mean values of the considered performance criteria for the real urban data (bold values correspond to best performances).

SAM (°) NMSE, (%) SID NMSE; (%)
Grd-NS-LS-BMF + constrained ﬁopt 17.73 67.00 14.08 50.01
Grd-NS-LS-BMF + post-Multi-LQNMF1 17.73 67.00 14.08 40.21
Grd-NS-LS-BMF + post-Multi-LQNMF2 15.42 53.73 14.24 34.27
Multi-NS-LS-BMF + constrained ;{opf 7.31 28.11 4.21 39.68
Multi-NS-LS-BMF + post-Multi-LOQNMF1 7.31 28.11 421 31.42
Multi-NS-LS-BMF + post-Multi-LQNMF2 15.35 45.43 11.87 22.93
Grd-NS-LS-LQMF + constrained ﬁopt 18.06 65.81 12.66 58.84
Grd-NS-LS-LQMF + post-Multi-LONMF1 18.06 65.81 12.66 44.88
Grd-NS-LS-LQMEF + post-Multi-LQNMEF2 19.83 64.12 24.12 56.04
Multi-NS-LS-LOMEF + constrained Aow 6.34 24.43 2.00 76.05
Multi-NS-LS-LOMF + post-Multi-LQNMF1 6.34 24.43 2.00 40.02
Multi-NS-LS-LOMF + post-Multi-LQNMF2 14.90 50.94 16.41 63.38
VCA+FCLS 26.38 82.53 42.28 81.98
SGA+FCLS 17.35 67.87 20.73 121.97
NMF 11.79 36.63 4.56 43.03
Lin-Ext-NMF 14.95 51.14 18.43 46.63
BiPSO 49.34 171.24 42.45 59.46
Grd-LQNMF 32.75 85.79 91.61 63.46
Multi-LQNMF 10.96 46.78 9.12 30.40

As an illustration, Figures 6 and 7 show, for real data, the reference endmember
spectra (ground truth) and their estimates derived by the proposed four methods that use
“constrained g@pt” and by the considered methods from the literature. Figures 8 and 9 then
show, also as an illustration, the ground-truth linear abundance fraction maps and their
estimates provided by the proposed Grd-NS-LS-BMF + constrained gopt method, and also
those provided by the tested Multi-LOQNMEF literature one.
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Figure 6. Reference endmember spectra and their estimates, derived by the proposed four methods that use “constrained
Aopt" and by the considered methods from the literature, for the Samson image: (a) soil, (b) tree, (c) water.
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Figure 7. Reference endmember spectra and their estimates, derived by the proposed four methods that use “constrained
gopt” and by the considered methods from the literature, for the urban image: (a) asphalt, (b) grass, (c) tree, (d) roof.
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Figure 8. Ground-truth linear abundance fraction maps and their estimates, derived by the proposed Grd-NS-LS-BMF +
constrained gopt method and by the considered Multi-LONMF method from the literature, for the Samson image.
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Figure 9. Ground-truth linear abundance fraction maps and their estimates, derived by the proposed Grd-NS-LS-BMF +
constrained gopt method and by the considered Multi-LONMF method from the literature, for the urban image.

4. Discussion

For the synthetic data generated according to the bilinear mixing model, Tables 5 and 6
first yield the following conclusions with respect to the estimated endmember spectra.
Among the proposed methods, the four methods that use “constrained gopt” (i.e., “Grd-NS-
LS-BMF + constrained gopt” and so on), and hence the four methods that use “post-Multi-
LONMF1” (i.e., “Grd-NS-LS-BMF + post-Multi-LONMF1” and so on), yield a relatively
similar performance. Indeed, for the spectra used in Table 5, the SAM values of these
methods are between 7.63 and 7.87°, their NMSE,, values are between 17.37 and 17.69%,
and their SID values are between 3.36 and 3.44. For the spectra used in Table 6, their SAM
values are between 3.55 and 3.68°, their NMSE, values are between 14.95 and 15.06%, and
their SID values are between 0.86 and 0.87. These methods are, therefore, more attractive
than the four methods that use “post-Multi-LONMF2” (i.e., “Grd-NS-LS-BMF + post-Multi-
LONME2” and so on), since the latter methods yield significantly wider ranges for the
considered performance criteria values and are thus “less predictable”. Indeed, for the
spectra used in Table 5, their SAM values are between 4.11 and 15.40°, their NMSE,, values
are between 8.92 and 33.35%, and their SID values are between 1.18 and 21.19. For the
spectra used in Table 6, their SAM values are between 2.51 and 11.05°, their NMSE, values
are between 9.72 and 46.80%, and their SID values are between 0.31 and 9.78. Similarly,
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the eight proposed methods that use “constrained Aopt” or “post-Multi-LONMF1” are
more attractive than the methods from the literature, since the considered performance
criteria values achieved by the latter methods are higher and cover a wide range. Indeed,
for these literature methods, in Table 5, the SAM values are between 8.39 and 15.71°, the
NMSE, values are between 19.91 and 32.06%, and the SID values are between 5.36 and
19.97. In Table 6, the SAM values are between 6.09 and 13.48°, the NMSE, values are
between 17.14 and 48.41%, and the SID values are between 1.07 and 16.19.

