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Abstract: The satellite based monitoring initiative for regional air quality (SAMIRA) initiative was set
up to demonstrate the exploitation of existing satellite data for monitoring regional and urban scale
air quality. The project was carried out between May 2016 and December 2019 and focused on aerosol
optical depth (AOD), particulate matter (PM), nitrogen dioxide (NO,), and sulfur dioxide (SO;).
SAMIRA was built around several research tasks: 1. The spinning enhanced visible and infrared
imager (SEVIRI) AOD optimal estimation algorithm was improved and geographically extended
from Poland to Romania, the Czech Republic and Southern Norway. A near real-time retrieval
was implemented and is currently operational. Correlation coefficients of 0.61 and 0.62 were found
between SEVIRI AOD and ground-based sun-photometer for Romania and Poland, respectively. 2.
A retrieval for ground-level concentrations of PM; 5 was implemented using the SEVIRI AOD in
combination with WRF-Chem output. For representative sites a correlation of 0.56 and 0.49 between
satellite-based PM; 5 and in situ PM; 5 was found for Poland and the Czech Republic, respectively.
3. An operational algorithm for data fusion was extended to make use of various satellite-based air
quality products (NO,, SO, AOD, PM, 5 and PMj). For the Czech Republic inclusion of satellite
data improved mapping of NO; in rural areas and on an annual basis in urban background areas.
It slightly improved mapping of rural and urban background SO,. The use of satellites based
AQOD or PM; 5 improved mapping results for PM; 5 and PM;j. 4. A geostatistical downscaling
algorithm for satellite-based air quality products was developed to bridge the gap towards urban-
scale applications. Initial testing using synthetic data was followed by applying the algorithm to
OMI NO; data with a direct comparison against high-resolution TROPOMI NO; as a reference, thus
allowing for a quantitative assessment of the algorithm performance and demonstrating significant
accuracy improvements after downscaling. We can conclude that SAMIRA demonstrated the added
value of using satellite data for regional- and urban-scale air quality monitoring.
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1. Introduction

Despite positive developments in emission reductions, air quality is still of concern in
Europe. Particulate matter (PM), nitrogen dioxide (NO,), and ground-level ozone (O3) are
Europe’s most problematic pollutants negatively affecting human health. The European
Environment Agency (EEA) estimated that in 2018 in the 28 European Union member
states 379,000 premature deaths could have been caused by long-term exposure to particles
with a diameter of 2.5 um or less (PM; 5), 54,000 to NO,, and 19,400 to O3 [1]. According to
the EEA, in 2018 48% and 74% of the urban population in Europe (EU-28) was exposed
to concentrations above the World Health Organization (WHO) air quality guidelines
(AQQG) for particles with a diameter of 10 um or less (PMjp) (annual mean 20 pg m~3) and
PM, 5 (annual mean 10 pg m~3), respectively. Fortunately in most European countries
NO; concentrations steadily decreased between 2009 and 2018. Only 4% of the European
population were exposed to NO, concentrations above the EU annual limit value, which is
equal to the AQG (40 ug m~2 in a calendar year) in 2018 [1]. SO, pollution plays only a
minor role in Europe these days, although, for example in vicinities of large power plants
infrequent exceedances of limit values do occur (daily 20 pg m~%) and in 2018, based on
the WHO AQGs, 19% of the urban population in Europe was affected [1].

Air quality maps are generated to inform the public about air pollution levels in the
region they are living in. They serve as visualization of the actual situation and as a basis
for air quality assessments. In situ observations, satellite measurements, and output from
chemical transport modeling (CTM) are three mutually complimentary sources for generat-
ing air quality maps. In situ measurements provide accurate actual levels of concentrations,
satellite data provide observations of spatial and temporal patterns (but not concentrations
directly) and modeling outputs provide spatially continuous coverage of given area. The
satellite based monitoring initiative for regional air quality (SAMIRA) project was set up to
explore the added value of satellite data for air quality mapping through their synergistic
use together with in situ air quality and modeling data. Satellite observations used in the
project were acquired by the geostationary spinning enhanced visible and infrared imager
(SEVIRI) onboard Meteosat second generation (MSG) [2], the ozone monitoring instrument
(OMI) onboard NASA’s Aura platform [3] and the TROPOspheric monitoring instrument
(TROPOMII) on the Sentinel-5 Precursor (S5P) satellite [4].

For estimating human exposure to air pollution the knowledge of PM concentration is
essential. Ground-level concentration of PM; 5 can be estimated from satellite observations
of total-column aerosol optical depth (AOD) utilizing various approaches (see e.g., [5-7],
and references therein). Geostationary satellites instruments like SEVIRI allow for the
retrieval of AOD (e.g., [8-10]) at high temporal frequency and are, therefore, particularly
interesting for air quality applications. Therefore, the SEVIRI near-real-time (NRT) AOD
retrieval was a first task within SAMIRA. Satellite AOD is a convolution of the contribution
from within the planetary boundary layer (PBL) and the free troposphere, locally-produced,
and long range transported aerosols. Due to the complex spatial and temporal relationship
between the total column aerosol optical depth and ground-level particulate matter, AOD-
to-PM conversion, the second activity within SAMIRA, is a rather complex challenge. A
multitude of methods for the AOD-to-PM conversion were developed throughout the years,
for example using empirical and multivariate relations (e.g., [11,12]), scaling of the satellite
AOD with the PM; 5/AOD ratio from a CTM [13], synergistic satellite and ground-based
AOQOD [14], spectral and synergistic satellite information [15,16], fused satellite and model-
calibrated PM; 5 [17], and machine learning [18-20]. For SAMIRA we chose a physical
based AOD-to-PM conversion method, the foundation of which goes back to work of [21].

SAMIRA dealt also with NO; and SO,, which was of particular interesting due to
the improvement in spatial resolution and sensitivity introduced by TROPOMI. Whereas
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OMI pixels have a spatial resolution of up to 13 x 24 km? at nadir, TROPOMI has a foot-
print of 3.5 x 5.5 km? at nadir (since August 2019). For OMI, the QA4ECV NO; is one of
the most recent NO, retrieval products [22]; for TROPOMI NO; see [23]. For Romania,
which was one of our study regions, [24] reported that annual SO, from power plants
decreased between 2005 and 2015, while NO, emissions were more or less stable during
that time period. TROPOMI led to a new area of top-down NO; emission monitoring from
space [25,26], as well as bringing advances for surface NO, concentration estimates
(e.g., [27]). For SO,, despite the increased sensitivity of TROPOMI, in 2018/2019 only
the largest SO, emitters in Europe, e.g., the Polish Betchatéw coal power plant, were visible
from space, due to the installation of flue gas desulfurization systems in the European
Union [28].

