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Abstract: Variations in the Martian surface temperature indicate patterns of surface energy exchange.
The Martian surface temperature at a location is similar to those in adjacent locations; but, an
understanding of temperature clusters in multiple locations will deepen our knowledge of planetary
surface processes overall. The spatial coherence of the Martian surface temperature (ST) at different
locations, the spatio-temporal variations in temperature clusters, and the relationships between ST
and near-surface environmental factors, however, are not well understood. To fill this gap, we studied
an area to the south of Utopia Planitia, the landing zone for the Tianwen-1 Mars Exploration mission.
The spatial aggregation of three Martian ST indicators (STIs), including sol average temperature
(SAT), sol temperature range (STR), and sol-to-sol temperature change (STC), were quantitatively
evaluated using clustering analysis at the global and local scale. In addition, we also detected the
spatio-temporal variations in relations between the STIs and seven potential driving factors, including
thermal inertia, albedo, dust, elevation, slope, and zonal and meridional winds, across the study area
during 81 to 111 sols in Martian years 29–32, based on a geographically and temporally weighted
regression model (GTWR). We found that the SAT, STR, and STC were not randomly distributed
over space but exhibited signs of significant spatial aggregation. Thermal inertia and dust made
the greatest contribution to the fluctuation in STIs over time. The local surface temperature was
likely affected by the slope, wind, and local circulation, especially in the area with a large slope and
low thermal inertia. In addition, the sheltering effects of the mountains at the edge of the basin
likely contributed to the spatial difference in SAT and STR. These results are a reminder that the
spatio-temporal variation in the local driving factors associated with Martian surface temperature
cannot be neglected. Our research contributes to the understanding of the surface environment that
might compromise the survival and operations of the Tianwen-1 lander on the Martian surface.

Keywords: Martian surface temperature; spatial clusters; driving factors; spatial-temporal variation

1. Introduction

The Martian surface temperature can be used to diagnose processes occurring at
and just below the surface of Mars. Moreover, an understanding of the near-surface
Martian climate could help to determine whether the planet has the conditions to sustain
life [1]. Surface temperature is one component of the near-surface climate, indicating
the exchange and interaction of heat and momentum between the surface and the near-
surface atmosphere [2]. Spatio-temporal variation in the Martian surface temperature could
be used to infer the thermophysical properties and the physical processes occurring at
the surface and the shallow subsurface [3]. Surface temperature is also relevant to Mars
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exploration missions, since the surface is the environment where a potential lander will
operate; thus, the temporal and spatial variation range of the surface temperature must be
considered in order to enable a lander to survive [4].

Since the 1970s, a large number of Mars exploration missions have been conducted
to collect data about Mars, including climatic information. The National Aeronautics and
Space Administration (NASA) and European Space Agency (ESA) have all vigorously
pursued the study of the Martian surface temperature. Kieffer et al. (1976) drew a map of
the global surface temperature of Mars based on the data from the Viking infrared thermal
mapper, finding that the Martian surface temperature varies by region, day, and season [5].
This variation is related to the sunlight flux across seasons and geographical locations, as
well as the physical properties of the near-surface geological materials, including grain
size, rock abundance, and degree of exposed and hardened bedrock [6]. Many studies
have noted temporal and spatial heterogeneity in the surface temperature of Mars [1,7–9].
Like the Earth, the surface temperature of Mars, and its changes, are not only spatially
heterogeneous but also exhibit different levels of spatial coherence [10]. The consistency in
temperature and temperature changes across a large geographical region means that the
surface physical properties in this region of Mars are similar to those on Earth. Similarly,
extreme weather on Mars can lead to adverse effects simultaneously across a large area.

In terms of meteorology and climate, the atmosphere of Mars is the closest to the Earth.
It has a thin atmosphere (mainly composed of carbon dioxide, around 96% by volume [1]),
and the rotation speeds and angles of inclination are similar Therefore, the meteorology and
climate systems of the two planets have many qualitative similarities. The difference is that
Mars is farther from the Sun, is smaller in size, has a thinner atmosphere, and is without
liquid oceans, clouds, and other complex features such as a biosphere, which makes Mars
quite different from Earth [1]. Furthermore, on Mars, the degree of spatial coherence of
the surface temperature between different regions is not yet clear. Spatial autocorrelation
measures the degree of spatial correlation based on the sample locations and sample values,
and can reveal whether a spatial pattern expressed by the samples is a clustered, discrete,
or random pattern [11,12]; it could be measured using Moran’s I index, a standard method
to measure spatial autocorrelation, using the Global Moran’s I at the global scale [13] and
the Local Moran’s I at the local scale [11]. Nevertheless, this spatial autocorrelation method
has not been used to detect the spatial pattern of the Martian surface temperature, to the
best of our knowledge.

The spatio-temporal variation in Martian surface temperature could be caused by
multiple factors, such as the thermal inertia and albedo/emissivity of the surface materials,
wind, dust, and topography. These influencing factors can also change with time and space.
For example, dust storms at various scales on Mars are normal, and small (local) dust
storms occur frequently, but large dust storms occur approximately once every three years,
usually in the spring and summer in the southern hemisphere [14–16]. Spiga et al. (2011)
found that on steep slopes with a low thermal inertia terrain, the effect of meso-scale winds
on the surface temperature is particularly apparent [17]. Richardson et al. (2002) found that
the huge topographical difference between the northern and southern hemispheres of Mars
could lead to atmospheric circulation that to a large extent controls the transmission of
water and large amounts of dust in the atmosphere between the hemispheres, which affects
the Martian surface climate [18]. Some studies focused on the interaction between the
atmosphere and the climate, finding that the cycle of CO2 sublimation and condensation
plays a major role in climate change [19–21]. Therefore, quantifying the changes in the
temporal and spatial relationships between surface temperature and the influencing factors
permits the prediction of future global and regional temperature trends on Mars.

Traditional regression models, such as ordinary least squares regression (OLS), yield
estimated relationships that are stable in time and space, but these methods do not consider
the spatial and temporal heterogeneity of variables, and a quantitative model is needed to
estimate the spatial and temporal relationship between the Martian surface temperature
and its potential influencing factors. A geographically and temporally weighted regression
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model (GTWR) can emphasize the non-stationarity of variables in time and space simul-
taneously, based on spatio-temporally weighted matrices [22]. Hence, this model could
account for the spatio-temporal variation in the relationships between Martian surface
temperature and the potential driving factors, and thus could be used to evaluate the
driving factors affecting Martian surface temperature in various areas and time.

Our study provides a new perspective on the spatio-temporal distribution of the Mar-
tian surface temperature based on spatial autocorrelation analysis and a GTWR model. The
Chinese Mars mission’s Tianwen-1 rover landed on Mars on 15 May 2021. The survival and
work of the Martian lander on the surface is related to the temporal and spatial variation of
the surface temperature of Mars. Our study was performed in the south of Utopia Planitia,
the landing area of the Mars mission Tianwen-1. To characterize the Martian surface temper-
ature, we selected three surface temperature indicators (STIs), including sol (sol represents
a solar day on Mars), average temperature (SAT), sol temperature range (STR), and sol-to-
sol temperature change (STC). The present study aims to (1) determine the degree of global
and local spatial autocorrelation of STIs using the Global Moran’s I and Local Moran’s I;
(2) quantitatively estimate the parameters that affect the spatio-temporal changes in STIs
using the GTWR model; and (3) map the coefficients of each possible factor to demonstrate
that the effects of the possible factors on the STIs are spatio-temporally heterogeneous.

