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Abstract: Outburst floods resulting from giant landslide dams can cause devastating damage to
hundreds or thousands of kilometres of a river. Accurate and timely delineation of flood inundated
areas is essential for disaster assessment and mitigation. There have been significant advances in
flood mapping using remote sensing images in recent years, but little attention has been devoted to
outburst flood mapping. The short-duration nature of these events and observation constraints from
cloud cover have significantly challenged outburst flood mapping. This study used the outburst
flood of the Baige landslide dam on the Jinsha River on 3 November 2018 as an example to propose a
new flood mapping method that combines optical images from Sentinel-2, synthetic aperture radar
(SAR) images from Sentinel-1 and a Digital Elevation Model (DEM). First, in the cloud-free region,
a comparison of four spectral indexes calculated from time series of Sentinel-2 images indicated
that the normalized difference vegetation index (NDVI) with the threshold of 0.15 provided the best
separation flooded area. Subsequently, in the cloud-covered region, an analysis of dual-polarization
RGB false color composites images and backscattering coefficient differences of Sentinel-1 SAR data
were found an apparent response to ground roughness’s changes caused by the flood. We carried out
the flood range prediction model based on the random forest algorithm. Training samples consisted
of 13 feature vectors obtained from the Hue-Saturation-Value color space, backscattering coefficient
differences/ratio, DEM data, and a label set from the flood range prepared from Sentinel-2 images.
Finally, a field investigation and confusion matrix tested the prediction accuracy of the end-of-flood
map. The overall accuracy and Kappa coefficient were 92.3%, 0.89 respectively. The full extent of
the outburst floods was successfully obtained within five days of its occurrence. The multi-source
data merging framework and the massive sample preparation method with SAR images proposed
in this paper, provide a practical demonstration for similar machine learning applications using
remote sensing.

Keywords: outburst flood; Sentinel-1; Sentinel-2; threshold; false color composite images; ground
roughness; random forest; multi-source geospatial data fusion

1. Introduction

In mountainous areas with rugged terrain and narrow valleys, large-scale landslides
often cause river blocking and produce severe explosive floods [1,2]. Due to the ultra-high
emissions, high-velocity fluxes and long-transport distances, outburst floods can cause
severe harm to people and economic losses along hundreds or thousands of kilometers
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along the river [3,4]. However, as these hazards tend to occur in harsh environments, com-
plex terrain, and scarce hydrological observation stations, there are very few recorded data
on floods caused by landslide dams [5]. There is an urgent need for developing outburst
floods mapping methods and enrich observation data for the scientific understanding of
geohazard chains that can result from them.

Remote sensing has become an essential tool for large-scale flood disaster monitoring
and mapping. In particular, the launch of the Sentinel satellites series increased the
availability of free high-quality remote sensing data [6]. Effective spectral indicators have
been identified to distinguish open or stagnant waters such as lakes, rivers and coastlines [7]
from non-water surfaces [8–11]. Compared with floods during the rainy season in the
Asian monsoon regions, the outburst flood is short-lived. Remote sensing images at the
peak of the flood are often challenging to obtain. Furthermore, optical images such as those
from Sentinel-2 are always expected in cloudy and rainy weather and adequate cloudless
data often cannot be acquired within a sufficiently short time interval after a flood.

Synthetic aperture radar (SAR) systems, which actively transmit radar pulse signals
and record satellite echo data, has the advantage of providing observation data through
cloud cover. Owing to transmitting and receiving radar signals in different polarization
modes, a radar image can obtain a rich polarization scattering matrix to reflect the inherent
characteristics of ground objects [12]. For instance, the Sentinel-1 SAR satellite is frequently
employed for flood detection [13]. Multi-temporal change detection analysis is considered
one of the most promising flood extraction methods [14]. The methods based on SAR
change detection include the KI algorithm [15], the generalized Gaussian model [16], the
regional growth [17], the HSBA-FLOOD method [18], the Change Detection and Thresh-
olding (CDAT) algorithm [19,20] and the Otsu adapting threshold (Otsu) [21]. Although
the SAR imaging system has advantages in making up for the lack of optical image data,
there are still challenges in distinguishing floods. Since these algorithms merely use image
differences, they often identify isolated pixels in non-flood areas as floods and create a ‘salt
and pepper’ phenomenon that results in the miscalculation of the true flood extent [22,23].
Furthermore, in many application scenarios, especially in complex terrain areas, SAR
data’s noise interference dramatically limits classification accuracy. These noises may be
caused by radar mountain shadows, random speckle noise in data acquisition and signal
distortion caused by wind or the presence of proximate buildings [24]. The inclusion of
additional auxiliary data in flood mapping observably contributes to reduce these mistakes
and optimize the classification performance [25]. As floods prefer to occur in low-lying
regions, terrain information derived from DEM, such as sinks and streamlines [26,27], are
also used to remove the non-flood prone regions. Nardi et al. [28] present the first global
floodplain dataset at 8.33 arcsecond resolution with the Shuttle Radar Topography Mission
(SRTM) digital terrain model. Some emerging technologies, such as unmanned aerial
vehicles (UAVs) and light detection and ranging (LiDAR), can provide high resolution and
accurate DEMs to support flood mapping and depth simulation in small-scale [29].

