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Abstract: Accurate positioning and mapping are significant for autonomous systems with navigation
requirements. In this paper, a coarse-to-fine loosely-coupled (LC) LiDAR-inertial odometry (LC-LIO)
that could explore the complementariness of LiDAR and inertial measurement unit (IMU) was
proposed for the real-time and accurate pose estimation of a ground vehicle in urban environments.
Different from the existing tightly-coupled (TC) LiDAR-inertial fusion schemes which directly use all
the considered ranges and inertial measurements to optimize the vehicle pose, the method proposed
in this paper performs loosely-couped integrated optimization with the high-frequency motion pre-
diction, which was produced by IMU integration based on optimized results, employed as the initial
guess of LiDAR odometry to approach the optimality of LiDAR scan-to-map registration. As one of
the prominent contributions, thorough studies were conducted on the performance upper bound
of the TC LiDAR-inertial fusion schemes and LC ones, respectively. Furthermore, the experimental
verification was performed on the proposition that the proposed pipeline can fully relax the potential
of the LiDAR measurements (centimeter-level ranging accuracy) in a coarse-to-fine way without
being disturbed by the unexpected IMU bias. Moreover, an adaptive covariance estimation method
employed during LC optimization was proposed to explain the uncertainty of LiDAR scan-to-map
registration in dynamic scenarios. Furthermore, the effectiveness of the proposed system was val-
idated on challenging real-world datasets. Meanwhile, the process that the proposed pipelines
realized the coarse-to-fine LiDAR scan-to-map registration was presented in detail. Comparing with
the existing state-of-the-art TC-LIO, the focus of this study would be placed on that the proposed
LC-LIO work could achieve similar or better accuracy with a reduced computational expense.

Keywords: LiDAR-inertial odometry; loosely-coupled integration; adaptive covariance estimation;
positioning; mapping; autonomous systems; urban canyons

1. Introduction

Positioning and mapping are undoubtedly essential modules for autonomous tasks,
such as autonomous driving and robotic service, in unknown or partially known environ-
ments. It is well known that the Global Navigation Satellite System (GNSS) could provide
satisfactory performance in open-sky areas. However, due to the reflection caused by
static skyscrapers and dynamic tall objects such as double-decker buses, reflected signals
from the same satellite could be received and the notorious non-light-of-sight (NLOS)
receptions occur [1], which is the major difficulty significantly degrading the positioning
accuracy and preventing GNSS from utilization in intelligent transportation systems under
urban canyons [2]. The local perception sensor, Laser Detection and Ranging (LiDAR) has
attracted great attention owing to its high precision, reliability, long perception distance
and insensitivity to illumination. The major principle of LiDAR-based positioning and
mapping is to track the motions obtained by registrations between consecutive frames of
point clouds [3]. However, the LiDAR standalone-based odometry is sensitive to motion
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distortions especially in high-speed motion under highly urbanized environments with
numerous dynamic objects [4]. As per a study [5], for a Velodyne HDL-64E swiping at
10 Hz, a linear motion at 50 km/h could generate a gap of 1.38m between the beginning and
the end of a scan. A rotational motion at 25 degree/s could generate a gap of 2.19 m at 50 m
away from the LiDAR. Moreover, the point cloud registration of LiDAR odometry relies on
an accurate initial guess which is hard to obtain without the assistance of other sensors [6].
Considering the complementariness of the LiDAR and the inertial measurement unit (IMU),
the researchers proposed diverse LiDAR-inertial odometry (LIO) pipelines.