2. Methods
2.1. Study Area and Data Sources

The meteorological changes on the surface of Mars will have a great impact on the
work of the Mars Landing Rover, so we chose the south of Utopia Planitia, the landing area
for the China Mars Exploration Tianwen-1, as the study area of this research. Moreover,
we expanded the compass of the study region to fully capture all the sites that the rover
might traverse. As shown in Figure 1, the latitude of the study area ranged from 5◦ N to
30◦ and the longitude of the study area ranged from 80◦ E to 160◦ E. The northern part of
the study area is in the Utopia Planitia, the eastern part is Isidis Planitia, and the southern
part is Nepenthes Mensae.

Figure 1. The location of the study area (a), the elevation distribution (b), and the average dust distribution (c) during sol
81–111 from Martian year 29 to 32 across the study area.
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The study area is divided into 34 geological units with a total of 12 geological types
according to geological map of Mars from the U.S. Geological Survey (USGS) [23], as shown
in Figure 2.

Figure 2. Geological map of the study area. A description of the geology units is listed in the Appendix A.

The surface has similar physical and chemical properties within a geological unit, such
as the areas shown in Figure 2; thus, it can be used to explain the distribution of surface
temperature. This research employed a 5◦ × 5◦ grid as the basic spatial unit to perform
an empirical spatio-temporal analysis. The temporal range of analysis was the period
corresponding to the landing time of the Tianwen-1 lander on Mars. Like the spatial range,
we also extended this period appropriately as the research time range. The landing time
was 15 May 2021. May 2021 on Earth corresponds to 81 sol to 111 sol of Martian year 36.
Therefore, we conducted a spatio-temporal analysis of the surface temperature in the study
area from 81 to 111 sols in each year from Martian year 29 to Martian year 32 (Martian year
29 to 32 corresponds to the Earth period from 7 December 2007 to 18 June 2015.). Three
types of data were used in this study, including climate, topographic, and surface thermal
attribute data.

The climate dataset, including surface temperature, dust, zone wind, and meridional
wind during 81 sol to 111 sol in Martian year 29–32, was collected from the Open access
to Mars Assimilated Remote Soundings (OpenMARS) database [24]. The climate data set
has a temporal resolution of two Martian hours and a spatial resolution of five degrees of
latitude and longitude. We calculated the surface temperature indicators (STIs), including
sol average temperature (SAT), sol temperature range (STR), and sol-to-sol temperature
change (STC), for each sol. The sol temperature range (STR) was defined as the difference
between the maximum and minimum temperature of a Martian sol.

STRt = TMAXt − TMINt (1)

where STRt represents the sol temperature range for sol t, and TMAXt and TMINt repre-
sent the maximum temperature and minimum temperature for sol t, respectively.

The sol-to-sol temperature change (STC) is estimated as the difference between the sol
average temperatures over two consecutive sol days.

STCt = SATt − SATt−1 (2)
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where STCt denotes the change in average sol temperature for the sol t, and SATt and SATt−1
denote the average sol temperature for the sol t and the previous sol t− 1, respectively.

The DEM (Digital Elevation Model) at 200 m resolution was obtained from Astrogeol-
ogy PDS Annex, U.S. Geological Survey [25]. Based on the elevation data, the slope was
extracted with the ArcGIS tool designed for this purpose. The surface thermal attributes
data used in this study include surface thermal inertia and albedo. The nighttime surface
thermal inertia (TI) map [26] with a resolution of 20 pixels per degree was selected from
the Planetary Science Institute (https://sharad.psi.edu/inertia/ (accessed on 4 June 2021)).
The surface albedo data [7] with a 7400 m resolution was obtained from the Astrogeology
Science Center (https://astrogeology.usgs.gov (accessed on 4 June 2021)). A database with
a 5◦ × 5◦ grid unit scale was constructed using the Zonal Statistics Tool in ArcGIS10.6.
Python, R software, and Excel were used for data preprocessing and Geoda and ArcGIS10.6
for analysis and mapping.

2.2. Spatial Correlation Analysis
2.2.1. Global Spatial Correlation: Global Moran’s I

In order to explore whether the STIs of Mars at a certain location is affected by the STIs
of its surroundings, we used spatial autocorrelation to estimate the spatial dependence.
The Moran’s I index [13] is a standard method to measure spatial autocorrelation. It can
assess the pattern of a data set spatially and evaluates whether the spatial pattern is
dispersed, clustered, or random based on the geographical locations and attributes of the
data. This study employed Moran’s I to explore whether the distribution of the Martian
STIs (including SAT, TSR and TSG) is clustered or not. The expression for Moran’s I is
described in Equation (3):

I =
n ∑n

i=1 ∑n
j=1 wij(xi − x)

(
xj − x

)(
∑n

i=1 ∑n
j=1 wij

)
∑n

i=1(xi − x)2
(3)

where n is the number of geological units in the study area, xi and xj are the STI (SAT, STR
and STC) values of the geological units at location i and j, respectively, x is the mean value
of the STI, and wij is the the spatial weight between the geological units at location i and j.
Generally, when the geological unit i and geological unit j are adjacent, wij = 1; when not
adjacent, wij = 0.

The significance of the Moran’s I index is validated by a z-score and p-value. The
z-score for the statistic is computed as

Z =
I− E[I]√

V[I]
(4)

where
E[I] = −1/(n− 1) (5)

V[I] = E
[
I2
]
− E[I]2 (6)

In this study, the global Moran’s I was used to compute the degree of spatial autocorre-
lation in the whole study area based on 9999 permutations at the significance level p < 0.001.
The range of Moran’s I index is (−1, 1). When the value of the Moran’s I > 0, it indicates
that the STI shows a positive spatial correlation; that is, the pattern observed is clustered
spatially, but the closer its value is to 1, the stronger the positive spatial correlation. When
Moran’s I < 0, then the STI exhibits a spatially negative correlation; that is, the pattern
observed is scattered or dispersed spatially, but the closer its value is to -1, the stronger the
negative spatial correlation. When the value of the Moran’s I index is close to 0, it means
that the STR is randomly distributed in space.

https://sharad.psi.edu/inertia/
https://astrogeology.usgs.gov
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2.2.2. Local Spatial Correlation: Local Moran’s I

The Global Moran’s I Index can measure the degree of spatial autocorrelation across
the whole study area, but there is usually heterogeneity in different geographic locations;
thus, the degree of spatial autocorrelation is not stable locally. The Local Moran’s I [11]
is a local extension of the Global Moran index, and used as a local indicator of spatial
association (LISA). It can calculate the degree of spatial autocorrelation for every local
location. Therefore, the Local Moran’s I for the STIs was employed to test whether the
value of SAT, STR, and STC showed high–high (HH), low–low (LL), high–low (HL), or
low–high (LH) spatial distribution patterns, which is expressed by Equation (7) [11]:

Ii =
xi − x

σ2
i

n

∑
j=1,j 6=i

wij
(
xj − x

)
(7)

where xi is the STI value for the geological unit at location i, x is the mean of the STI with
the geological number n, and wij is the spatial weight between the geological units at
location i and j, and σ2

i is the variance of x:

σ2
i =

∑n
j=1,j 6=i

(
xj − x

)2

n− 1
− x2 (8)

The z-score for the statistic is given by

Zi =
Zi − E[Ii]√

V[Ii]
(9)

where

Ei = −
∑n

j=1,j 6=i wij

n− 1
(10)

V[Ii] = E
[

I2
i

]
− E[I]2 (11)

In this study, the Local Moran’s I was employed to explore the spatial clusters and
outliers of each of geological unit based on 9999 permutations with the significance level
p < 0.001. A Local Moran’s I value > 0 indicates to the spatial unit under study that has
similar STI values as its adjacent spatial unit, which are HH clusters or LL clusters. Two
areas are defined to be adjacent if they share a border. When the Local Moran’s I value < 0 I,
then the STI value of a spatial unit is quite different from its adjacent spatial units; these
are the HL outliers and LH outliers.