These latest studies used Sentinel-1 or Sentinel-2 data separately in flood mapping.
The combined use of time-intensive Sentinel-1 and Sentinel-2 data to improve classification
accuracy and timeliness has seldom been researched [30,31]. A number of studies have
demonstrated the potential of combining Sentinel-1 data with Sentinel-2 images to support
multi-scale flood extending assessment [32], automated training data selection [33] and
an increase in observation density during flooding events [34]. The existing combinatorial
modes of optical, SAR data for flood mapping usually put the Sentinel-2 multispectral opti-
cal image as the central part. VV/VH polarization’s backscattering coefficient obtained by
processing Sentinel-1 SAR images is added as a separate variable [35,36]. Machine learning
algorithms have remarkable advantages in dealing with such multi-source and massive
data in remote sensing applications [37]. Due to higher accuracy and anti-noise interference
ability, the random forest (RF) algorithm is superior to other classification algorithms. Its
good performance in the classification has been proved with a mass of satellite images
data [38]. However, when SAR data play a dominant role in flood mapping, constructing
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the variable feature set and preparing massive training samples are the primary difficulties
restricting the successful implementation of a machine learning algorithm.

While both optical and SAR images have been widely used for open water delineation
and flood mapping, there have been few short-duration explosive flood mapping applica-
tions. This study aims at addressing the challenges existing in mapping ephemeral floods
and cloud covering restriction, taking the outburst flood caused by the landslide dam
on the Jinsha River on 3 November 2018, as an example. A new method of collaborative
learning with a dense time series of optical images from Sentinel-2, SAR images from
Sentinel-1, and DEM data to map the outburst flood is proposed.

2. Study Area
2.1. The Outburst Flood Resulting from Baige Landslide Dam Break on 3 November 2018

Two river-blocking landslides occurred around the same location on the Jinsha River’s
right bank in Baige Village, Jiangda County, Tibet in 2018. (Figure 1).

Figure 1. Study area location and image range (Number indicates township code. NO 2, 17, 39 and 42
correspond to Bo luo country, Zhu balong country, Ju dian country, and Shi gu country, respectively).

This event provided the valuable opportunity to study the outburst flood resulting
from landslide dams [4,39]. The first damming landslide occurred on 11 October 2018 and
the barrier lake collapsed naturally two days later. On 3 November 2018, the landslide
occurred at the same location once again. The landslide dam height was 73~86 m and the
water level increased by 64.04 m, causing a much higher flood threat than the previous
one. After constructing an artificial flood discharge channel, the barrier lake with storage
of 5.78 × 108 m3 began flood discharge on 13 November. On 14 November at 13:00, the
flood peak arrived at Benzilan Hydrological Station (NO. 30). On 15 November, arrived
at Shigu Hydrological Station (NO. 42) at 8:00, arrived at Liyuan Reservoir (NO. 47) at
14:00, and here the flooding process ended. Forty-seven townships were affected, and
about 100,000 people were evacuated, resulting in a direct economic loss of 7.43 billion
RMB [40]. The study site extends from Jiangda County of Tibet to Ninglang County of
Yunnan Province, in the middle reaches of the Jinsha River, China (latitude/longitude:
26◦36′43′′~31◦30′36′′, 98◦17′44′′~100◦23′41′′) (Figure 1).
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2.2. Field Investigation

The research team conducted field investigations on the landslide barrier lake and the
downstream flooded area from 5 to 16 November and 9 to 19 December 2018, respectively.
Our field investigation covered the entire extent of the floods, except for some areas which
were restricted to traffic (Figure 2).

Figure 2. Field validation sites. Left: the distribution of validation sites; Right: (a–c): Scene photos
documenting flood damage.

The outburst flood caused substantial erosion and deposition damage to the river-
sides (Figure 2a, Zhu balong country, NO 17). Nine bridges were destroyed, more than
3000 buildings collapsed, and 3500 hectares of arable land were affected [41]. GPS was
employed to record flooded areas (Green squares) and non-flooded areas (Brown yellow
square). The flood trace can be surveyed from the wall flood marks (Figure 2b, Ya lang
country, NO 23) or bridge elevations recorded (Figure 2c, Ta cheng country, NO 36). A total
of 106 validation polygons were collected to evaluate the accuracy of the flood/non-flood
pixel classification.

3. Data
3.1. Sentinel-2 Dates

We downloaded a series of Sentinel-1 and 2 data freely at the Copernicus open access
hub from European Space Agency (https://scihub.copernicus.eu/dhus/#/home) (accessed
on 25 November 2018). All available Sentinel-2 optical data before and after the flood were
obtained (a total of 11 images). The data were available for 12 November, 14 November, and
19 November 2018. According to the image acquisition times, flood process and cloudiness,
the flood extraction application was divided into three scenes. In the first scenes, the image
can observe the ongoing flood appearance, which is defined as open flood, such as in the
landslide barrier lake (Figure 3a, Date: 12 November 2018) and ongoing flood downstream
(Figure 3b, Date: 14 November 2018). In the other two scenes, the flooding process ended
on 14 or 15 November, but the earliest image available was for 19 November, which failed
to observe the flooding. This is thus defined as end-of-flood, which is in a cloud-free
region in the second scene (Figure 3c, Date: 19 November 2018) and in a cloud-covered
region in the third scene (Figure 3d, Date: 19 November 2018). The spatial distribution and
characteristic parameters of the data are shown in Figure 1 and Table 1.

https://scihub.copernicus.eu/dhus/#/home
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Figure 3. Sentinel-2 images examples used with the different outburst flood scenes. Left: Spatial
distribution of three flood mapping scenes. Right: Image examples of corresponding scenes, (a) Open
flood, landslide barrier lake. (b) Open flood, ongoing flood. (c) End -of-flood in cloudless area.
(d) End-of-flood in the cloud-covered area.