An essential goal of SAMIRA was to improve the societal relevance of air quality data
measured from space. This can be done by combining ground-based in situ data with
model output and satellite data products. For the combination of different data sources,
a range of methods can be used to create spatial concentration fields. Such methods are
often referred to as data assimilation and data fusion [29], the latter being a subset of data
assimilation methods in a wider sense [30]. Therefore, within the SAMIRA initiative, an
operational algorithm for data fusion of multiple heterogeneous datasets was extended to
make use of various NRT satellite-based air quality products.

Although with the launch of the TROPOMI instrument the spatial resolution of air
quality-related satellite products has significantly improved, the available resolution is still
relatively coarse for urban- and local-scale applications, where air pollution tends to have
the most significant consequences for the human population. Therefore, we investigated
the feasibility of statistical downscaling of OMI and TROPOMI data with the help of
geostatistics and a fine-scale proxy datasets. The proposed technique builds upon extensive
previous research in geostatistics [31-34]. In geostatistical terms, downscaling is essentially
a change of support problem (with support denoting the area of an observation, e.g., a
point, a pixel, a grid cell, or a polygon), where the coarse spatial support of the original
dataset is seen as an areal support and the fine spatial support of the target resolution is
seen as a point support.

Finally, a pre-operational in situ PM;( data assimilation system was developed within
SAMIRA. This development did not include satellite data yet. Therefore, it is only briefly
described for completeness, being the first step towards a full air quality data assimilation
system for Romania.

With this paper we want to give an overview and share lessons learned within the
SAMIRA initiative. Following this introduction, in Section 2 we present the general
methodology used in the project. Example results from the data product development
are shown in Section 3. In Section 4 the validation of the datasets is presented. Section 5
illustrates the visualization system of the data. A discussion of the results, conclusions,
and outlooks are summarized in Section 6.

2. SAMIRA Methodology

The overall approach, the activities and the logical flow of the SAMIRA project are
illustrated in Figure 1. SAMIRA evolved around five primary research tasks: a. the SEVIRI
AQD retrieval, b. the PM, 5 retrieval, i.e., the AOD to PM, 5 conversion, c. the data
fusion methodology, which means the integration of satellite-based datasets with in situ
monitoring and modeling data, d. the downscaling methodology, i.e., the development of
algorithms for increasing the spatial resolution of satellite-based air quality products, and
e. the in situ PMj data assimilation. All activities marked in green in Figure 1 made use of
satellite data, which were to various extents combined with ground-based in situ, model
data and auxiliary datasets.
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Figure 1. SAMIRA overview work-flow diagram. Activities marked in green made use of satellite
data. For more details see Sections 2.1-2.5.

The SAMIRA data product development took place in two subsequent steps: a.
the retrieval of historical data (June-September 2014) and their validation, and b. the
demonstration and development of the products in near-real-time. The SEVIRI NRT AOD
retrieval was developed based on an existing optimal estimation algorithm to provide
up-to-date high-frequency AOD maps for Poland, Romania, the Czech Republic, and
southern Norway (see Section 2.1). SEVIRI AOD and output from the weather research
and forecasting (WRF) model coupled with chemistry (WRF-Chem) [35-37] was combined
to calculate near-surface hourly PM, 5 (see Section 2.2). WRF-Chem was run on the Babes-
Bolyai University (UBB) high performance computer for June-September 2014 in multiple
configurations. The WRF-Chem model was integrated for the entire European area at two
horizontal resolutions: 15 km and 5 km. From the model integration at 15 km horizontal
resolution, nested domains were run for each country and region of interest, at 5 km
(country) and 1 km (region) horizontal resolution, respectively (see Figure 2). For areas
marked in bold, we show exemplary results in the following. We combined in situ with
satellite data and output from a chemistry transport model (CTM), either WRF-Chem or the
comprehensive air quality model with extensions (CAMXx) using data fusion techniques (see
Section 2.3); the methodology was demonstrated for Europe and the Czech Republic. In the
current paper we focus on regional and local air quality matters, therefore, we show results
from the latter only. Finally, to make the coarse spatial resolution of satellite observations
more suitable for local applications, satellite data were downscaled with the help of the
high-resolution CTM output and alternative time-invariant proxies using geostatistics (see
Section 2.4). The methodology was demonstrated for NO;, SO, and AOD/PM using OMI
and TROPOMI data for the capitals of the four countries and areas, which are known for
their bad air quality, e.g., the Ostrava/Katowice area. Finally, preparatory work for the
development of an operational PM air quality forecast system in Romania was done by
assimilation of in situ PM;g into the WRF-Chem model (see Section 2.5). In the following
all retrievals are described briefly.
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Figure 2. WRF-Chem model domains at 5 km (blue) and 1 km (red) horizontal resolution. Bold
marked areas indicate regions for which exemplary results are discussed in this text.

2.1. SEVIRI AOD Retrieval

The first step in the SAMIRA air quality product development was the SEVIRI NRT
AOQOD retrieval. A prototype algorithm was initially developed for Poland [38] and within
SAMIRA it was improved and extended to the Czech Republic, Romania, and Southern
Norway. The algorithm was modified based on case studies presented in [39-41]. Im-
provements that were made are related to the surface reflectance estimation, the improved
cloud screening, and the uncertainty calculation. For a full description of the final ver-
sion of the algorithm, we refer the interested readers to [42]. In short, the computation
consists of a few steps. At first, a reference day with a low AOD and low cloud cover
is chosen, for which the surface reflectance is calculated from SEVIRI data utilizing the
operational global-scale Copernicus atmosphere monitoring service (CAMS) AOD forecast
product (https:/ /atmosphere.copernicus.eu/) as background information on the spatial
AOD distribution. CAMS AOD is corrected using sun-photometer measurements from
several aerosol robotic network (AERONET) [43] stations in the respective country using
an optimal interpolation method [38]. Then the surface reflectance is estimated with the use
of corrected CAMS AOD. The AOD is calculated for several days around the reference day.
Finally, the AOD at 635 nm is interpolated to a regular grid of 0.07° x 0.045°, corresponding
approximately to 5.5 x 5.5 km? for Poland. Besides AOD, AOD pixel-level uncertainties
are estimated.