2.3. Regression Models
2.3.1. Geographically Weighted Regression Model (GWR)

The Geographically Weighted Regression model (GWR) [27] is an extension of the
traditional regression models, and can estimate the spatial non-stability of the regression
parameters. The GWR model is expressed in Equation (12):

yi = β0(ui, vi) +
p

∑
k=1

βk(ui, vi)xik + εi (12)

where yi denotes the value of the STI of geological i, (ui, vi) denotes the geographical
location (latitude, longitude) of geological unit i; βk(ui, vi) is the kth parameter of geological
unit i, varying with the location of geological unit i; β0(ui, vi) is the intercepts at a location
(ui, vi); xik is the value of the kth explanatory variable of the STI at location i; and εi is the
error term.
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2.3.2. Geographically and Temporally Weighted Regression Model (GTWR)

Although the GWR model can handle the spatial heterogeneity of the regression
coefficients, it does not take temporal variation into consideration. Thus, Huang and
Wu (2010) [28] proposed the geographically and temporally weighted regression model
(GTWR) based on GWR, which manages both spatial and temporal heterogeneity The
GTWR is described in Equation (13):

yi = β0(ui, vi, ti) +
p

∑
k=1

βk(ui, vi, ti)xik + εi (13)

where yi is the value of the STI at location (ui, vi) at time ti; (ui, vi, ti) denotes the spatial-
temporal coordinate (latitude, longitude, time) of geological unit i at time ti; βk(ui, vi, ti)
is the kth parameter of geological unit i, varying with both geographical location (ui, vi)
and time ti; β0(ui, vi, ti) represents the intercepts at a specific location (ui, vi) and time ti;
xik is the value of the kth explanatory variable of STI at location i at time ti; and εi is the
error term.

3. Results
3.1. Descriptive Statistics of the Data
3.1.1. Spatial Heterogeneity of the Surface Temperature

We calculated the average temperature of the Tianwen-1 landing period (sol 81–111),
corresponding to Martian years 29 to 32. Using these temperature data, we drew a surface
temperature map to help understand the spatial pattern of the surface temperature in
the study area. Figure 3 shows the average surface temperature during sol 81–111 from
Martian years 29 to 32.

Figure 3. The average surface temperature during sol 81–111 from Martian years 29 to 32.

From Figure 3, we can see that the spatial distribution of the temperature was het-
erogeneous. The highest average temperature was 221.76 K, mainly distributed in the lHl
geological unit (Figure 2) in the southwest. The lowest average temperature was 209.01 K
found in the AHv geological unit (Figure 2) located in the northeast. This indicates that
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temperature is not stable in space; further research revealed that the surface temperature
was also not stable in time.

3.1.2. Temporal Temperature Trends

The Martian surface temperature not only shows spatial heterogeneity but also exhibits
temporal variation. We describe the trends in three STIs over time. Figure 4 shows the
change in sol average temperature (SAT), sol temperature range (STR), and sol-to-sol
temperature change (STC) over time during the period sol 81–111 in Martian years 29–32.

Figure 4. The change in sol average temperature (SAT), sol temperature range (STR), and sol-to-sol temperature change
(STC) over time during the period sol 81–111 in Martian years 29–32.

As shown in Figure 4, all three temperatures varied with time. The SAT (Figure 4a)
and STR (Figure 4b) decreased from 81 to 111 sols every Martian year. The SAT (Figure 4a)
showed little change over time, ranging from 218.23 K (in sol 81 of Martian year 29) to
218.94 K (in sol 111 of Martian year 30). The temperature varied greatly in a sol, and the
average STR in the study period was 81.84 K. The maximum STR was 83.03 K, appearing
on the 81st sol of the 32nd Martian year, and the minimum STR was 81.00 K, appearing in
the 102nd sol of the 30th Martian year. The STC fluctuated slightly over time (Figure 4c).
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3.2. Spatial Correlation Diagnosis
3.2.1. Global Moran’s I for Temperature

The Moran’s I was introduced to estimate the global spatial correlation for sol average
temperature (SAT), temperature range (STR), and sol-to-sol temperature change (STC). The
results of the Global Moran’s I for the SAT, STR, and STC during sol 81–111 from Martian
years 29 to32 are shown in Figure 5.

Figure 5. The trend in global spatial autocorrelation (p < 0.001) for sol average temperature (a), sol temperature range (b),
and sol-to-sol temperature range (c) during sol 81–111 from Martian years 29 to 32 in the study area.

As seen in Figure 5, the Moran’s I values of the three kinds of temperatures are all
significant (p < 0.001) and positive, indicating that the surface temperature was spatially
correlated. Furthermore, the results of spatial correlation diagnosis indicate that the distri-
bution of SAT, STR, and STC were not random, as their distribution displayed significant
spatial aggregation.

3.2.2. Local Moran’s I for Temperature

The Local Moran’s I was conducted to test for local spatial autocorrelation in the sol
average temperature (SAT), temperature range (STR) and sol-to-sol temperature change
(STC) during sol 81–111 from Martian years 29 to32 in the study area. We created ag-
glomeration maps for SAT (Figure 6), STR (Figure 7), and STC (Figure 8) based on local
indicators of spatial association (LISA) [11]. The agglomeration maps include high–high
(HH), low–low (LL), high–low (HL), and low–high (LH) clusters.
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Figure 6. LISA map for sol average temperature (SAT) during sol 81–92 in Martian year 29. The
LISA maps for SAT during sol 81–111 from Martian year 29 to 32 are provided in the Supplementary
Materials (Figures S1A–D).

Figure 7. LISA for sol temperature range (STR) during sol 81–92 in Martian year 29. The LISA
maps for STR during sol 81–111 from Martian years 29 to 32 are in the Supplementary Materials
(Figures S2A–D).
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Figure 8. LISA for sol-to-sol temperature change (STC) during sol 81–92 in Martian year 29. The
LISA maps for STC during sol 81–111 from Martian years 29 to 32 are in the Supplementary Materials
(Figures S3A–D).