Table 1. Sentinel-2 optical images characteristics used for this study.

ID Satellite Acquisition
Time Flooding Stage Cloudy

Percentage (%)

O1 Sentinel-2B 20181112T04:10 barrier lake 33.44
Sentinel-2A 20181114T04:00 ongoing 16.82

O2 Sentinel-2A 20181114T04:00 ongoing 29.14
O3 Sentinel-2A 20181114T04:10 ongoing 31.98
O4 Sentinel-2A 20181114T04:10 ongoing 16.85

Sentinel-2B 20181119T04:00 ended 18.88
O5 Sentinel-2A 20181109T04:02 not started 14.78

Sentinel-2B 20181114T03:59 not started 18.3
Sentinel-2B 20181119T04:00 ended 38.19

O6 Sentinel-2B 20181119T04:00 ended 46.17
O7 Sentinel-2B 20181119T04:00 ended 32.15

Major pre-processing procedures for Sentinel-2 images included radiometric cali-
bration, atmospheric correction, and resampling, which were executed on SNAP 8.0.0
(http://step.esa.int/main/download/snap-download/) and Sen2cor plug-in (http:
//step.esa.int/main/third-party-plugins-2/sen2cor/) (accessed on 25 November 2018).
Clouds and shadows detection is essential to limit their interference in optical images.
Here, we used for reference to the algorithm of time series the normalized differences
index (the combination of blue, the near-infrared (NIR), and the short infrared (SWIR1)
channels) from Ludwig et al. [25] to complete the separation of cloud-free and cloud-
covered regions. As shown in Figure 1, four main cloud-covered region (C1, C2, C3,
and C4) were masked out in the Sentinel-2 optical image along the mainstream of the
Jinsha River.

3.2. Sentinel-1 Dates

Three Sentinel-1 SAR scenes were downloaded in interference wide mode (IW) to
supplement the regions that could not be covered by optical images (Figure 1). The scenes
are for 3 November 2018 and 15 November 2018 (acquisition time: 23:20), corresponding
to before and end-of-flood scenarios, respectively. Sentinel-1 images with C band obtain

http://step.esa.int/main/download/snap-download/
http://step.esa.int/main/third-party-plugins-2/sen2cor/
http://step.esa.int/main/third-party-plugins-2/sen2cor/
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information in VV (vertical transmit radar pulse and vertical receive echo signal) and VH
(vertical transmit radar pulse and horizontal receive echo signal) polarization. Sentinel-1
image parameters are shown in Table 2. First, the preprocessing steps of orbit correction,
thermal noise removal and border noise removal were executed. Then, speckles resulting
from multiple scattering were removed with a Refined Lee filter with a 7× 7 kernel. Finally,
we used SRTM1 DEM data to complete the terrain correction and generated the backscatter
coefficient of VV/VH in dB.

Table 2. Sentinel-2 optical images characteristics used for this study.

Acquisition time before flood 20181103T23:19 Polarization VV/VH

Acquisition time after flood 20181115T23:20 Incidence angle 39.56◦

Number of SAR scenes 6 Product type IW-GRD

Spatial resolution 10 m View geometry Descending

Wavelength 5.6 cm Orbit cycle 154

3.3. DEM Date and Height Difference

The SRTM1 DEM data (30 m) were used to provide elevation information since the
root mean square error with the elevations from field hydrological observation stations
was the lowest of all available DEM data (https://earthexplorer.usgs.gov/) (accessed on
25 November 2018). Due to the V-shaped valley terrain, the flooded area was mainly
concentrated in the low-lying areas within a height difference of 200 m. Therefore, terrain
filters were fabricated to remove highlands that were unlikely to flood. We defined the
elevation difference as the difference between each pixel elevation and the lowest point
in the catchment unit. The catchment unit was extracted in the ArcGIS 10.2 hydrological
analysis modules. Then, the elevation difference data set was calculated in each catchment
unit. Finally, a threshold of 200 m was used to obtain the mask for the work area.

We obtained the work area of the “1103” Baige outburst flood, with an area of
587.31 km2, by setting the topographic filter and clipping the images. Based on clouds
and shadows detection, the work area was further divided into a cloud-free and a cloud-
covered area. The cloud-free area (410.65 km2) was mapped with the Sentinel-2 optical
images, identifying 47.14% ongoing flood and 22.78% of end-of-flood. The cloud-covered
area accounted for 176.66 km2 and distributed on four sections (C1, C2, C3, and C4) in
ongoing flood and end-of-flood regions, which occupied 30.08% of the total work area.

4. Methods

Given the challenges existing in mapping the end-of-floods and cloud covering re-
striction, this study proposed a cooperative learning strategy of optical and SAR images
(Figure 4).