For the NRT retrieval, each day at 00:21 UTC surface reflectances are calculated. This
is done for each country separately. At 7:00 UTC the following conditions are checked: a.
the mean AOD, which is calculated using CAMS data, is below or equal to 0.15 and b. the
cloud cover is less or equal to 65% (SEVIRI cloud mask). If fulfilled, surface reflectances are
calculated for the previous day using data from SEVIRI, AERONET (both automatically
downloaded), and CAMS AOD forecast data (downloaded every day at around 03:00
UTCQ). The SEVIRI AOD retrieval starts at the 7th, 23rd, 38th, and 53rd minute of each hour
(within the time period between 5:00 and 9:45 UTC, and 13:00 and 16:45 UTC). There is
about 20 to 23 min delay in receiving the data, which means that, e.g., the calculation for
7:00 UTC starts at 7:23 UTC. AOD computations take a few minutes, depending on the
number of valid pixels (cloud-free and containing a surface reflectance). For each time the
following is checked: the mean AOD (CAMS) is >0.15 and the cloud cover is <65%. If
these conditions are fulfilled, AOD and its uncertainties are calculated from SEVIRI data
and surface reflectances (for the reference day, being one of the previous days). The choice
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of the reference day for the surface reflectance calculation is done with a constraint that
the span between the day for which the AOD map is derived and the closest available
reference day cannot be more than 15 days.

2.2. PM; 5 Retrieval: AOD to PM; 5 Conversion

The near-surface hourly PM; 5 concentrations were retrieved from temporally aver-
aged SEVIRI AOD data [44]. Estimating PMj; 5 from satellite observations of total-column
AOD requires knowledge of the aerosol properties (microphysical and optical), their verti-
cal distribution (PBL height and fraction of AOD in the PBL), and AOD. More specific, see
Equation (1) from [21].

_4prepr  fraL
PM 3 Oue X -~ x AOD 1)
with p being the density and r.¢¢ the effective radius of the aerosol mixture, Qext the
extinction coefficient, fpp, the fraction of AOD in the PBL, and hpp;, the height of the PBL.

The workflow for our PMj, 5 retrieval is illustrated in Figure 3. The most computation-
ally intensive part is obtaining the optical and microphysical properties of aerosols in an
online fashion. This was handled by creating a look-up table of properties for a range of
aerosol mixtures at a number of relative humidity levels. Using the algorithm developed
in [45] for aerosol typing a synthetic database was generated by simulating the optical
properties of various aerosol types based on available information on the microphysics.

SEVIRI AOD maps for

the study area
él} — Preliminary maps
WRF-Chem maps for T

aerosol species

‘:EE AOD-to-PM, 5
conversion

OPAC model — Optical Properties
for Aerosol and Clouds v
GADS - Global Aerosol Data Set

Mass to extinction conversion

I:H:l — factors for

basic aerosol species

T-Matric computation for single scattering

on spheroidal particles

Figure 3. Methodology used in SAMIRA for AOD to PM; 5 conversion: data flow of the algorithm.

The algorithm combines the global aerosol dataset (GADS) database [46], the optical
properties of aerosol and clouds (OPAC model) [47] and T-Matrix code for light scattering
by non-spherical particles [48] in order to compute in an iterative way the optical properties
of different aerosol classes in various humidity conditions and mass proportions starting
from the microphysical properties. From GDAS we used the extinction, scattering and
absorption coefficients, the single scattering albedo and the asymmetry parameter. From
OPAC microphysical properties used are the density of aerosol particles, the aerosol mass
per cubic meter, and the mode radius. Information from the CTM is used to compute the
mass mixing ratios of the aerosols which are part of PM; 5. Using the model we computed
the relative humidity, mass mixing ratios for four major aerosol types (soot, water soluble,
insoluble, sulfates), and the PBL height. The AOD fraction in the PBL was computed using
WRF-Chem and the same aerosol type was assumed at all levels. Uncertainties due to
the use of WRF-Chem cross-sections and the assumption of an unique aerosol type in the
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column were evaluated in post-processing mode by comparisons with the cloud-aerosol
LIDAR with orthogonal polarization (CALIOP) onboard the CALIPSO mission [49] and
ground-based LIDAR data.

T-matrix calculations are very time consuming (approximately 3 s per mixture/grid
point). This would have taken about a day of computation to get results (150 x 200 grid
point), therefore, look-up tables were pre-computed. A master-script handled the inputs
and errors, e.g., caused by missing input variables. It could run in automated or manual
mode; the latter plotted all intermediate steps for debugging and quality control. Within
SAMIRA we could demonstrate the NRT capability of our AOD-to-PMj 5 retrieval, with
PMj; 5 maps being ready within 5 min after the AOD maps became available on a server.

2.3. Data Fusion Methodology

The data fusion methodology used for SAMIRA is illustrated in Figure 4. It is a variant
of the regression—interpolation-merging mapping [50,51], which is an improved residual
kriging method. Residual kriging is a frequently used data fusion method [52]. In residual
kriging, monitoring, modeling and other supplementary data are combined in multiple
linear regression and subsequent spatial interpolation of its residuals is done by ordinary
kriging [53]. Separate map layers were created for rural and urban background areas on a
grid ata 1 x 1 km? spatial resolution. The rural layer was based on the rural background
stations, while the urban layer was based on the urban and suburban background stations.
Residual kriging was applied separately for the rural and urban background areas with the
subsequent merging of these map layers by population density.

| In situ measurements

Y=a+bX,+cX,+dX,+e

‘ CT™M Splitin situ datato rural - ]
Done seperately for Multiple linear
and urban/suburban )
‘ Satellite data j background rural and urban layer regression
| Altitude ‘

/

Map based on

Rural layer

Cross-validation

regression parameter

Merging of layers

based on population
density

Residual

(e)

of map layer

Urban layer

Map based on

interpolation of
el -—'| Ordinary kriging

Final map

Figure 4. Data fusion process used in SAMIRA: regression-interpolation-merging mapping.

Air quality in situ data were acquired from the Czech national air pollution database,
the air quality information system (AQIS) [54] and the EEA’s air quality e-reporting
database [55]. Model data were acquired from three models: CAMXx for the Czech do-
main at 4.7 x 4.7 km? spatial resolution, WRF-Chem for the European domain (hourly
and daily time steps) at 5 x 5 km? spatial resolution and the European Monitoring and
Evaluation Programme (EMEP) model [56] for the European domain (annual averages) at
10 x 10 km? spatial resolution. Various satellite datasets were used. SEVIRI AOD from
SAMIRA (temporally aggregated into hourly and daily time averages) was used for the
creation of data-fused PMj5 and PMjy maps. The PM; 5 product from SAMIRA was
used for data-fused PM; 5 maps. NO; and SO, from OMI, complemented by data from
the Global Ozone Monitoring Experiment-2 (GOME-2), were used for the development
of historical test data for 2014. NRT NO, and SO, data were obtained from TROPOMI.
Supplementary datasets needed were altitudes from the database ZAGABED prepared by
the Czech Office for Surveying, Mapping and Cadastre (https://geoportal.cuzk.cz/) and
Global Multi-resolution Terrain Elevation Data 2010 (GMTED2010) [57]. Merging of the
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rural and urban map layers was done using population density based on Geostat 2011 grid
dataset [58] and data from the Czech Office for Surveying, Mapping, and Cadastre.