In the SAT agglomeration map (Figure 6), the HH clusters refer to regions with high
SAT surrounded by other regions with high SAT values. The HH SAT clusters are clearly
visible and concentrated (Figure 6) in the southwestern part and central part of the study
area, covering geological units including lHl, Ahi, eHt, mNh, and eHv. The LL SAT clusters,
however, are distributed in the HNT, mNh and lAv geological units in the eastern part of
the study area. The distribution of the SAT clusters was also related to topography. The
HH clusters of SAT are distributed in relatively flat areas at a low elevation, while the
LL clusters are located in areas of relatively steep terrain at a high elevation. The factors
influencing this spatial pattern will be discussed in Section 3.3.

In the local spatial autocorrelation STR map (Figure 7), the HH clusters were defined
as the regions with high STR surrounded by other regions with high STR (the definition
is similar to those for LL, HL, and LH). The HH STR clusters are concentrated in the
northeastern part of the study area, and the types of geological units covered by these
areas mainly include Av, AHv, and lHl geologies. During the study period, the average
atmospheric dust concentration in regions with HH STR clusters was relatively low. The
distribution of the LL STR clusters is similar to that of the HH SAT clusters, mainly
distributed in geological units lHl Ahi, eHv, and mNh in the southwestern region at a
relatively low elevation. As shown in Figure 8, unlike the spatial clusters of SAT and STR
that changed only slightly over time, the distribution of the STC clusters were scattered
and changed significantly over time. These spatial aggregation patterns may be caused by
multiple local factors. Based on this analysis, we applied a new model that considers spatial
variations to explore the relationship between temperature and the affecting factors, instead
of using the traditional models that only consider global correlations but neglect spatial
variation. Thus, the GWR and GTWR models were selected to estimate the relationship
between temperature and some potential affecting variables.
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3.3. Temporal and Spatial Variation in the Relations between the STIs and Affecting Factors

Due to the different units of the impact factors of STIs in this study, we used the
min–max feature scaling method to normalize the data to (0,1). A multi-collinearity test for
each independent variable was performed before conducting GTWR; a stepwise regression
analysis for all variables and selected variance inflation factor (VIF) test: when VIF > 7.5,
there is multi-collinearity among the independent variables, as in other studies [29,30].
The results are shown in Table 1. The results show that the VIF value of each variable was
less than 7.5. The mean VIF of the SAT group, STR group, and STC group was all 1.97.
Therefore, the collinearity of all variables is not clearly apparent.

Table 1. Stepwise regression multicollinearity test results.

Dependent Variables Independent Variables Coefficient p-Value VIF

SAT Dust 0.309 0.000 1.449
Zonal wind −0.075 0.000 1.037

Meridional wind −0.022 0.000 1.097
Albedo −0.184 0.000 1.865

Thermal Inertia 0.653 0.000 1.347
Elevation −0.112 0.000 4.118

Slope −0.009 0.234 2.886
STR Dust −0.061 0.000 1.449

Zonal wind 0.053 0.000 1.037
Meridional wind −0.205 0.000 1.097

Albedo 0.112 0.000 1.865
Thermal Inertia −0.880 0.000 1.347

Elevation −0.107 0.000 4.118
Slope 0.086 0.000 2.886

STC Dust −0.004 0.765 1.449
Zonal wind 0.032 0.006 1.037

Meridional wind 0.091 0.000 1.097
Albedo 0.014 0.374 1.865

Thermal Inertia 0.065 0.000 1.347
Elevation 0.143 0.000 4.118

Dust 0.309 0.000 1.449

In order to explore the spatial-temporal heterogeneity, we applied four models, namely,
ordinary least squares regression (OLS), temporally weighted regression (TWR), GWR,
and GTWR, to select the optimal model for estimating the relations between the affecting
factors and STIs (SAT, STR, and STC). The SAT, STR, and STC were taken as dependent
variables, respectively, and the four models were used for regression analysis. We used R2,
adjusted R2, and the Akaike information criterion (AICc) to compare the performance of
OLS, TWR, GWR, and GTWR. The results are presented in Table 2.

Table 2. Performance of the OLS, TWR, GWR, and GTWR models.

Dependent Variables Models Adjusted R2 R2 AICc

Sol average temperature

OLS 0.8430 0.8430 5199.40
TWR 0.8741 0.8746 4992.49
GWR 0.9721 0.9722 2253.13

GTWR 0.9763 0.9764 2047.37

Sol temperature range

OLS 0.8410 0.8410 9935.14
TWR 0.8560 0.8565 9834.79
GWR 0.9814 0.9815 6102.64

GTWR 0.9830 0.9821 6022.73

Sol-to-sol temperature change

OLS 0.0280 0.0280 −1402.83
TWR 0.1015 0.1049 −1486.42
GWR 0.0700 0.0735 −1430.49

GTWR 0.2271 0.2300 −1580.30
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As shown in Table 2, it is clear that the adjusted R2 and R2 value of the GTWR model
were larger than that of the other three models (OLS, TWR, and GWR), and the AICc value
of GTWR was smaller than that of the other models in each group. The GTWR model had
the best model fit and outperformed the other tested regression models for each of the
three groups of data in this study. Conversely, the global OLS model for SAT, ignoring the
spatial and temporal variation, had an adjusted R2 value of only 0.8430; the TWR model,
ignoring temporal variation, has an adjusted R2 value of only 0.8741; and the adjusted
R2 of GTWR increased to 0.9763. The GTWR model also had the best fit among the four
regressions models for the STR and STC groups. The results show that the GTWR model is
more accurate as both spatial heterogeneity and temporal variation were both taken into
consideration. The adjusted R2 and R2 for the STC group were much lower than the SAT
and STR groups. This may be explained in that the affecting factors for STC are different
from those for SAT and STR, and the variables selected in this study may ignore the main
affecting factors of STC. Thus, the SAT and STR were chosen as the dependent variables to
further explore the spatial-temporal variation of the relationship between the STIs (SAT
and STR) and affecting factors.

3.3.1. Temporal Trend in the Factors Affecting Temperature

The GTWR regression model considers the fluctuation in variables over time. The
variation in the regression coefficients of each Martian sol over time based on the GTWR
was obtained. We mapped the temporal trend for the coefficient of independent variables
(albedo, thermal inertia, zonal wind, meridional wind, elevation, dust, and slope) for SAT
(Figure 9) and STR (Figure 10) during 81–111 sol from Martian years 29 to 32.

Figure 9. The temporal trend in the coefficient of independent variables for SAT based on the GTWR model during
81–111 sol from Martian years 29 to 32.

The influence of thermal inertia and dust on SAT was positive during each Martian
day during the study period (Figure 9). The effect of dust on temperature gradually
increased from 81 to 111 Martian sol. The influence of thermal inertia on SAT gradually
decreased from 81 to 111 sol, especially in Martian year 30, whereas the albedo, zonal wind,
meridional wind, elevation, and slope had a relatively slight influence on SAT, and this
influence was negative during most of the Martian sols. The influence of the affecting
factors on STR was quite different from that on SAT, as shown in Figure 10.
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Figure 10. The temporal trend in the coefficient of independent variables for STR based on the GTWR model during
81–111 sol from Martian years 29 to 32.

As shown, the elevation, albedo, and slope had a positive effect on STR during the
study period, and zonal wind also had a positive effect on STR on most Martian sols. The
thermal inertia, dust, and meridional wind had a negative effect on STR. The influence of
each factor on STR was relatively stable over Martian time during the study period.