(1) In the cloud-free region, we compared four spectral indexes calculated from time
series of Sentinel-2 images and found the optimal spectral index and threshold for the
end-of flood mapping. (2) In the cloud-covered region, the flood range from the Sentinel-2
image area was taken as prior knowledge, which guided us to explore influential feature
variables that could separate flood pixels in the Sentinel-1 images. (3) The RF algorithm’s
flood prediction framework was structured based on SAR images. The feature set was
used: The Hue-Saturation-Value (HSV) color feature of SAR images, the difference or
ratio of VV/VH polarization backscattering coefficient, and DEM data are combined to
construct 13 factors. Then, the flood pixels obtained from the Sentinel-2 optical images in
the cloudless area served as the label set of the training samples, and the pixels of unknown
category in the cloud-covered area were used as the prediction samples for the output.

https://earthexplorer.usgs.gov/
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Figure 4. The workflow of the proposed method for the outburst floods.

4.1. Flood Mapping Based on Sentinel-2 Optical Images in the Cloud-Free Area
4.1.1. Open Water Mapping (Barrier Lake and Ongoing Flood)

For 47.14% of the flooded area in the cloud-free zone, we used both the normalised
difference water index (NDWI) and modified normalised difference water index (MNDWI)
(Table 3), which all have been shown to be suitable for water recognition in previous
studies [8,9]. The indices share the same range of (−1~1), and a general threshold of 0 can
be used for separating water from land. Visual analysis indicated that the NDWI threshold
was −0.02 and that for MNDWI was 0.1. The flood pixels commonly identified by both
indices were used as the final submerged areas.

Table 3. Sentinel-2 optical images characteristics used for this study.

Spectral Indices Equation Band in
Sentinel-2 Characteristics Reference

NDVI NIR−R
NIR+R

NIR : band8
R : band4

−1 ≤ NDVI ≤ 1; (0.3~1.0) is vegetation, 0 is
rock or bare soil, less than 0 are clouds,

water, and snow.
[10]

NDWI G−NIR
G+NIR G : band3

−1 ≤ NDWI ≤ 1; Positive values are water
bodies, negative values are bare soil,

vegetation.
[8]

MNDWI G−SWIRI
G+SWIRI SWIRI : band11 The same features as NDWI. It enhances the

contrast between water and buildings. [9]

AWEInsh
4(G−SWIRI)

0.25NIR+2.75SWIR2
SWIR2 : band12 Further removing shadows are easily

confused with water. [11]
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4.1.2. Optimal Spectral Index for End-of-Flood Mapping

Based on the experience of Ludwig et al. [25] and Slagter et al. [42] in wetland clas-
sification, we exploited the properties of wet surfaces to strongly absorb radiation in the
NIR and SWIR1 bands, compared to dry soil or vegetation reflecting the wavelengths. For
22.78% of the end-of-flood area in the cloud-free zone, we compared the four most promis-
ing spectral indices, NDVI (normalized difference vegetation index), NDWI, MNDWI and
AWEInsh (the automated water extraction index, referred to as AWEI), which are all based
on combinations of the NIR and SWIR1 bands. The calculation formulas and characteristics
are shown in Table 3.

To verify the usefulness of these spectral indexes for end-of-flood mapping, the change
values were compared before and after flood occurrence in 5 adjacent days. The Sentinel-2
image area O5 was taken as an example (Figure 5). On 9 and 14 November before flood, the
spatial distributions of spectral values of the two images are consistent. While during the
following 5-day intervals between 14 and 19 November, the spectral indexes underwent
drastic changes. There was a substantial increase in the blue or blue-purple color areas
indicate water or hydrous surface, extending about 2 km inland of the riverbank at its
widest. Furthermore, NDVI showed the most apparent changes caused by the end-of-flood,
followed by NDWI.

To further confirm the optimal spectral index and accuracy of the threshold range, the
changes in spectral values in the river section were quantitatively analyzed. Consequently,
the representative observation section b was selected (Figure 5 red line b) on account
of a canyon topography and a full range of surface features, such as bottomland, bare
land, woodland, farmland, and buildings. Distinguishing the end-of-flood is based on
the observation before and after flood during a period of 5 days. Each spectral index has
a representative spectral interval for water and dry surfaces (Table 3). In comparison,
the transition zone from a typical dry surface to water is easily inferred as a humid
surface [43,44], which provides critical evidence for identifying traces of flood inundation.

River section b, the flood elevation is 1853 m and the flood range mainly concentrates
in 0~0.9 km, located on the right side of the river’s bank. Taking the NDVI curve as
an example (Figure 6), after the flood transited on 15 November, the value dropped to
(−0.1~0.2) on 19 November, which is lower than that of the dry surface (0.3) and slightly
higher than that of water (0), indicating the wet status of the end-of-flood pixels. In
addition, only NDVI and NDWI can be successfully used to identify flooded pixels at
elevations below 1853 m via appropriate thresholds on 19 November. MNDWI and AWEI
show “foreign objects with the same spectrum” noise on the left highland (−0.3~−0.8 km).
Those spectral values of non-flooded pixels are similar to those of flooded pixels on the
right bank, where the MNDWI value intervals are (−0.25~−0.22) and those of AWEI are
(−1.25~−1). We found the same false wet surface noises on the other steep mountains
oriented southward. Therefore, we explored the use of NDVI and NDWI for end-of-flood
mapping, and the potential threshold range was (0.05~0.20) for NDVI and (−0.30~−0.15)
for NDWI.