2.4. Downscaling Methodology

The downscaling methodology used for SAMIRA is, just like many other downscaling
techniques, essentially based on increasing the spatial resolution of a coarse source dataset
(in our case satellite data of air quality) with the help of spatial proxy or auxiliary datasets
that are available at a fine spatial resolution and that are, to some extent, correlated with
the source dataset. As such, the technique makes use of the assumption that the spatial
patterns of the unknown fine-scale field of the source variable will be similar to the spatial
patterns of the fine-scale proxy datasets.

Figure 5 illustrates the SAMIRA downscaling methodology. In simplified terms, the
various input datasets were brought to the same coarse resolution and a statistical model
was fitted to directly relate the satellite and the proxy data. The model choice was arbitrary
and could range from simple linear regression models to more advanced non-linear models
such as random forest or similar. Subsequently, the spatial residuals from the model were
calculated, downscaled to the fine target resolution using area-to-point kriging [33], and
added to the deterministic trend component of the fitted model.

INPUT
Model data
/ at coarse scale i - Proxy data
INPUT £ at fine scale
(Multi)Linear regression 1) |
Satellite data (or more complex model) ;,9,,
at coarse scale — & LT
Other proxy data P i
at coarse scale Other proxy data
at fine scale
!
Stochastic Deterministic Deterministic
component component (trend) component (trend)
{residuals) at coarse scale at fine scale
at coarse scale

|

Area-to-point
kriging

'

Stochastic
component
at fine scale

OUTPUT

Satellite data
at fine scale

Figure 5. General concept of the SAMIRA downscaling methodology. Green boxes indicate input
data, white boxes indicate intermediate datasets, blue boxes represent processing steps, and the
orange box indicates the final output.

2.5. In Situ PMyy Assimilation

For completeness, the SAMIRA pre-operational in situ PM;g air quality data assimila-
tion forecast system should be mentioned. Based on the prototype system developed in the
ESA SiAiR project (2014-2015) [59], the WRE-Chem model was setup to run at 5 km hori-
zontal resolution, covering most of Europe. The emission pre-processor was developed by
the Central Institute for Meteorology and Geodynamics (ZAMG) in order to prepare data
from emission inventories for WRF-Chem. Emissions were taken from the TNO-MACC
II emission inventory [60] and the EMEP inventory (http://www.ceip.at/ceip-reports,
accessed on 30 October 2018) for areas not covered by TNO emissions. This development
was a first step towards a full air quality data assimilation system for Romania. It was
designed to allow extension to other observational datasets. Thus, adding processor(s) for
Sentinel 3, Sentinel 5P, and future missions is desirable.

3. SAMIRA Product Examples
In the following we show exemplary data products developed during the SAMIRA project.
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3.1. SEVIRI AOD

As a first example, SEVIRI NRT AOD and AOD uncertainties for Poland for four
consecutive retrievals in the morning of 5 June 2019 are shown in Figure 6. During that day
an interesting case of strong aerosol loading was observed over Poland. AOD rising by the
hour are clearly captured. AOD at 635 nm is increasing starting from below 0.1 at 05:00
UTC to above 0.3 at 08:00 in Central and Eastern Poland. More maps from that day are
available via www.polandaod.pl (accessed on 5 June 2020).
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Figure 6. SEVIRI NRT AOD (A-D) and AOD uncertainty maps (E,F) over Poland for every fourth
retrieval in the morning of 5 June 2019, at 05:00 UTC (A,E), 06:00 UTC (B,F), 07:00 UTC (C,G), and
08:00 UTC (D,H). The pixel resolution is 5.5 x 5.5 km? and each map represent 15 min.

To better understand the development of the AOD, we looked at complementary data.
HySplit trajectories indicate air-mass inflow to Poland from Eastern Europe (see Figure 7A),
passing over areas with wildfires (FIRMS Firemaps; https:/ /firms2.modaps.eosdis.nasa.gov,
accessed on 5 June 2020, not shown for brevity). The PollyXT LIDAR (http://polly.tropos.de),
which is located at the Remote Sensing Lab in Warsaw, showed high values in the LIDAR
signals up to 4 km of altitude, with a clear gradual increase after 5:00 UTC (Figure 7B).
The co-located AERONET sun photometer (Level 2.0 Direct Sun and Level 1.5 Version 3
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Inversion data; https:/ /aeronet.gsfc.nasa.gov, accessed on 5 June 2020, Figure 7C) showed
the highest increase in AOD for shorter wavelengths with almost unrecognizable change
for the longer ones. It indicates that the observed aerosol was dominated by small particles,
resulting in relatively high Angstrém exponents (1.8-1.9), typical for biomass burning
aerosol. This is consistent with the increase in AOD seen in the calculated SEVIRI AOD
maps. The aerosol size distribution derived by AERONET was dominated by the fine
mode particles (fine mode fraction >0.8). The situation changed in the afternoon, when
size distribution between the modes was more equal (fine mode fraction around 0.6) and
precipitable water vapor column decreased, leading to lower AOD. The change in AOD
was also captured by the SEVIRI NRT AOD retrieval for the afternoon; although more
cloud appeared over Poland area (not shown for brevity).
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Figure 7. For 5 June 2019, backward trajectories for 12:00 UTC calculated with the HySplit Model
(A), the Warsaw PollyXT LIDAR signal (B), and multi-wavelengths AOD for the Warsaw sun-
photometer (C).

3.2. Satellite-Based PM; 5 Retrieval

As a second example, the PMj 5 retrieval for September 17, 2014 is shown in Figure 8.
Historical data from summer 2014 was used to test and validate our methodology to
retrieve ground-based PM; 5 from satellite AOD. The data shown in Figure 8 are the PM; 5
related air pollution in the morning of 17 September 2014, at 07:00 UTC. Besides the
aggregated hourly AOD, a map of the AOD-to-PM; 5 conversion factor and a map showing
the calculated hourly averaged PMj 5 for Poland is shown (Figure 8A—C). The closest in
time AOD maps (15-min resolution) were cloud-screened (white areas on the map). The
conversion factor map has the resolution of the WRF-Chem output (1-h). The final PM; 5
concentrations map for Poland combines the two. For comparison, the PM; 5 WRF-Chem
model output and the difference between the calculated and the modeled PM, 5 is shown
(Figure 8D-E).