3.3.2. Spatial Variation in the Influence of the Factors Affecting Temperature

The surface temperature on Mars and its affecting factors are not stable in space, but
spatially heterogeneous, and the relationship between them is also varied with geographic
location. The GTWR model can estimate the local variation in the coefficient for each
independent variable. The maps of the results showed that the effects of each factor on SAT
(Figure 11) and STR (Figure 12) varied significantly in local areas.

As shown in the SAT distribution map—the affecting factor coefficients (Figure 11) and
the SAT spatial autocorrelation map (Figure 6)—the HH clusters were greatly affected by
the negative impact of albedo and elevation, while the LL clusters were greatly affected
by the positive impact of thermal inertia and the negative impact of wind. Thermal
inertia had a positive effect on SAT, especially in the northeastern part of the study area.
The albedo had a negative correlation with the STR, except for the southeastern regions
(Figure 11b). The elevation had a negative correlation on SAT in most area, especially the
western part (Figure 11c). The relationship between dust and SAT was positive, and the
influence gradually increased from north to south (Figure 11d). Slope has the greatest
negative influence on the lHl and eHt geological units in the central and small parts of the
south and north, while it has a positive influence on temperature in the east central and
western region (Figure 11e). The relationship between zonal wind and SAT was positive in
the south and negative in the north (Figure 11f). In contrast, the meridional wind exhibited
a negative effect on SAT in the south, especially in the high-altitude south central region,
while positive in the north (Figure 11e).
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Figure 11. The distribution of the coefficients of the affecting factors (thermal inertia (a), albedo (b),
elevation (c), dust (d), slope (e), zonal wind (f), and meridional wind (g) for SAT.

Unlike SAT, the thermal inertia had a negative correlation on STR across the study
area, and the Av and AHv geological units with steep terrain and high elevation in the
east have the greatest negative influence (Figure 12a). The influence of albedo on STR
was negative in the southwestern region, and positive in the east (Figure 12b). Dust had
a negative effect on STR in most areas except for some areas in the central region, and
the negative effect was greatest in the southwest (Figure 12d). The LL clusters of STR
(Figure 7) were greatly affected by the negative impact of albedo (Figure 12b) and dust
(Figure 12d). Slope exhibited a great negative effect on the STR lHl and eHt geological
units in the central, while other regions exhibited positive effects (Figure 12e). The reason
for this difference can be explained by the sheltering effect of the mountains on both sides
of the basin because the east, west, and south sides of the study area are surrounded by
mountains. The relationship between meridional wind and STR was positive in the study
area, and the degree of influence increased from north to south (Figure 12g).
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Figure 12. The distribution of the coefficients of the affecting factors (thermal inertia (a), albedo (b),
elevation (c), dust (d), slope (e), zonal wind (f) and meridional wind (g) for STR.

4. Discussion

To deepen the understanding of the spatio-temporal variation of the surface temper-
ature in the operating environment of the Mars Explore Mission Tianwen-1 lander, we
used a spatial cluster analysis to verify three Martian STIs, including SAT, STR, and STC
variations across the south of Utopia Planitia, the landing zones of the China Tianwen-1
Mars Exploration mission, during 81–111 Martian sols from Martian years 29 to 32. In
addition, we estimated the spatio-temporal variations in the coefficients of the potential
affecting factors that could account for the spatio-temporal distribution of SAT and STR.
This is helpful to understand the driving factors and spatio-temporal differences in Martian
surface temperature. This study could possibly support the construction of Martian climate
models. This research was based on statistical models that we hope will encourage more
process-based research on the spatial autocorrelation variation of Martian surface elements
and their driving factors.
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The distribution of SAT, STR, and STC in space and time were not stable, and exhibited
clear signs of heterogeneity. Our research showed that although the distribution of SAT,
STR, and STC varied with geographical location, their distribution is not random, but
showed significant spatial aggregation, with average Global Moran’s I values of 0.632,
0.620, and 0.625. The local clusters of SAT and STR were relatively stable over time. The
HH clusters of SAT concentrated in the southwestern part of the study area, and the SAT LL
clusters were distributed in the northeast (Figure 6). The HH STR clusters were distributed
in the northeastern part of the study area, and the LL STR clusters were mainly distributed
in the southwest (Figure 7). In contrast to SAT and STC, the distribution of the STC clusters
were scattered and changed significantly over time (Figure 8). The significant spatial
aggregations of the STIs imply that the STIs and other potential factors affecting the STIs
are not isolated, but have a certain degree of spatial correlation. Some Martian surface
elements may also conform to Tobler’s first law of geography [31]; that is, everything is
related to everything else, but near things are more related to each other.

The GTWR more accurately estimated the relationships between STIs and their driving
factors with the greatest R2 and adjusted R2, and the lowest AICc as compared with the OLS,
TWR and GWR models. This is because these drivers are also heterogeneous in time and
space, and the GTWR model captures the instability of the coefficients of the independent
variables in time and space. Among all the independent variables, the influence of thermal
inertia and dust on SAT and STR varied the most over time. The thermal inertia and dust
had a positive relation with SAT in the whole study region. Conversely, in most areas
of the study region, the thermal inertia as well as the dust coefficient affecting STR was
negative, as the higher the surface thermal inertia and dust concentration, the smaller the sol
temperatures range. This is consistent with conclusions of previous research. Gurwell et al.
(2005) found that the average surface brightness temperature dropped by 20 K during the
peak of a dust storm [32]. Because the surface of Mars is covered with different mixtures of
dry boulders, sand, and dust, meteorological phenomena can lift dust particles into the
atmosphere relatively easily. Dust particles suspended in the air increase the opacity of the
atmosphere in the visible and thermal infrared bands. This opacity significantly weakens
the sunlight radiation on the ground, resulting in a slower temperature rise during the day,
and also causes the heating of the dust itself, and then the air is indirectly heated by contact
with the dust, which keeps it warm at night, so the temperature difference between day
and night is reduced.

However, in a small area in the central part, with a large altitude difference relative to
the whole study area, the relationship between dust and STR was positive. The relative
steep topography of these areas could account for this phenomenon. High elevation and
slope can lead to local circulations that allow dust flowing day and night, so the relationship
between dust and surface temperature in these areas is not consistent with that in flat areas.
This topographic forced flow also affects the degree influence of the surface thermal inertia
on STR, and the influence of thermal inertia on STR is intense at high-altitude regions.

We found that, in most places, the SAT exhibited negatively correlated with elevation,
while STR was positively correlated with elevation. This may be related to the local
atmospheric circulation caused by the topographical differences in the study area. Our
conclusions were consistent with the atmospheric circulation caused by terrain differences
in previous studies [18,33,34]. Like the Earth, topography has a great influence on climate.
Millot et al. (2021) found that small-scale topography has a significant influence on the solar
heating of the surface, causing the surface temperature change [35]. Solar heating varies
day and night on the sloping terrain, causing buoyancy-driven circulation [1]. Since the
thermal inertia of the atmosphere on Mars is lower than that of the Earth, the atmosphere
responds faster to the surface heating of the Sun [36], so the local circulation on Mars is
strong enough to remove dust from the surface [34]. During the day, unusual winds blow
up the hillside, blowing dust from the edge of the cliff, pluming at the top of the mountain.
At night, the cold descending wind flows down the slope and warm up as they descend
to a higher pressure [1]. Our result showed that the surface temperature of the geological
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unit covered by AHv in the eastern region was greatly affected by the topography. This
phenomenon lends supports for the conclusions drawn in previous studies [34,35], because
a strong slope, wind, and local circulation often occur in this region, which is due to the
large slope of this area and low thermal inertia (Figure S4).