Remote Sens. 2021, 13, 2205 9 of 21

Figure 5. The Sentinel-2 four spectral indices. The time series were from 11.09 to 11.19. From left
to right, are NDVI, NDWI, MNDWI, AWEI, respectively. From top to bottom are observation dates
11.09, 11.14 and 11.19 in order; The blue dashed line between images on 11.14 and 11.19 indicates the
flood occurred date was 11.15. Line b is the river section location in Figure 6 and rectangular a is the
test area of Figure 7.

Figure 6. Time series of four spectral indices of profile b.
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4.1.3. Optimal Threshold for End-of-Flood Mapping

Based on the results in the previous section (Section 4.1.2), a test area around Judian
Town (No. 39) (Figure 5, rectangular a) was selected. Through artificial visual optimization
(Figure 7), we identified the thresholds of NDVI (0.15) and NDWI (−0.19) to be most
consistent with the flood scene photos. Particularly, when NDVI < 0.15, the inundation
area is remarkably consistent with the actual flood range (Figure 7, A–C). The partition of
the non-submerged area was also correct, as can be seen from the highland (Figure 7, F) in
the left bottom region and the lowland in the left corner (Figure 7, D).

Figure 7. Flood mapping experiments obtained from applying NDVI (middle row) and NDWI (last row) to the test site in Ju
Dian Town using Sentinel-2 images on 19 November 2018. (a) Google 3D view showing of the test site, (b) Flood transiting
scene photos for 8:00 a.m., 15 November 2018.

4.2. Effective Flood Mapping Features Based on Sentinel-1 SAR Images
4.2.1. RGB False Color Composites Images

The method of RGB false color composites (FCCs) can be applied to multi-polarization
backscattering intensity to generate a visual color effect just like with optical data [45]. The
FCCs of Sentinel-1 SAR image before and after the flood was produced for reference to
this background enhancement method. As shown in Figure 8a,b, there was no significant
difference between the two grayscale images before (3 November) and after (15 November)
the flood. A random combination of VV/VH polarization SAR images on 3 November
and 15 November shows unique color features in aqua (Figure 8c), bright green (Figure 8d)
and deep red (Figure 8e). The flood inundation region obtained from the Sentinel-2 optical
image was taken as a priori knowledge for comparison. When the color channels were
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assigned as follows: R: 11.03 VV; G: 11.15 VV; B: 11.15 VV (Figure 8f), the known end-of-
flood pixels could be enhanced the visual display.

Figure 8. Sentinel-1 FCCs images with difference combination of SAR polarization. (a) VV SAR image on 2018.11.03;
(b) VV SAR image on 2018.11.15; (c) R: 1103VV, G: 11.15VV, B: 11.15VH; (d) R: 1103VH, G: 11.15VV, B: 11.15VV; (e) R:
1103VV, G: 11.15VH, B: 11.15VV; (f) R: 1103VV, G: 11.15VV, B: 11.15VV. The white dotted line is the inundation range from
Sentinel-2 data.

Considering the interference of shadows from steep terrain, the validity of the FCCs
images was further tested on the valley sections of C1, C2 and C4. As shown in Figure 9a–c,
these inundated areas in the valley continue to be characterized by different aqua green
and deep red colors. Superimposing the grayscale back-scattering images before and after
flood indicated that the end-of-flood pixels could be distinguished, providing a visual basis
for the manual delineation of the end-of-flood in the cloud-covered area.

4.2.2. The Backscatter Difference on Sentinel-1 SAR Date

The backscatter coefficient change map of corresponding regions was calculated as the
difference between the VV-polarized SAR image of 15 November 2018, and 3 November
2018. When the FFCs images tend to show aqua green, the backscattering change is
positive. As shown in Figure 9a–c, these bright aqua green regions show high positive
values in the backscatter coefficient difference (above 10) (Figure 9a,c,d). The FFCs images
tend to be deep red, and the corresponding backscatter coefficient change is negative. In
Figure 9a, the deep red regions in the river bend correspond to high negative values of
(below −10) (Figure 9b). Based on these observations, we can infer that the backscatter
coefficient difference is an influential variable for outburst flood mapping as well. In
despite of complicated bidirectional change, these high value difference regions have a
good correspondence with the flood pixels referred to FCCs images.
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Figure 9. Sentinel-1 SAR FCCs images and VV polarized backscattering coefficient difference. (a–c) are FCCs images from
C1, C2 and C4 in Figure 1, respectively. (d–f) are VV polarized backscatter coefficient differences.

4.3. Flood Classification by RF Algorithm on Sentinel-1 Images in the Cloud-Covered Area
4.3.1. RF Algorithm

As an efficient ensemble learning algorithm, RF algorithm has been widely used to
classify many multi-source data in satellite images [37,46]. The RF model is composed
of many individual decision tree models that each tree fits a data subset sampled inde-
pendently using bootstrapping. Out of bag data is used to get both variable importance
estimations and an internal unbiased classification error as trees are added to the forest,
while bagging form of bootstrapping is used to randomly select samples of variable as
the training dataset for model calibration [47]. The outburst flood prediction model was
divided into three steps: Preparing training data sets, bootstrap samples for decision trees
and generation algorithm. In preparing the training data sets, a wide variety of relevant
features are necessary to reduce classification errors. To avoid over-fitting problems caused
by a data imbalance, the training set should be very large and balance the amount of flood
and non-flood samples before bootstrap samples. The optimal parameters of the model are
estimated by gradual optimization.