Considering, in addition, the accuracy of abundance estimation and focusing on
the above-defined eight preferred proposed methods, the subset of four gradient-based
methods yields much lower NMSEg values (from 30.89 to 35.98% in Table 5, and from
38.37 to 39.60% in Table 6) than the four multiplicative methods (NMSE; values from
75.75 to 90.43% in Table 5, and from 68.54 to 90.69% in Table 6). Although the errors of
these gradient-based methods are non-negligible, they are much better (i.e., lower, and
with lower spread) than those of the methods from the literature, which yield NMSES
values ranging from 39.76 to 107.55% in Table 5, and from 42.99 to 108.10% in Table 6.

For the synthetic data generated according to the LQ mixing model, Tables 7 and 8
yield the same general conclusions as above, based on the following values. The eight
proposed methods that use “constrained Aopt” or “post-Multi-LQNMF1” result in SAM
values ranging from 5.37 to 5.83° in Table 7, and from 4.72 to 5.10° in Table 8. Moreover,
these methods result in NMSE,, values ranging from 33.70 to 34.44% in Table 7, and from
13.21 to 13.79% in Table 8. Furthermore, these methods result in SID values ranging from
9.93 to 10.15 in Table 7, and from 2.52 to 2.62 in Table 8. For the four methods that use
“post-Multi-LONMF2”, the SAM ranges from 3.63 to 12.01° in Table 7, and from 2.99 to
9.18° in Table 8. The NMSE, ranges from 17.74 to 30.94% in Table 7, and from 8.42 to 25.00%
in Table 8. Moreover, the SID ranges from 4.48 to 20.66 in Table 7, and from 1.08 to 9.33 in
Table 8. For the methods from the literature, the SAM ranges from 5.30 to 15.80° in Table 7,
and from 7.01 to 12.12° in Table 8. Their NMSE,, ranges from 25.24 to 60.41% in Table 7,
and from 18.69 to 59.72% in Table 8. Finally, their SID ranges from 9.03 to 65.01 in Table 7,
and from 4.62 to 46.62 in Table 8. Similarly, the ranges of NMSE; values respectively for
Tables 7 and 8 are (24.69%, 35.22%) and (30.41%, 35.18%) for the four selected gradient-
based methods, (55.80%, 70.74%]) and (65.93%, 94.72%) for the four selected multiplicative
methods, and (32.60%, 85.51%) and (45.55%, 120.75%) for the methods from the literature,
except BiPSO. The BiPSO method here yields attractive NMSE; values (17.25% and 35.90%,
respectively, in Tables 7 and 8), but it is eventually not of interest as compared with the
best methods proposed in this paper, because it yields very poor performance for real data,
as shown further in this paper.

For the first tested real hyperspectral image, Table 9 yields the following results. The
eight proposed methods that use “constrained Aopt” or “post-Multi-LONMF1” result in
SAM values between 2.98 and 5.41°, NMSE, values between 12.77 and 22.32%, and the
SID ranges from 0.83 to 1.27. For the four methods that use “post-Multi-LONMEF2”, the
SAM ranges from 7.94 to 14.48°, the NMSE, ranges from 25.41 to 89.43%, and SID values
are between 4.01 and 13.44. Besides, the tested literature methods provide SAM values
between 3.46 and 28.52°, NMSE),, values between 16.77 and 72.60%, and SID values ranging
from 1.99 to 14.32. Similarly, the ranges of NMSE; values are (26.01%, 61.62%) for the four
selected gradient-based methods, (36.82%, 53.50%) for the four selected multiplicative
methods, (36.47%, 166.49%) for the methods from the literature, except Lin-Ext-NMF, Grd-
LONMEF and Multi-LQNME. The latter three methods here yield rather good NMSE; values
(between 23.74 and 28.41%), but they are globally not of interest as compared with the best
methods proposed in this work, because they yield very poor performance for synthetic
data (see Tables 5-8) and they are, therefore, not predictable enough. This first real image
consequently yields the same global remarks as the considered synthetic data, even though
some of these trends are less pronounced here. Especially, the considered performance
criteria values obtained with the eight preferred methods, among those proposed in this
work, have larger ranges here than for the considered synthetic data.
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The second tested real hyperspectral image yields the following values (see Table 10).
For the eight proposed methods that use “constrained A, pt” or “post-Multi-LONMF1”,
the SAM values are between 6.34 and 18.06°, the NMSE, values are between 24.43 and
67.00%, and the SID ranges from 2.00 and 14.08. For the four methods that use “post-
Multi-LONME2”, the SAM criterion ranges from 14.90 to 19.83°, the NMSE, ranges from
45.43 to 64.12%, and SID values are between 11.87 and 24.12. For the methods from the
literature, the SAM ranges from 10.96 to 49.34°, the NMSE,, ranges from 36.63 to 171.24%,
and the SID ranges from 4.56 to 91.61, the worst performances being, globally, obtained
with the BiPSO method. Similarly, the ranges of NMSE; values are (40.21%, 58.84%) for the
four selected gradient-based methods, (31.42%, 76.05%) for the four selected multiplicative
methods, and (43.03%, 121.97%) for the methods from the literature, except Multi-LQNME.
For this second tested real image, the Multi-LONMF method yields a rather good NMSEg
value (30.40%), but it is globally not of interest when compared with the best methods
proposed in this paper, because it yields very poor performance for synthetic data, as
shown above (Tables 5-8). This second tested real image, therefore, also tends to yield the
same global conclusions as with synthetic data, although some of these trends here are not
very significant. In particular, the used performance criteria values obtained with the eight
preferred methods, among those proposed in this paper, exhibit larger spreads than for
synthetic data.