PMj; 5 values estimated with the WRF-CHEM model are a good starting point for air
quality mapping due to the ability of the model to capture the seasonal or annual variations
of aerosols well. The major downside is the fact that it does not represent well random
pollution events and only takes into account documented sources. The differences between
the WRF-Chem output and our method clearly show that the “smooth” gradients produced
by the CTM are far from what the spatial aerosol patterns visible in the AOD shows, which
can improve the ground-level PM; 5 estimates. See also Section 4.2 for PM; 5 validation.

3.3. Data Fusion Maps

A third example shows output from the data fusion. The methodology was developed
and tested first on historical data, including in situ data, CTM model output (CAMX,
WRF-Chem, EMEP), and satellite data (SEVIRI AOD, satellite-based PMj, 5, as well as NO,,
and SO, from OMI and GOME-2) to generate maps for the following pollutants: NO,, SO,,
PM, 5, and PMjg. In a second phase of the SAMIRA project the data fusion was run in near
real time to generate up-to-date hourly maps utilizing NO, and SO, from TROPOMI. Note
that for 2019 WRF-Chem data were not available due to technical problems with the UBB
high performance computer, therefore, SEVIRI AOD was used as proxy for the data fusion
of PM. As an example, in Figure 9 we show NRT air quality maps for the Czech Republic.


https://aeronet.gsfc.nasa.gov
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Maps of NO,, SO;, PM; 5, and PMy at different temporal slots are shown to illustrate the
data fusion results.

AOD, September 17, 2014 07:00 UTC  Conversion factor [1/ugm™3] PM, 5 [pgm™®]
A ’ | B '

Figure 8. AOD (panel A), conversion factor (panel B) and PM; 5 (panel C) map calculated for Poland,
17 September 2014 07:00 UTC. For comparison, in the lower panel PM; 5 output from WRF-Chem
(panel D), and the difference between the calculated and the modeled PM; 5 is shown (panel E).

pm25 (ug/m3) pml0 (ug/m3)

<EETT | g <EENTT |
20 25 30 30 40

0 5 10 15 0 10 20

Figure 9. Hourly NRT air quality maps for the Czech Republic. (A): NO, map for 15 August 2019 15:00 UTC; (B): SO, map
for 15 August 2019 15:00 UTC; (C): PM; 5 for 23 August 2019 07:00 UTC; (D): PMj for 23 August 2019 07:00 UTC. Note that
grey areas in the Czech Republic show regions with no satellite data due to cloud coverage.

The SO, map shows increased concentrations in the north-eastern Bohemia. In both
PM;y and PM; 5 maps, elevated concentrations around Prague, in the north-western part of
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Bohemia and in Ostrava region can be seen. The same areas show also increased NO; levels,
although the increase is less distinct were compared to PM. The data fusion maps well
represent the concentration levels across the given area and correspond to the expected
concentrations due to known pollution sources [61]. Both satellite and modeling data
provide spatial representation, while the in situ measurement data assures the levels are
not biased. The main limitation of these maps is caused by missing satellite data in the
clouded areas. This can be overcome by a gap filling, e.g., using data calculated based on
the in situ measurement and model data only.

3.4. Downscaling

Within the SAMIRA project a downscaling algorithm was developed and tested for
several study sites (Oslo, Warsaw, Prague, Bucharest, Ostrava/Katowice), time periods
(mostly 2014 and 2018), and pollutants (primarily NO, and AOD). As a final example, in
Figure 10 we show downscaling results for the area along the border between the Czech
Republic and Poland that traditionally have significant problem with air quality. An OMI
dataset representing the NO, average for July through September 2018 at a spatial resolu-
tion of 0.25° by 0.25° was downscaled to the same resolution as TROPOMI (here gridded
to 0.05° x 0.05°). This allows for comparing the downscaled OMI dataset with the “true”
high-resolution TROPOMI measurements and to both quantitatively and qualitatively
evaluate the correspondence between the two datasets, and, thus, the performance of the
downscaling algorithm, as well as the used proxy. Qualitatively, Figure 10 indicates that
the downscaling technique is able to bring out spatial detail that was not available in the
original coarse-resolution OMI dataset. For example the elongated east-west extent of the
hotspot in the center of the domain and smaller isolated hotspots related to local pollution.
This can be seen for the entire area around Katowice but also for the hotspot in the south-
west of the domain south of Bohumin that is visible in both the downscaled OMI dataset,
as well as the TROPOMI data. Note that, with levels of 5-6 x 101 molecules cm 2, the
downscaled dataset provides accurate estimates of the actual tropospheric column amounts
of NO, over the Katowice area that are very close to those actually measured by TROPOMI
at high resolution, even though the actual OMI-observed values were significantly lower
due to the averaging over the area of coarser pixels. Later on, in Section 4.4, we will show
further quantitative results of the same datasets.

There are some limitations of the method which result in patterns that were not
observed by TROPOMI. For instance the area in the northwest of the domain north of
Krapkowice that shows a clear hotspot in the TROPOMI dataset is somewhat underesti-
mated in the downscaled dataset. The reason for this is not entirely clear because the small
hotspot observable in the TROPOMI dataset is large enough that it should also be picked
up by the OMI instrument to some extent. It is visible in the downscaled map as a small
area of increased tropospheric NO, columns, but the values are significantly lower than
those in the TROPOMI map. A similar issue can be seen in the area south of Katowice in
the Kozy area where the downscaled map show a clear hotspot, but this hotspot is not
present in the TROPOMI dataset. The original OMI values in this area are generally higher
than TROPOML

It is important to note that while the the downscaling technique uses a high-resolution
proxy dataset, the downscaled values are entirely constrained by the original satellite
measurements, i.e., if the downscaled results are re-aggregated to the coarse resolution, the
corresponding values will match exactly the original OMI observations. The use of OMI for
downscaling in this example was entirely driven by the possibility to have a high-resolution
reference with the TROPOMI data. Although we cannot demonstrate it here, due to the lack
of very high resolution reference data, initial experiments with downscaling TROPOMI
indicate that the methods has significant potential for also downscaling TROPOMI to even
higher spatial resolutions.
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Figure 10. Real-world validation of the downscaling method using TROPOMI as a high-resolution reference for the area
of the Ostrava/Katowice area for July through September 2018. Panel A shows the original OMI data (gridded at 0.25°
x 0.25°). Panel B shows the result of downscaling the OMI data using the QUARK NO, dataset (https://ec.europa.eu/
environment/air/pdf/NO2%20exposure%?20technical %20manual.pdf, accessed on 30 October 2018) as a proxy. For a direct

comparison, panel C shows the original TROPOMI data gridded to a spatial resolution of 0.05° x 0.05°. Panel D shows the
relative difference between the downscaled OMI data and the TROPOMI data.