4.3.2. Feasible Features Combination
HSV Color Feature Extraction

To increase the color features’ effectiveness, the FCCs image was converted to the
HSV color space, which transforms the composite into hue, saturation, and value. Hue
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represents the position of the spectral color. The hues of red, green, and blue are apart
from 120◦. Saturation represents the ratio between the selected color saturation and the
maximum saturation. The value represents the brightness of the color. The conversion of
RGB to HSV is calculated as follows [48]:

V = max(R, G, B) (1)

S =
max−min

max
(2)

H =


60 G−B

max−min R = max
60 2+B−R

max−min G = max
60 4+R−G

max−min B = max
H + 360 H < 0

(3)

where R G B correspond to the red, green and blue channel, respectively, in this study, R
is 11.03 VV polarization; G is 11.15 VV polarization; B 11.15 VV polarization; max is the
maximum of R, G, B; min is the minimum of R, G, B.

Calculation of Backscatter Difference/Ratio Images

The change map of the polarization backscattering coefficient is the primary feature
of SAR images. VV polarization has an advantage in distinguishing surface roughness
changes, while the VH polarization is more sensitive to scattering changes of specific
ground objects [20]. The polarization scattering coefficient difference/ratio vectors are
constructed by intersecting VV and VH polarization data to fully extract the change
information of the backscatter coefficient. The calculation formula is as follows:

g(x, y) = gN+1
mn (x, y)− gN1

mn(x, y) (4)

f (x, y) =
f N+1
mn (x, y)

f N1
mn(x, y)

(5)

where g(x, y) and f (x, y) denotes backscatter difference and ratio, respectively. m and n
denote VV polarization and VH polarization, respectively. x and y denote the rows and
columns of pixels in the image. N + 1 denotes the images on 15 November after the flood,
and N1 denotes the images on 3 November before the flood.

Low-lying and flat areas are more likely to be flooded. Hence, the elevation difference
and slope obtained from DEM data are also a necessary auxiliary dataset. The dataset
integrating SAR image color features, scattering differences features and DEM data is
shown in Table 4, with 13 variables.

Table 4. Feature set for RF algorithm acquired from multi-source data.

Family Feature

HSV Color space (3) Hue, Saturation, Value

Differences (4) VVN + 1 − VVN1, VHN + 1 − VHN1, VVN + 1 −
VHN1, VHN + 1 − VVN1

Ratio (4) VVN + 1/VVN1, VHN + 1/VHN1,
VVN + 1/VHN1, VHN + 1/VVN1

DEM (2) Height difference, Slope

4.3.3. Training and Prediction Data

Whereas preparing massive training data through manual collection is time-consuming,
this paper uses the flood pixels obtained from the Sentinel-2 optical image in the cloudless
area as a label set of the training samples (the submerged/non-submerged pixels have
values of 1/0, respectively). A total of 1,263,500 training samples and 642,900 prediction
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samples were prepared (part as shown in Figure 10a). The ratio of flood to non-flood pixels
in the training samples approached 5:5.

Figure 10. RF algorithm flood mapping result. (a) Spatial distribution of training samples and
prediction samples, the cloud occlusion area C4 (Shigu Town, NO. 42); (b) Flood prediction results.
(c) The detailed mapping results of the red box.

5. Results
5.1. Prediction Mapping of RF Algorithm on Sentinel-1 Images

We executed the RF algorithm with Python 3.7 pandas and the scikit-learn module.
The optimal number of subdecision trees in the RF algorithm external frame was 101,
which was generated from the parameter optimization process from 0 to 120. To ensure
the efficiency of the operation, the maximum tree depth of each decision tree was set to 7.
The optimal parameters were selected to rerun the training set and the generalization error
was 98.63%.

The predicted results of the cloud-coverd region C4 were presented in Figure 10b. To
further evaluate and validate classification results, we magnify the area within the red box
shown in Figure 10c. The RF algorithm partitions the flooded area into pure and compact
objects. A distinct and integrated boundary is observed between the inundated and the
non-inundated area. The feature points of the inundated boundary are consistent with the
flood site photos (Figure 11, A–F). This indicates that the RF algorithm has an excellent
performance in the identification of the end-of-flood. For comparison, the flood mapping
methods of the (CDAT) algorithm [20] based on VV polarization were also executed. In
contrast, the results show widespread ‘salt and pepper’ and are not properly able to identify
the end-of-flood area (Figure 11d).
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Figure 11. The mapping results accuracy evaluation. (a) Google Image; (b,c) Flood transit scene
photos. Filming time: 12:00 a.m. of 15 November 2018. (d) the classification results of the region
using CDAT algorithm.

5.2. Flood Mapping Accuracy

The 106 flood verification areas collected in the field were converted into verification
points with a resolution of 10 m, and validation analysis using a confusion matrix was
constructed. According to user’s accuracy (UA), producer’s accuracy (PA), overall accu-
racy (OA) and Kappa coefficient [49], the accuracy of flood mapping based on Sentinel-2
threshold classification and Sentinel-1 RF algorithm were assessed.