Odometry schemes based on LiDAR-inertial fusion are extensively investigated. One
category is tightly-coupled (TC) fusion, which allows the direct fusion of measurements
from sensor outputs and has recently gained widespread utilization. TC methods are based
on the filter [7] or the factor graph optimization [8], both of which have been well studied.
LINS [9], in which an iterated error state Kalman filter with robocentric formulation is
employed, provides real-time ego-motion estimation. However, it has been shown in
our recent work [10] that the factor graph optimization-based sensor fusion can better
employ the correlation between consecutive epochs of measurements simultaneously,
compared with the extended Kalman filter (EKF)-based estimator. Instead of adopting the
filtering-based sensor fusion, the Lio-mapping framework [11] was proposed, optimizing
measurements from LiDAR (point-to-map association) and IMU pre-integration in a sliding
window via a factor graph. However, the accuracy highly depends on the quality of the
IMU on the ground that the IMU measurements are directly fused with the point-to-map
registration to generate the final state of the vehicle. Furthermore, such TC integration
induces a significantly high computation load thus cannot guarantee real-time performance.
The major computation load is caused by the point-to-map association, which is similar
to the visual reprojection [12], of each LiDAR frame during sliding window optimization.
In order to solve this problem, the LIO-SAM [13] is proposed for the implementation of
the keyframe-based tightly-coupled LiDAR-inertial odometry (TC-LIO) based on factor
graph optimization via incremental smoothing and mapping [14]. Local scan-to-map
registration [15] and keyframe selection are beneficial to real-time performance. Recently,
there is an inspiring work [16], the LiLi-OM, which presents a TC-LIO and mapping system.
Interestingly, two independent factor graphs are maintained by LiLi-OM. One larger factor
graph is in charge of integrating IMU pre-integration with LiDAR feature association of
selected keyframes and performing sliding window-based optimization; while the other
smaller factor graph within the sliding window is invoked to obtain poses of frames that
are not selected as keyframes. The LiLi-OM is evaluated on multiple challenging datasets
(e.g., the UrbanLoco dataset [4] and the KITTI dataset [17]) with the results showing that
the LiLi-OM significantly outperforms the LIO-SAM and the Lio-mapping. In other words,
the LiLi-OM is currently the most state-of-the-art TC-LIO scheme. Nevertheless, it is still
inevitable that the computation load is high and the performance is limited by IMU during
TC integrations.

The other category of LiDAR-inertial fusion is loosely-coupled (LC) fusion, which
allows the fusion of respective motion estimations from LiDAR odometry and IMU integra-
tions. In LOAM [3] and LeGO-LOAM [18], which are typical LiDAR odometry algorithms,
IMU is employed to provide high-frequency motion prediction for LiDAR odometry. Mean-
while, the motion distortion is partially solved. However, the bias of the IMU is not
corrected due to the assumption [3,18] that the impact of the IMU bias in a short period can
be ignored. Furthermore, an LC fusion of LiDAR and IMU [19] is achieved through vari-
eties of Kalman filters, which allows the fusion of LiDAR positioning results with rotational
velocity from IMU with the aim of testing on vehicles equipped with low-mounted multiple
LiDARs. Similarly, a 2D indoor navigation system [20] is developed through EKF fusing
standalone positioning results from LiDAR and IMU separately. However, the EKF can
only execute linear approximation once at a fixed operating point [21]. More importantly,
EKF is subject to the first-order Markov hypothesis, under which the historical information
cannot be fully utilized by the current state [21]. Therefore, the EKF-based LC methods are
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considered to be computationally efficient but sensitive to gross outlier measurements [22].
Fortunately, the factor graph-based LC LiDAR-inertial positioning and mapping system
retains the high precision of iterative optimization and low computational complexity of
decoupled formulation. Furthermore, the computational efficiency can be enhanced on
account of sliding window-based optimization. As mentioned above, correlation between
consecutive frames of measurements can be employed within an optimization window,
which, therefore, also conduces to the accuracy. Nevertheless, for pure loosely-couped
LiDAR/inertial odometry (LC-LIO), the problem that the performance is limited by the
quality of IMU still exists.

In this paper, a coarse-to-fine LC-LIO for urban positioning and mapping was pro-
posed to deal with the aforementioned problems. On the one hand, the window-based
factor graph optimization (coarse process) is adopted to estimate the bias of the IMU by
integrating the IMU pre-integration and the LiDAR scan-to-map registration. Therefore,
the motion distortion can be mitigated by the high-frequency IMU integration based on
the corrected IMU bias. Moreover, real-time performance is guaranteed thanks to the
decoupled integration and window-based optimization. On the other hand, the refinement
of LiDAR scan-to-map registration (fine process) is performed to estimate the pose of the
vehicle based on the initial guess from the coarse process. Theoretically, the accuracy of the
LiDAR ranging measurement is centimeter-level and a similar accuracy of motion estima-
tion could be derived based on the LiDAR scan-to-map registration. However, in practice,
only the locally optimal solution with larger error is usually obtained due to the fact that
the LiDAR scan-to-map registration is mathematically a non-convex optimization. It is
well-known that providing an accurate initial guess for the non-linear optimization could
significantly contribute to removing the local minimum and converging to an ideal optimal
solution. In light of this, the initial guess produced via high-frequency IMU integration
based on the optimized state estimation from the coarse process could further relax the
high accuracy of LiDAR ranging measurements, which would induce an accurate motion
estimation. It can be considered that the contributions of this paper include three aspects:

• Development of a coarse-to-fine LC-LIO pipeline based on window optimization.
Meanwhile, the adaptive covariance estimation of the LiDAR scan-to-map registration
is proposed for further LiDAR/Inertial integration.

• Theoretical analysis of performance upper bound of LC and TC LiDAR-inertial fusion
considering the error propagation from LiDAR and inertial measurements.