4. Validation Results

Validation was an essential part of SAMIRA and is essential to understanding the
achievements made. It was part of the algorithm developments, as well as done inde-
pendently. Due to the nature of the different data sets, the validation approach had to be
different for the various products. SAMIRA data products, reference data, and approaches
used for validation are summarized in Table 1.

4.1. Validation of SEVIRI AOD

For the validation of SEVIRI AOD the historical data from June-September 2014 were
used. They were compared with data from AERONET, the Poland-AOD network, and the
3 km AOD product (at 550 nm) from the moderate resolution imaging spectroradiometer
(MODIS) [62,63]. The latter was chosen despite its lower accuracy compared to the 10 km
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MODIS AOD data, because of its better comparability to the spatial resolution of SEVIRI
(5.5 x 5.5 km?). In 2014, AERONET measurements were made at four stations in Romania
and at two locations in Poland using the CIMEL Electronique 318A sun photometers
(675 nm). The Poland-AOD network measurements were done at three stations with the
multifilter rotating shadowband radiometers MFR-7 radiometers (613 and 674 nm). In
Table 2, the comparisons between SEVIRI AOD data at 635 nm and AOD from the ground-
based sun-photometer are shown for closest matches within 15 min. For the SEVIRI -
MODIS comparison one hour was used as a temporal co-location criteria. An AOD value
of 0.15, which is the recommended threshold for ‘clean’ reference days, was used as a lower
limit for the comparisons [42].

Table 1. SAMIRA data products and reference data used for validation.

SAMIRA Products Datasets Used for Product Development Datasets Suitable for Validation
(Methodology)
SEVIRI AOD all days: reflectance from SEVIRI AOD from AERONET, the Poland
reference day: AOD from AERONET, AOD network and MODIS
Poland AOD network, and CAMS (statistical scores)
PM,; 5 from AOD SEVIRI AOD from SAMIRA PMj; 5 from ground-based national
WRF-Chem model output air quality networks (correlation)
Data fusion AQIS database data for Czech Republic Subsets not used in the analysis
NO,, SO,, PMy 5 CAMX output, auxiliary data (cross-validation)
AOD, PM; 5 from SAMIRA
NO;,, SO, from OMI, GOME-2, TROPOMI
Downscaling AOD, PMj; 5 from SAMIRA Synthetic data, satellite data
NO;,, SO, NO,, SO, from OMI, TROPOMI with higher spatial resolution
AOD, PM; 5 Model output (WRF-Chem, WRF-EMEP) (statistical scores)
QUARK NO,

The country averaged correlation coefficient (R) between AOD from SEVIRI and AOD
from the ground-based stations varies between 0.61 and 0.62 with a mean bias between
0.09 and 0.12. The bias differences are only in small proportion influenced by the different
wavelengths at which the data were collected (10~2 order of magnitude). We found
varying correlations values between individual sites, which can be explained by different
reflectance values specific to the land use classes within the satellite pixel. SEVIRI AOD
did not correlate as well as with the 3 km AOD product from MODIS, with R and biases
between 0.32 and 0.39, and 0.07 and 0.11, respectively. Detailed validation results for the
individual AERONET and Poland-AQOD sites, as well as map comparisons between SEVIRI
and MODIS AOD, are given in [64].

Table 2. Validation of SEVIRI AOD using AOD from AERONET, the Poland AOD network, and the
3 km AOD product from MODIS. N: number of co-locations, R: correlation coefficient, RMSE: root
mean square error.

Data Domain N R Bias RMSE
AERONET Romania 982 0.62 0.12 0.14
AERONET Poland 289 0.61 0.10 0.12
POLAND-AOD Poland 544 0.61 0.09 0.12
MODIS Romania 90,740 0.32 0.11 0.15
MODIS Poland 48,912 0.39 0.09 0.14

MODIS Czech Republic 16,154 0.35 0.07 0.15
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4.2. Validation of Satellite-Based PM; 5

The reference data for the validation of satellite-based PM; 5 concentrations were
PM, 5 observations from the ground-based national air quality networks. When validating
satellite derived PM, it was found important to take into consideration details related to the
location of the measurement sites. This is illustrated in Figure 11. Sub-pixel variability, e.g.,
half of the pixel is forested area and the other half is in a urban area, or close-by localized
emission sources can have the effect that in situ stations are not being representative for the
satellite pixel. Although homogeneous urban areas such as the one shown in Figure 11A
were found to be proper validation sites, coastal stations (Figure 11B) were not, because
marine aerosol was not included in our model.

Figure 11. Illustration of land cover and land-use within a 5 km x 5 km square SEVIRI pixel. (A):
urban area, (B): coastal site.

Validation was done separately for the three countries. For Poland and the Czech
Republic, 36 and 35 ground stations, respectively, had reported hourly values of PM; 5. For
Romania only daily means of PM; 5 at nine ground stations were available for the time
period June-September 2014. After eliminating the non-representative sites, correlation
coefficients between the satellite-based PM; 5 and the in situ station are 0.49 and 0.56 for the
Czech Republic and Poland, respectively. This is significantly higher than the correlation
between the WRF-Chem PM, 5 and the in situ station data (see Table 3). Note that for the
correlation between WRF-Chem and the air quality sites there is basically no difference
between the entire set of stations and the selected ones. For Romania no hourly PM; 5
station data were available, therefore, daily averages are given in Table 3.

Table 3. Correlation (R) between WRF-Chem and satellite-based PM, 5 and PM; 5 measured at ground-based stations.

Country Temporal =~ WRF-Chem, all All Stations Representative Stations
Average /Representative Stations  (Number of Stations)  (Number of Stations)

Poland hourly 0.32/0.30 0.40 (36) 0.56 (16)

Czech Republic hourly 0.25/0.27 0.41 (35) 0.49 (13)

Romania daily 0.44 0.53 (09)

4.3. Validation of Data Fusion Mapping Results

The validation of the data fusion mapping results is based on the ‘leave one out
cross-validation method. It computes the quality of the spatial interpolation of residuals for
each measurement point from all available information except from the point in question,
i.e., it withholds one data point and then makes a prediction at the spatial location of that
point. Data fusion analyses were executed for four pollutants, i.e., NOy, SO,, PM; 5, and
PMj for the Czech Republic, based on the 2014 dataset. For all pollutants, daily and hourly
time steps were examined, while the annual time step was carried out for NO,, SO, only
due to the lack of annual PM or AOD satellite data. In Table 4, the root mean square error

7
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and biases are shown for rural and urban background areas separately. The results for
annual NO, and SO, data can be found in Table 5.