Wind dominates the transportation of sediments on Mars [37]. Wind-blown sand, also
known as saltation, often occurs on Mars, filling the atmosphere with dust aerosol. The
dust aerosol in the atmosphere dominates the weather and climate of Mars [38]. Spiga et al.
(2009) found that the descending wind at night can make the slopes of Mount Olympus
20 K warmer than the surroundings by constructing a three-dimensional model [39]. Our
research results are consistent with this previous research showing that, except for parts
of the north central regions, the meridional wind has a negative impact on the SAT in the
study area. Both the SAT and STR in the south-central regions are most affected by wind,
and these areas are also the most affected by dust. Because the elevation range in these
areas are relatively large, the slope is relatively steep, so it is easy to cause local circulation;
that is, slope wind leads to drastic surface temperature changes.

5. Conclusions

In this work, we used cluster analysis to verify the spatial aggregation of three surface
temperature indicators (SAT, STR, and STC), and its variation in space and time at the
southern Utopia, one of the Mars Mission Tianwen-1 landing zones. In addition, consid-
ering the heterogeneity of the driving factors over time and space, the GTWR model was
introduced to explore the spatio-temporal dynamics of the relationships between the STIs
(SAT and STR) and potential driving factors. Hence, this study addresses the following:

(1) The distribution of SAT, STR, and STC was not random in space, but exhibited spatial
aggregation characteristics. This indicates that the properties of multiple potential
impact factors, including surface and near-surface features, may be very similar to
those nearby, as inferred from these spatial clustering characteristics.

(2) The spatial pattern of the SAT and STR clusters was relatively stable over time, but
the distribution of STC clusters was scattered and changed significantly over time.

(3) The temporal and spatial changes of the SAT and STR in the study area were affected
by the variation in thermal inertia, albedo, dust, wind, and topography, and each
factor showed signs of significant spatial and temporal heterogeneity. During the
study period, the fluctuation of STIs with time was greatly affected by the variation
in surface thermal inertia and dust.

(4) Spatially, each factor has a different degree of positive or negative correlation with
SAT and STR in different locations. Thermal inertia was greatly related to the spatial
pattern of the STR, especially in the high-altitude regions. The east, west, and south
sides of the study area are surrounded by mountains, thus the sheltering effect of
the mountains on both sides of the basin caused the spatial differences in SAT and
STR. The impact of each affecting factor on Martian STIs was not independent, but
interactive. For example, the response of STIs to thermal inertia and dust in regions
with a steep terrain was different from that in flat regions because local circulations
are prone to form in steep regions compared with flat terrain regions, which causes
dust to move more frequently in steep terrain regions.

These localized abnormal climate phenomena are detrimental to the accurate con-
struction of climate models. We emphasize that regional and temporal differences are
essential for understanding the process of Martian surface temperature changes. In the
Martian climate simulation, if these temporal and spatial factors are not considered, the
estimation will be biased. This work therefore provides information that could support
the description of Martian regional climate changes in the future, and provides a reference
for diagnosing the process occurring on the surface and shallow surface of China’s Mars
Mission Tianwen-1 landing zone.

The limitations in this study should be mentioned. The influencing factors of the
surface temperature indicators involved in this paper are not comprehensive. We have
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only focused on the most important variables affecting surface temperature, including
thermal inertia, albedo, wind, dust, and topography factors, but the exact mechanisms
that cause these changes on surface temperature are complex and not yet understood. We
have done research on a local area of Mars, and whether the conclusions we reach are
suitable for Mars globally remain to be further investigated. In addition, this study only
analyzes the temporal and spatial characteristics of the STIs and their potential driving
factors in the four Martian years during the time period corresponding to the Tianwen-1
landing. However, a long-term analysis of seasonal changes in surface temperature was not
considered. In the future, we will study the spatio-temporal distribution of Martian surface
temperature indicators and their influencing factors using a long-term series, including
seasonal and inter-annual changes.
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Appendix A

Description of the geological units used in this study.

Geological Unit Description

Ahi

Amazonian and Hesperian impact unit—craters with rims and surrounding
blankets; some include single to multi-lobed blanket forms, dense secondary
crater chains, and (or) central peak or pit. Blanket thicknesses of meters to a
few hundred meters. Upturned, ejected, and brecciated target rocks and
sediments, with local areas of impact melt. Post-impact mass-wasting and
fluvial-lacustrine and eolian infill of craters common.

Ahv

Amazonian and Hesperian volcanic unit—stacked, gently sloping lobate
flows meters to tens of meters thick and hundreds of kilometers long.
Variable daytime IR brightness in places. Cumulative thicknesses reach
hundreds of meters to several kilometers. Flood lavas and large lava flows,
undifferentiated, sourced from regional fissure and vent systems. Highly
variable ages of individual flows, although generally younger in central
parts of Tharsis rise

Av
Amazonian volcanic unit—rugged, hummocky, and pitted fields of irregular,
poorly defined flows forming plains hundreds to more than 1000 km across.
Tens of meters, or more, thick.

https://www.mdpi.com/article/10.3390/rs13112206/s1
https://www.mdpi.com/article/10.3390/rs13112206/s1
https://ordo.open.ac.uk/collections/OpenMARS_database/4278950/1
https://pds-geosciences.wustl.edu/
https://www.usgs.gov/
https://www.usgs.gov/
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Geological Unit Description

HNt

Hesperian and Noachian transition unit—knobs, mesas, and intervening
aprons and plains. May be tens to hundreds of meters thick. Noachian
impact breccias, sediments, and volcanic deposits with intervening aprons of
Hesperian mass-wasted materials.

eHt

Early Hesperian transition unit—plains-forming deposits, undulating to
moderately rugged; includes scattered low knobs and mesas of Noachian
highland material. May be tens to hundreds of meters thick. Largely
unmodified flood lavas, including lava channels and other morphologies;
sourced from fissures and shields

eHv

Early Hesperian volcanic unit—planar deposits meters to tens of meters
thick and tens to hundreds of kilometers across; lobate scarps common.
Variable daytime IR brightness in places. Hundreds of meters or more total
thickness. Flood lavas, undifferentiated, sourced from regional fissure and
vent systems.

eNh

Early Noachian highland unit—rugged, very high relief outcrops extending
hundreds of kilometers. Thickness commonly exceeds a few kilometers but
ill-defined. Undifferentiated impact, volcanic, fluvial, and basin materials.
Heavily degraded; tectonically deformed in places.

lAv

Late Amazonian volcanic unit—planar deposits containing lobate scarps that
extend hundreds to more than 1000 km; sinuous troughs, ridges, and platy
textures common; low-relief, shield-like edifices rare. Meters to tens of
meters thick.