The classification accuracy of the Sentinel-2 optical image mapping area is shown in
Table 5. The highest flood classification accuracy was obtained at NDVI < 0.15. The overall
accuracy and Kappa coefficients are 95% and 0.93, respectively. The UA and PA of flood
pixels and non-flood pixels are above 93%.

Table 5. Flood mapping with NDVI and NDWI accuracy assessment results on the Sentinel-2 image.

Classification Method Threshold Classification UA/% PA/% OA/% Kappa

NDVI
0.16

Flooded 92.28 96.92
94.5 0.92Non-flooded 96.94 92.21

0.15
Flooded 96.16 93.8

95 0.93Non-flooded 93.9 96.2

NDWI
−0.20

Flooded 91.89 96.4
94 0.92Non-flooded 96.32 91.6

−0.19
Flooded 95.73 93

94.4 0.92Non-flooded 93.14 95.8

In the Sentinel-1 SAR image mapping area, we compare firstly the accuracy between
RF algorithm with crossed change backscattering variables and the methods merely using
VV polarization. The overall accuracy and Kappa coefficient of the flood classification for
the RF algorithm are 90.4% and 0.85, respectively (Table 6), which were 12.67, 0.27 higher
than the CDAT algorithms, respectively. Furthermore, it was found that the combination
of HSV color parameters, SAR backscattering variables, and DEM data achieved the
highest classification accuracy. The overall accuracy and Kappa coefficient were 0.19 and
0.04 higher than those using only change backscattering variables.
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Table 6. Flood mapping accuracy assessment results on the Sentinel-1 SAR date.

Classification Method Classification UA/% PA/% OA/% Kappa

CDAT Flooded 76.11 80.35
77.73 0.58VV Non-flooded 82.2 84.13

RF Flooded 92.84 90
90.4 0.85Changes Non-flooded 87.67 90.86

RF Flooded 93.39 92.2
92.3 0.89Changes + HSV + DEM Non-flooded 92.21 91.57

5.3. Flood Area Statistics

Within five days of ‘1103’ Baige landslide dam outburst flood, the quantitative flood
inundation area of 47 towns were obtained, and the spatial distribution was shown in
Figure 12.

Figure 12. The spatial pattern of flooded area about “1103” Baige Landslide outburst flood.

Excluding the original water area (the Jinsha River area was 77.28 km2), the total
flooded area amounted to 101.75 km2. In the barrier lake region, four townships were
disturbed, and Bolo township (NO 2) was the largest, with an area of 9.86 km2. Downstream
of the outburst point, there were more than 25 townships with the flood inundation area of
0~5 km2. The distribution of the larger flood area was closely related to valley topography
and mainly concentrated in Jinsha River’s broad and low valley. The five largest-affected
towns are all located in the downstream Yu long country, Shangri-la country of Yunnan
Province, followed by Judian Town (NO 39), Shigu Town (NO 42), Jinjiang Town (NO
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40), Shangjiang Town (NO 38) and Liming Town (NO 41). The average submerged area is
10.83 km2, more than 500 km away from the barrier dam burst point.

6. Discussion
6.1. The Relationship of Backscatter Differences and the Outburst Flood

As a water surface is a specular reflector of radar signals, the echo signal received by
the satellite over water is very small. Compared with the stronger land scattering, flooding
generates a sizeable negative difference in backscattering coefficient [50]. However, unlike
the unidirectional negative change for flood mapping, in this case, there is a complex
bidirectional change (both positive and negative). We explored the nature relationship of
the bidirectional changes in the backscatter coefficient and the outburst flood by analyzing
field investigation. In general, changes in the backscatter coefficient of SAR images are
caused by variations in surface roughness, moisture content, and slope [51]. Surface
roughness is an especially crucial factor, and the rougher the surface, the stronger the
backscatter [52]. Extensive field investigations show that the high-speed sand-gravel
outburst flood caused severe erosion and sedimentation along the Jinsha River, leading
to the apparent surface structure and backscatter coefficient changes after the flood. The
regions analyzed in Figure 9 are examples. As shown in Figure 13A (the corresponding
region in Figure 9a), the high-velocity flood scoured the open ground on the left bank,
impacting an area of 54,428.7 m2.

Figure 13. Damage photos of scouring and silting after the flood. (A–D) correspond to areas in
Figure 9, (A–D).

The collapsed buildings and the fragmentation of the bed roughed the surface struc-
ture. As a result, the ground backscatter was increased, resulting in a positive difference
in backscatter. A similar situation can be observed in Figure 9c, where the roads were
destroyed, and their width went from 5.0 m to 2.6 m. The fresh sharp bedrock of the
subgrade was exposed and increased the ground backscattering (Figure 13C). Moreover,
following hydrodynamic force weaken downstream, the ability of the flood to rough the
surface decreases accordingly. Wherefore the difference in Figure 9c is mainly between 2
and 10 and the disturbance of cultivated land is like in Figure 13D. For the negative values
of the backscatter coefficient differences (Figure 9b), the flood ended on 14 November.
Wash load and suspended deposition subsided at the steep river bend and the river shoal
area on the left increased from 31,945 m2 to 38,296 m2. Fine and smooth sediment particles
covered the gravel on the beach with a thickness of up to 1.3 m (Figure 13B). The newly
emerged smooth surface decreased the intensity of the ground backscatter. Unlike the
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change in water content, the surface roughness change is durable, providing the variables
needed for distinguishing the end-of-flood from SAR images.