Table 4. Comparison of different spatial interpolation variants showing cross-validation parameters root mean square

error (RMSE) and bias, as annual statistics average, based on the specified pollutants daily and hourly maps across 2014

for the Czech Republic. Numbers are given for without (x| ) and with (1x) inclusion of satellite data, and superior results

are marked in bold. For PM superscripts indicate which satellite dataset was used. For PMj, 5 three values are shown for
without (x ) and with (1x, | xp) inclusion of satellite data a. with SEVIRI AOD as proxy and b. using SAMIRA PM, 5 data.

Units: pg m—3.
Rural Areas Urban Background Areas

RMSE Bias RMSE Bias
NO, daily 3.371 3.24 —0.06 1 —0.04 5.1815.14 —0.0110.02
NO; hourly 5.461 5.22 —0.011 0.00 8.96 19.04 0.101 0.12
SO, daily 3.681 3.61 0.041 0.04 5.56 15.53 —0.111—0.07
SO, hourly 5.75| 5.59 0.091 0.03 5.9315.91 —0.101 —0.04
PM1p4OP daily 4.76| 4.57 —0.141 0.00 5.06 15.17 —0.181—-0.12
PM;,4CP hourly 14.00112.50 1.241 0.01 13.2818.26 0.771—0.13
PM, 540PPM25 daily 4.1713.3913.65 0.0210.001 —0.01 4.3514.6014.19 0.071—0.151—0.10
PM, 540PPM25 hourly 7.2617.0716.98 —0.0710.001 0.01 9.2918.2618.67 0.131—-0.131-0.16

Table 5. Comparison of spatial interpolation variants without and with the use of satellite data
showing cross-validation parameters RMSE, bias, and R?, based on NO; and SO, annual average
map for the Czech Republic for 2014. RMSE and bias are given in ug m .

Rural Areas Urban Background Areas
RMSE Bias R? RMSE Bias R?
NO, 2831211 0.0310.00 0.3310.63 3.5213.48 0241 015 0421 0.43

SO, 3111298 —-0.131-0.13 0.2510.31 29712.75 0.011 —0.30 0.2110.33

Comparing the data fusion variants without and with the satellite data, we found
that the inclusion of the satellite data improves the daily and hourly mapping results of
NO; in the rural areas. Although for hourly NO, data there is an improvement noticed for
rural background areas, this does not seem true for the urban environment (see Table 4).
Including satellite NO, data improved the annual data, both in the rural and in the urban
regions (see Table 5). Looking at SO,, the inclusion of satellite data slightly improves both,
rural and urban mapping results for hourly, daily and annual data. For PM;g, SEVIRI
AOD was used as a proxy, and the original 15-minute data were temporally aggregated
into hourly and daily data. For PM; 5, two values are shown in Table 4, a. with SEVIRI
AQOD as proxy and b. using SAMIRA PM; 5 data. For daily PM; 5 mapping the results
show largest improvement in rural areas when AOD was used and in urban areas when
PM; 5 was included in the data fusion. The inclusion of satellite data (either AOD or
PMj; 5) can improve the results for PMg and PMj; 5 for the Czech Republic. However, it is
important to note that the results for PM were calculated for a much smaller number of
days (June-September 2014) than for NO, and SO, and did not include winter months.

4.4. Validation of Downscaling Algorithm

The downscaling algorithm itself was initially validated using synthetic data. Using
simulated fields for testing the algorithm has the advantage that the fine-resolution truth is
known, and the performance of the downscaling method can be evaluated accurately by
comparing against the truth. Table 6 shows the corresponding summary datasets for each
method. The SAMIRA method (area-to-point kriging with a covariate) outperforms all the
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other methods. In particular, the root mean square error (RMSE) decreases significantly for
area-to-point kriging with a covariate.

Table 6. Summary statistics of a various downscaling methods for the simulated dataset (A.U.). Marked in bold are the best

values for several relevant metrics. SD: standard deviation, MAE: mean absolute error, RMSE: root means square error.

Method

Covariate Mean Bias SD MAE RMSE Intercept Slope R?

Bilinear interpolation
Area-to-point kriging
Simple linear regression
Robust linear regression
Area-to-point kriging

no 0.04 1.42 1.13 1.42 -0.73 1.04 0.91
no —0.01 1.32 1.05 1.32 —0.54 1.03 0.93
yes —0.02 1.46 1.15 1.46 0.96 0.95 0.91
yes 0.11 1.59 1.26 1.59 -3.11 1.17 0.91
yes 0.00 0.69 0.54 0.69 0.95 0.95 0.98

In addition, the algorithm was validated using satellite data with higher spatial reso-
lution. Figure 12 shows a comparison of original OMI NO, (panel A) and the downscaled
OMI NO; (panel B) against TROPOMI NOs, the latter acting here as a reference. The overall
scatter and the alignment with the 1:1 line is significantly improved after downscaling
the OMI data. In fact, the R? value shows a quite significant increase from 0.53 to 0.71.
The results of the comparison are summarized in Table 7. It is evident that six out of
seven summary metrics were improved by applying the downscaling algorithm to the
coarse-resolution dataset.

A / ;.B 4

y=1.25+0.608x R>*=0.53 y=0.773+0.792x R*=0.71 /

OMI TVCD NO2 [Pmol/cm2]
Downscaled OMI TVCD NO2 [Pmol/cm2]

2 3 4 2 3 4
TROPOMI TVCD NO2 [Pmol/cm2] TROPOMI TVCD NO2 [Pmol/cm2]

Figure 12. Scatterplots showing a comparison of the original OMI NO, product (panel A)
and the downscaled OMI NO, product (panel B) against the TROPOMI NO, product [in
10'® molecules cm 2] for the area of the Czech Republic for July through September 2018. Note
that due to its coarse resolution a pixel of the original OMI product represents multiple TROPOMI
pixels, thus explaining the striped patterns in panel A.

Table 7. Summary statistics comparing the original OMI NO, data and the downscaled OMI NO,
data, respectively, against the high-resolution TROPOMI NO, data (in 10'®> molecules cm~2), shown
here for area of the Ostrava/Katowice region. The better metrics are marked in bold. SD: standard
deviation, MAE: mean absolute error, RMSE: root means square error.

Dataset Mean Bias SD MAE RMSE Intercept Slope R?

OMI Original 0.22 0.43 040 0.48 1.25 0.61 0.53
OMI Downscaled 0.23 0.34 0.34 0.40 0.77 0.79 0.71




Remote Sens. 2021, 13, 2219

18 of 23

5. SAMIRA Air Quality Data Mapping Portals

Since March 2019, up-to date hourly maps for NO,, SO;, PM; 5 and PMjy and daily
maps for PMjg and PM, 5 were created operationally for the Czech Republic and the
European domains. These, as well as the historical data from June-September 2014,
were visualized with a custom-build responsive mapping portal. As an example, a map
showing hourly averaged Czech NO, for 23 November 2019 is shown in Figure 13. Fur-
thermore, NRT AOD maps for Poland are shown on the Poland AOD network site (
http:/ /www.polandaod.pl/; in the Polish language version only). General background
information about SAMIRA can be found on the project website https://samira.nilu.no.