lHl

Late Hesperian lowland unit—planar to undulating; lobate and troughed
marginal areas in places. Hundreds of meters to kilometers thick.
Fluvial/lacustrine/marine and colluvial sediments sourced from
circum-lowland outflow channels and bounding highland terrains; likely
intercalated with and underlain by lava and volcaniclastic rocks. Pervasively
modified and obscured by periglaciation, sedimentary diapirism, and
particulate mantling.

lHt
Late Hesperian transition unit—plains-forming deposits, relatively smooth;
includes small knobs and mesas of Noachian and perhaps younger material.
May be tens to hundreds of meters thick.

mNh

Middle Noachian highland unit—uneven to rolling topography; high-relief
outcrops that extend hundreds to thousands of kilometers. Commonly
layered in crater walls. May be hundreds of meters to more than a kilometer
thick. Undifferentiated impact, volcanic, fluvial, and basin materials.
Moderately to heavily degraded.

mNhm

Middle Noachian highland massif unit—high-relief massifs tens of
kilometers across separated by broad linear troughs and valleys. Ancient,
degraded crustal rocks uplifted by large, basin-forming impacts. Dissected
by basin-related fault structures and erosional valleys.

References
1. Read, P.L.; Lewis, S.R.; Mulholland, D.P. The physics of Martian weather and climate: A review. Rep. Prog. Phys. 2015, 78, 125901.

[CrossRef] [PubMed]
2. Spanovich, N.; Smith, M.D.; Smith, P.H.; Wolff, M.J.; Christensen, P.; Squyres, S.W. Surface and near-surface atmospheric

temperatures for the Mars Exploration Rover landing sites. Icarus 2006, 180, 314–320. [CrossRef]
3. Tosi, F.; Capaccioni, F.; Capria, M.T.; Mottola, S.; Zinzi, A.; Ciarniello, M.; Filacchione, G.I.A.N.R.I.C.O.; Hofstadter, M.; Fonti, S.;

Formisano, M.; et al. The changing temperature of the nucleus of comet 67P induced by morphological and seasonal effects. Nat.
Astron. 2019, 3, 649–658. [CrossRef]

4. Liu, J.; Zeng, X.; Li, C.; Ren, X.; Yan, W.; Tan, X.; Zhang, X.; Chen, W.; Zuo, W.; Liu, Y.; et al. Landing Site Selection and Overview
of China’s Lunar Landing Missions. Space Sci. Rev. 2021, 217, 1–25. [CrossRef]

5. Kieffer, H.H.; Chase, S.C.; Miner, E.D.; Palluconi, F.D.; Münch, G.; Neugebauer, G.; Martin, T.Z. Infrared thermal mapping of the
martian surface and atmosphere: First results. Science 1976, 193, 780–786. [CrossRef] [PubMed]

6. Presley, M.A.; Christensen, P.R. The effect of bulk density and particle size sorting on the thermal conductivity of particulate
materials under Martian atmospheric pressures. J. Geophys. Res. 1997, 102, 9221–9229. [CrossRef]

http://doi.org/10.1088/0034-4885/78/12/125901
http://www.ncbi.nlm.nih.gov/pubmed/26534887
http://doi.org/10.1016/j.icarus.2005.09.014
http://doi.org/10.1038/s41550-019-0740-0
http://doi.org/10.1007/s11214-020-00781-9
http://doi.org/10.1126/science.193.4255.780
http://www.ncbi.nlm.nih.gov/pubmed/17747779
http://doi.org/10.1029/97JE00271


Remote Sens. 2021, 13, 2206 21 of 22

7. Christensen, P.; Bandfield, J.L.; Hamilton, V.E.; Ruff, S.; Kieffer, H.H.; Titus, T.N.; Malin, M.C.; Morris, R.V.; Lane, M.D.;
Clark, R.L.; et al. Mars Global Surveyor Thermal Emission Spectrometer experiment: Investigation description and surface
science results. J. Geophys. Res. 2001, 106, 23823–23871. [CrossRef]

8. Hess, S.L.; Henry, R.M.; Leovy, C.B.; Ryan, J.A.; Tillman, J.E. Meteorological results from the surface of Mars: Viking 1 and 2.
J. Geophys. Res. 1977, 82, 4559–4574. [CrossRef]

9. Vasavada, A.R.; Piqueux, S.; Lewis, K.W.; Lemmon, M.T.; Smith, M.D. Thermophysical Properties Along Curiosity’s Traverse in
Gale Crater, Mars, Derived from the REMS Ground Temperature Sensor. Icarus 2017, 284, 372–386. [CrossRef]

10. Yang, H.; Piao, S.; Huntingford, C.; Peng, S.; Ciais, P.; Chen, A.; Zhou, G.; Wang, X.; Gao, M.; Zscheischler, J. Strong but
Intermittent Spatial Covariations in Tropical Land Temperature. Geophys. Res. Lett. 2019, 46, 356–364. [CrossRef]

11. Anselin, L. Local Indicators of Spatial Association—LISA. Geogr. Anal. 1995, 27, 93–115. [CrossRef]
12. Dong, F.; Zhang, S.; Long, R.; Zhang, X.; Sun, Z. Determinants of haze pollution: An analysis from the perspective of spatio-

temporal heterogeneity. J. Clean. Prod. 2019, 222, 768–783. [CrossRef]
13. Moran, P.A.P. Notes on Continuous Stochastic Phenomena. Biometrika 1950, 37, 17–23. [CrossRef]
14. Morgan, P.; Smrekar, S.E.; Lorenz, R.; Grott, M.; Kroemer, O.; Müller, N. Potential Effects of Surface Temperature Variations and

Disturbances and Thermal Convection on the Mars InSight HP3 Heat-Flow Determination. Space Sci. Rev. 2017, 211, 277–313.
[CrossRef]

15. Kass, D.M.; Schofield, J.T.; Kleinböhl, A.; McCleese, D.J.; Heavens, N.G.; Shirley, J.H.; Steele, L.J. Mars Climate Sounder
Observation of Mars’ 2018 Global Dust Storm. Geophys. Res. Lett. 2020, 47. [CrossRef]

16. Cantor, B.A.; James, P.B.; Caplinger, M.; Wolff, M.J. Martian dust storms: 1999 Mars Orbiter Camera observations. J. Geophys. Res.
2001, 106, 23653–23687. [CrossRef]

17. Spiga, A.; Forget, F.; Madeleine, J.-B.; Montabone, L.; Lewis, S.R.; Millour, E. The impact of martian mesoscale winds on surface
temperature and on the determination of thermal inertia. Icarus 2011, 212, 504–519. [CrossRef]

18. Richardson, M.I.; Wilson, R.J. A topographically forced asymmetry in the martian circulation and climate. Nature 2002, 416,
298–301. [CrossRef]

19. Haberle, R.M.; Forget, F.; Colaprete, A.; Schaeffer, J.; Boynton, W.V.; Kelly, N.J.; Chamberlain, M.A. The effect of ground ice on the
Martian seasonal CO2 cycle. Planet. Space Sci. 2008, 56, 251–255. [CrossRef]

20. Acker, E.V.d.; Hoolst, T.V.; Viron Od Defraigne, P.; Forget, F.; Hourdin, F.; Dehant, V. Influence of the seasonal winds and the CO2
mass exchange between atmosphere and polar caps on Mars’ rotation. J. Geophys. Res. 2002, 107, 9-1–9-8. [CrossRef]

21. Genova, A. ORACLE: A mission concept to study Mars’ climate, surface and interior. Acta Astronaut. 2020, 166, 317–329.
[CrossRef]

22. Fotheringham, A.S.; Crespo, R.; Yao, J. Geographical and Temporal Weighted Regression (GTWR). Geogr. Anal. 2015, 47, 431–452.
[CrossRef]

23. Tanaka, K.L.; Skinner, J.A., Jr.; Dohm, J.M.; Irwin, R.P., III; Kolb, E.J.; Fortezzo, C.M.; Platz, T.; Michael, G.G.; Hare, T.M.
Cartographers. In Geologic Map of Mars; USGS: Reston, VA, USA, 2014.