6.2. Reliability of Flood Mapping Using a Collaborative Learning Method

Compared with the information obtained from HH polarization in the L band (such
from PALSAR), the C band of the Sentinel-1 satellite provides limited change detection abil-
ity [53]. The method in this study overcomes these limitations, demonstrating an excellent
performance. High accuracy flood ranges from Sentinel-2 image laid a good foundation in
collaborative learning for Sentinel-1 flood mapping. The construction of relevant features
combination plays a crucial role as well. The weight of the 13 variables were ranked via RF
algorithm, as was shown in Figure 14. The variables whose importance exceeded 0.1 were,
in order, height difference, hue, slope, VN + 1 − VN1 and VVN + 1 − VHN1. This shows
that the elevation difference, topographic slope and hue parameters of the color features
are fundamental to flood pixel prediction. The detailed information indicating flooded
areas hidden in the grayscale SAR images was highlighted with FCCs images. Moreover,
the color features and the DEM data show more uniform gradient properties and lower
variability compared with the backscatter coefficient differences. This combination use can
efficiently reduce the speckle noise inherent in SAR multi-polarization scattering images.
Consequently, the non-flooded pixel UA was increased from 87.67% (Changes) to 92.21%
(Changes + HSV + DEM). In addition to the VN + 1 − VN1 polarization variable, the cross-
polarization difference/ratio (VVN + 1 − VHN1, VVN + 1/VHN1) are sensitive to the change
of ground roughness. When the data set combined the crossed VV and VH polarization,
both the PA and UA of the flood pixels and non-flood pixels have been improved notably,
showing a better monitoring ability than single-polarization data.

Figure 14. Feature importance ranked by the RF algorithm, HD, S is relative height difference and
slope, Hu, St, and Va are hue, saturation, value of the HSV Color space; V,v is VVN + 1 and VVN1 and
H, h are VHN + 1 and VHN1 respectively.

As this was the first application of short-duration flood mapping, the preprocessing,
spectral analysis, and machine learning of the original images were performed on SNAP,
ArcGIS, ENVI and Python platforms, which required rereading the data several times,
lowering the processing speed. The use of a cloud platform such as Google Earth Engine
can improve processing efficiency in future work.

7. Conclusions

Outburst floods caused by large-scale landslides create hazards that are often more
severe than the landslides themselves. Given the challenges existing in mapping ephemeral
outburst floods in cloud-covered areas, the RF algorithm’s flood mapping framework was
based on SAR images. A combination of features with 13 variables integrating SAR FCCs
image, backscatter differences and DEM data was created and a massive label set of training
samples was acquired from Sentinel-2 optical images, providing a practical demonstration
for similar machine learning applications using SAR images. The combination of the
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Hue-Saturation-Value color features and DEM can efficiently reduce the speckle noise
inherent in SAR multi-polarization scattering images. Despite the practical barriers owing
to image acquisition, format conversion and computational burden, field investigations
and accuracy assessments have demonstrated the excellent performance of this method.
This study presented the first mapping application of short-duration floods derived from
landslide dam breaking using remote sensing images, which can be used to accelerate the
evaluation of flood loss and emergency response in landslide hazard chains.

Author Contributions: Z.Y.: writing—original draft preparation; J.W.: writing—review and editing
and funding acquisition; J.D.: Investigation, Resources, and Project administration; Y.G. and S.Z.:
Investigation, Methodology and Validation; Z.H.: Software; Supervision. All authors have read and
agreed to the published version of the manuscript.

Funding: This study was financially supported by National Key R&D Program of China (2018YFC1505006)
and National Natural Science Foundation of China (No. 41977246).

Data Availability Statement: The data present in this study are openly available in the Sentinel Data
Hub (https://scihub.copernicus.eu/dhus/#/home) (accessed on 25 November 2018) and DEM date
repository (https://earthexplorer.usgs.gov/) (accessed on 25 November 2018). More field data and
code programs can be accessible from the corresponding author upon request.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

Acronym Description
AWEI Automated water extraction index
CDAT Change detection and thresholding
DEM Digital elevation model
FCCs RGB false color composites method
HSBA Hierarchical split-based approach
HSV Hue-saturation-value color space
IW Interference wide mode
KI Kittler and Illingworth
MNDWI Modified normalised difference water index
NDVI Normalized difference vegetation index
NDWI Normalised difference water index
NIR Near-infrared band
LiDAR Light detection and ranging
OA Overall accuracy
Otsu Otsu adapting threshold
PA Producer’s accuracy
RF Random Forest algorithm
SAR Synthetic Aperture Radar
SRTM Shuttle Radar Topography Mission
SWIR Shortwave infrared band
TCT Tasseled Cap Transformation
UA User’s accuracy
UAV Unmanned Aerial Vehicle
VH Polarization of vertical transmit-horizontal receive
VV Polarization of vertical transmit-vertical receive
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