SAMIRA Map Viewer
€7 23.11.2019 12:00 ache
Caech Republic NO2 NRT n

-~ (B2

Figure 13. SAMIRA Map Viewer showing hourly averaged NRT NO, for 23 November 2019 12:00
over the Czech Republic.

6. Conclusions and Outlook

The SAMIRA initiative led to increase in knowledge and better exploitation of syn-
ergistic satellite-based air quality products. A distributed NRT system for satellite-based
regional air quality was set up, thus successfully demonstrating a complex technical in-
terplay between multiple research and operational institutions located in four European
countries. Advances were made in the following research areas:

1. The SEVIRI AOD optimal estimation algorithm was improved and geographically
extended from Poland to Romania, the Czech Republic and Southern Norway. Alongside
AOD, pixel-level uncertainties were estimated. After testing for historical data (June-
—September 2014), a NRT retrieval was implemented and is currently operational (for
details see [42]). The benefit of using SEVIRI for air quality application is the possibility
to obtain data with a high temporal resolution (15 min). The largest limitation of any
geostationary AOD algorithm is related to the surface hot-spot effect for scattering angles
close to 180° and a small solar zenith angle, limiting the retrieval to day-times up to
10:00 UTC and after 14:00 UTC. The exact range, however, depends on the time of the year
and geographical position. A specific issue for the SEVIRI optimal interpolation AOD
retrieval is the choice of the reference day (a clean day with low AOD and clear sky) and
that the availability of regular ground-based AOD measurements is required. This hinders
the retrieval for regions where no photometer data are available, as it was in the case for the
Czech Republic. Due to the northern geographic location of Norway scattering geometry
is unfavorable and clouds frequently obstruct the scenes, therefore AOD data for Norway
are sparse. Validation against ground-based sun-photometers, located in Romania and
Poland, using the data from 2014, showed generally good agreements with country mean
correlation coefficients (R) between 0.61 and 0.62, a bias of 0.09-0.12, and an RMSE of
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0.12-0.14, but did not correlate as well with the 3 km AOD product from MODIS. For more
details see [64].

2. A retrieval for ground-level concentrations of PM, 5 was implemented using the
SEVIRI AOD in a combination with WRF-Chem output. NRT capability for the AOD-
to—PMj, 5 retrieval was demonstrated. The satellite-based PM; 5 data product from our
method was validated using ground-based in situ PM; 5 observations from National air
quality networks. An important lesson learned is that the representativity of the air quality
monitoring stations is a very important factor to take into account when evaluating the
methodology. For representative sites in Poland and the Czech Republic correlations
between 0.56 and 0.49 were found between satellite-based PM; 5 and PM, 5 measured at
air quality sites; this is nearly double the correlation between WRF-ChemPM,; 5 and PM; 5
observed at the in situ sites. Uncertainties in the PMj; 5 retrieval, as well as AOD and
WRE-Chem uncertainties contribute to those from the satellite-based PM; 5. The boundary
layer altitude were found to be an important parameter for a potential future improvement
of the PMj 5 retrieval.

3. The added value of including satellite data when creating air quality maps was
demonstrated. An operational algorithm for data fusion with the capability of optimally
merging and mapping multiple heterogeneous datasets was extended to make use of
various satellite-based air quality products (NO;, SO,, AOD, PM; 5, and PMy). Validation
results showed that in multiple cases the inclusion of satellite data can improve the mapping
for the Czech Republic for both, historical as well as NRT data. Moreover, an inclusion of
satellite data improves the daily and hourly mapping results of NO; in the rural areas and
annual data, both in the rural background and in the urban regions. Inclusion of satellite
SO; slightly improves both rural and urban mapping results for hourly, daily, and annual
data. Including AOD or PM; 5 derived from satellite AOD improved the results for PM; 5
and PMjg. The main limitation for the operational use of such data lies in the limited
satellite data coverage due to lack of daylight and cloudiness. Gap filling in the cloudy
areas, using model and in situ data only, can be considered a suitable way to improve
coverage, as long as is properly flagged.

4. A geostatistical downscaling algorithm was developed and tested to bridge the gap
between satellite products of air quality (typically provided at spatial resolutions on the
order of several kilometres) and urban-scale applications (for which spatial resolution of
hundreds of meters are required). Statistical downscaling has been carried out in many
disciplines in the past and substantial efforts have also been made in satellite remote
sensing. However, so far to our knowledge no studies have used or implemented such
approaches for downscaling satellite-based air quality products. In a first step, the SAMIRA
downscaling algorithm was validated using synthetic data. Then, we found that it performs
well in extracting spatial details that can be seen in the true high-resolution data field.
We successfully demonstrated downscaling OMI NO, data to the spatial resolution of
TROPOMI, with NO, data from the latter acting as a true high-resolution reference. It is
expected that the advantage provided by the downscaling algorithm will also hold for
even finer spatial scales. It is important to note here that—when using a time-invariant
proxy—the downscaling on a daily basis (i.e., not for a longer-term average) for a high-
resolution instrument, such as TROPOM], is limited to relatively calm winds in the area
and no significant plumes forming. In the case of a substantial plume the downscaling
algorithm will spatially redistribute in areas where the original emissions causing the
plume have not actually originated, thus leading to erroneous results.

We can conclude that the SAMIRA project was a significant step forward towards a
better exploitation of the Earth observation capabilities for air quality monitoring in Europe.
Geostationary satellite instruments, like SEVIRI and the upcoming Sentinel 4 mission [65]
(launch planned in 2023) are particularly interesting for air quality applications. Setting
up a European or international initiative, analogue to, e.g., the Production and Evaluation
of Aerosol Climate Data Records from European Satellite Observations (Aerosol_cci) [66],
but with focus on geostationary AOD retrievals, would be an important step forward in
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improving satellite-based air quality. This is also true for the estimation of the information
content for satellite-based PM; 5 retrieval. Outcomes from SAMIRA, together with the
work performed for the EEA [67], led to the inclusion of satellite data in the EEA air quality
mapping in Europe. A geospatial downscaling algorithm was implemented and we could
demonstrate its skills. More work is necessary to better understand the uncertainties and
limitations associated with the resulting downscaled products. All of the work shown above
is about data integration. Linking the NO, columnar data with surface concentrations of
NO,, for which several hundreds of stations are available in Europe, is a natural next step
in the development of satellite-based urban-scale air quality monitoring.
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