24. Holmes, J.A.; Lewis, S.R.; Patel, M.R. OpenMARS: A global record of martian weather from 1999 to 2015. Planet. Space Sci. 2020,
188, 104962. [CrossRef]

25. Fergason, R.; Hare, T.; Laura, J.J.U.G.S. HRSC and MOLA Blended Digital Elevation Model at 200m v2, Astrogeology PDS Annex; US
Geological Survey: Reston, VA, USA, 2018.

26. Putzig, N.E.; Mellon, M.T. Apparent thermal inertia and the surface heterogeneity of Mars. Icarus 2007, 191, 68–94. [CrossRef]
27. Brunsdon, C.; Fotheringham, A.S.; Charlton, M.E. Geographically weighted regression: A method for exploring spatial nonsta-

tionarity. Geogr. Anal. 1996, 28, 281–298. [CrossRef]
28. Huang, B.; Wu, B.; Barry, M. Geographically and temporally weighted regression for modeling spatio-temporal variation in

house prices. Int. J. Geogr. Inf. Sci. 2010, 24, 383–401. [CrossRef]
29. Guo, B.; Wang, X.; Pei, L.; Su, Y.; Zhang, D.; Wang, Y. Identifying the spatiotemporal dynamic of PM2. 5 concentrations at multiple

scales using geographically and temporally weighted regression model across China during 2015–2018. Sci. Total Environ. 2021,
751, 141765. [CrossRef]

30. Sindayihebura, A.; Ottoy, S.; Dondeyne, S.; van Meirvenne, M.; van Orshoven, J. Comparing digital soil mapping techniques for
organic carbon and clay content: Case study in Burundi’s central plateaus. Catena 2017, 156, 161–175. [CrossRef]

31. Tobler, W.R. A Computer Movie Simulating Urban Growth in the Detroit Region. Econ. Geogr. 1970, 46, 234–240. [CrossRef]
32. Gurwell, M.A.; Bergin, E.A.; Melnick, G.J.; Tolls, V. Mars surface and atmospheric temperature during the 2001 global dust storm.

Icarus 2005, 175, 23–31. [CrossRef]
33. Haberle, R.M.; Leovy, C.B.; Pollack, J.B. Some effects of global dust storms on the atmospheric circulation of Mars. Icarus 1982, 50,

322–367. [CrossRef]
34. Richardson, M.I.; Newman, C.E. On the relationship between surface pressure, terrain elevation, and air temperature. Part I: The

large diurnal surface pressure range at Gale Crater, Mars and its origin due to lateral hydrostatic adjustment. Planet. Space Sci.
2018, 164, 132–157. [CrossRef]

35. Millot, C.; Quantin-Nataf, C.; Leyrat, C.; Enjolras, M. Local topography effects on the surface temperatures on Mars—Application
to the case of Recurring Slope Lineae (RSL). Icarus 2021, 355, 114136. [CrossRef]

36. Savijärvi, H.; Siili, T. The Martian slope winds and the nocturnal PBL jet. J. Atmos. Sci. 1993, 50, 77–88. [CrossRef]

http://doi.org/10.1029/2000JE001370
http://doi.org/10.1029/JS082i028p04559
http://doi.org/10.1016/j.icarus.2016.11.035
http://doi.org/10.1029/2018GL080463
http://doi.org/10.1111/j.1538-4632.1995.tb00338.x
http://doi.org/10.1016/j.jclepro.2019.03.105
http://doi.org/10.1093/biomet/37.1-2.17
http://doi.org/10.1007/s11214-017-0388-y
http://doi.org/10.1029/2019GL083931
http://doi.org/10.1029/2000JE001310
http://doi.org/10.1016/j.icarus.2011.02.001
http://doi.org/10.1038/416298a
http://doi.org/10.1016/j.pss.2007.08.006
http://doi.org/10.1029/2000JE001539
http://doi.org/10.1016/j.actaastro.2019.10.006
http://doi.org/10.1111/gean.12071
http://doi.org/10.1016/j.pss.2020.104962
http://doi.org/10.1016/j.icarus.2007.05.013
http://doi.org/10.1111/j.1538-4632.1996.tb00936.x
http://doi.org/10.1080/13658810802672469
http://doi.org/10.1016/j.scitotenv.2020.141765
http://doi.org/10.1016/j.catena.2017.04.003
http://doi.org/10.2307/143141
http://doi.org/10.1016/j.icarus.2004.10.009
http://doi.org/10.1016/0019-1035(82)90129-4
http://doi.org/10.1016/j.pss.2018.07.003
http://doi.org/10.1016/j.icarus.2020.114136
http://doi.org/10.1175/1520-0469(1993)050&lt;0077:TMSWAT&gt;2.0.CO;2


Remote Sens. 2021, 13, 2206 22 of 22

37. Sullivan, R.; Kok, J.F. Aeolian saltation on Mars at low wind speeds. J. Geophys. Res. 2017, 122, 2111–2143. [CrossRef]
38. Kok, J.F. Difference in the wind speeds required for initiation versus continuation of sand transport on Mars: Implications for

dunes and dust storms. Phys. Rev. Lett. 2010, 104, 074502. [CrossRef]
39. Spiga, A.; Forget, F. A new model to simulate the Martian mesoscale and microscale atmospheric circulation: Validation and first

results. J. Geophys. Res. 2009, 114, E2. [CrossRef]

http://doi.org/10.1002/2017JE005275
http://doi.org/10.1103/PhysRevLett.104.074502
http://doi.org/10.1029/2008JE003242

	Introduction 
	Methods 
	Study Area and Data Sources 
	Spatial Correlation Analysis 
	Global Spatial Correlation: Global Moran’s I 
	Local Spatial Correlation: Local Moran’s I 

	Regression Models 
	Geographically Weighted Regression Model (GWR) 
	Geographically and Temporally Weighted Regression Model (GTWR) 


	Results 
	Descriptive Statistics of the Data 
	Spatial Heterogeneity of the Surface Temperature 
	Temporal Temperature Trends 

	Spatial Correlation Diagnosis 
	Global Moran’s I for Temperature 
	Local Moran’s I for Temperature 

	Temporal and Spatial Variation in the Relations between the STIs and Affecting Factors 
	Temporal Trend in the Factors Affecting Temperature 
	Spatial Variation in the Influence of the Factors Affecting Temperature 


	Discussion 
	Conclusions 
	
	References