Figures 6 and 7 show that the mentioned proposed methods, unlike the tested litera-
ture approaches, correctly extract most of endmember spectra, with estimates fairly close
to the reference ones. From Figures 8 and 9, it also clearly appears that the mentioned
proposed method correctly estimates the considered abundance fraction maps.

All of the above results clearly show that the proposed gradient-based methods
globally provide better performances than those resulting from the proposed multiplicative
projective ones, and also from those obtained by the tested literature approaches. However,
once again, it should be remembered that these gradient-based methods only provide such
results after an optimal choice of their learning rates, which are tedious to obtain, since it is
necessary to perform several tests to find these optimal parameter values. In contrast, the
proposed multiplicative projective methods are free from this constraint, and they provide
satisfactory results that are, moreover, globally better than those of the tested literature
methods. They are, therefore, an attractive alternative to gradient-based methods when
automated operation is an important feature.

The proposed methods are very easy to implement and their update rules contain
only direct and simple scalar/matrix operations. These operations make the algorithmic
complexity of the proposed methods very limited. Besides, the run time of the core of
the proposed methods depends on the input image size, the number of endmembers
in the observed scene, the maximum number of iterations, and the stopping criterion
Equation (37); based on the above description of tests by considering, as an illustration, the
used synthetic data, the run time of the proposed methods (by using an Intel(R) Core(TM)
i7 processor running at 2.40 GHz and a memory capacity of 8 GB) is about, for each run, 10
(respectively 40) seconds for the gradient-based (respectively multiplicative) methods that
use “constrained A, pt”, and 20 (respectively 50) seconds for the gradient-based (respectively
multiplicative) methods that use “post-Multi-LONMF”.

5. Conclusions

In this paper, various unsupervised hyperspectral unmixing approaches, based on
extensions of matrix factorization with non-negativity constraints and targeted at bilinear
or linear-quadratic mixing models, are introduced. For each of these models, firstly, two
approaches respectively based on projected gradient descent and multiplicative algorithms
are proposed for extracting hyperspectral endmember spectra. The reduction of the num-
ber of variables manipulated in these algorithms constitutes the main originality of the
proposed approaches. Moreover, three methods are then proposed to extend the above
algorithms so as to estimate the proportions, i.e., abundance fractions, of the endmem-
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bers and to possibly refine the endmember spectra estimates. This eventually results in
12 versions of the proposed overall unmixing methods.

Experiments, based on realistic synthetic hyperspectral data, generated according
to the two considered bilinear and linear-quadratic mixing models, and also on two real
hyperspectral images, were conducted with the above 12 proposed methods, and with
seven methods from the literature. The efficiency of all these methods was evaluated with
established performance criteria. The obtained results show that the preferred proposed
methods yield very satisfactory results, especially for hyperspectral endmember spectra
extraction. Moreover, the preferred proposed algorithms significantly outperform the
tested methods from the literature.

An interesting extension of this work may consist of using the proposed approaches
in the unmixing-based hypersharpening process. Indeed, the proposed approaches may be
used to extract spectral information from a high spectral resolution observable remote sens-
ing image and spatial information from a high spatial resolution one that covers the same
considered area. Then, the extracted high-resolution information will be merged, according
to the considered bilinear or linear-quadratic mixing model, to form an unobservable
remote sensing image with high spectral and spatial resolutions.
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