• Validation of the proposed method with challenging datasets collected in urban
canyons of Hong Kong. The convergence results of both the LC-LIO and TC-LIO are
presented to experimentally verify the theoretical analysis in the second aspect.

The remainder of this paper is arranged as follows. Firstly, the overall framework
of the proposed system would be elucidated in Section 2. Furthermore, details of the LC
optimization framework would be expounded in detail in Section 3, including the illustra-
tion of the proposed factor graph (Section 3.1), IMU measurement modeling (Section 3.2),
LiDAR measurement modeling (Section 3.3) and adaptive information matrix description
(Section 3.4). Moreover, the theoretical analysis of the upper bound of both LIOs would
be described in Section 4. Furthermore, the implementation and experimental results
would be interpreted in Section 5. Finally, a conclusion of this study would be presented in
Section 6.

2. Overview of the Proposed LC-LIO

The structure of the proposed LIO is shown in Figure 1, which is a coarse-to-fine LC
integration system based on factor graph optimization. The yellow and blue represent
the coarse and fine processes, respectively. The inputs of the system include the raw 3D
point clouds from the 3D LiDAR and gyroscope and accelerometer readings from IMU.
The output is the six-degree-of-freedom pose of LiDAR and a globally consistent map. As
per the raw point clouds from LiDAR, the feature points on sharp edges and planar surface



Remote Sens. 2021, 13, 2371 4 of 24

patches are extracted first [3]. IMU measurements between the current and the last LiDAR
frames are pre-integrated.
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In terms of the coarse process, pre-integration results and the scan-to-map registration
results will construct the pre-integration factor and the scan matching factor, respectively,
during the current LC non-linear optimization. Residuals of scan-to-map registration
will be converted to an information matrix of the scan matching factor by an exponential
function. Based on the optimized states and IMU measurements, high-frequency motion
state prediction is performed to provide an initial guess for the scan-to-map registration of
the next LiDAR frame.

In terms of the fine process, a scan-to-map registration, employing the initial guess
generated by the last LC optimization, is performed to achieve a fine estimation of the
pose of LiDAR. A globally consistent map is also updated by registering the new coming
point cloud to the map. The initial guess from the coarse process can exert significant
impacts on the avoidance of falling into local optima and the removal of motion distortion
of the point cloud. The details about the proposed method would be presented in the
following sections.

Matrices are denoted as upper-case and bold letters. Vectors are denoted as lowercase
with bold letters. Variable scalars are denoted as lower-case and italic letters. Constant
scalars are denoted as lowercase letters. To clarify the proposed pipeline, the notations and
frames used in the whole paper are defined as follows.

• The LiDAR body frame is represented as {·}L, which is fixed at the center of the
LiDAR sensor.

• The IMU body frame is represented as {·}B , which is fixed at the center of the
IMU sensor.

• The world frame is represented as {·}W , which is originated at the initial position of
the vehicle. It is assumed to coincide with the initial LiDAR frame.

The k-th frame of LiDAR point cloud is represented asF Lk . A frame is generated when
LiDAR completes one-time scan coverage. The coordinate of a point i, i ∈ F Lk , under the Lk

coordinate is represented as fLk
i . The transformation matrix of the k-th frame of LiDAR point

cloud under the world frame is represented as TW
Lk
∈ Special Euclidean Group (SE(3)) [23]:

TW
Lk

=

[
RW

Lk
pW

Lk
0 1

]
, (1)



Remote Sens. 2021, 13, 2371 5 of 24

where pW
Lk
∈ R3 stands for the translation, and RW

Lk
∈ Special Orthogonal Group(3)(SO(3)) [24]

stands for the rotation matrix. SO(3) and SE(3) are both Lie group [23]. In SO(3) each
element is an orthogonal matrix with the determinant 1 representing the rotation for
3D space. In SE(3) each element consists of a rotation matrix and a translation vector
representing the rigid motion for 3D space.

The k-th state of the IMU under the world frame, namely the state of the IMU at the
time when the k-th frame of LiDAR point cloud is captured, can be expressed as:

xk =
[
pW

Bk
, vW

Bk
, qW

Bk
, bak, bgk

]
, (2)

where xk consists of the position pW
Bk

, velocity vW
Bk

, rotation qW
Bk

in quaternion form, ac-
celerometer bias bak and gyroscope bias bgk. Among them, the k-th transformation matrix
of IMU can be represented as TW

Bk
∈ SE(3) [23]:

TW
Bk

=

[
RW

Bk
pW

Bk
0 1

]
, (3)

where RW
Bk
∈ SO(3) represents the rotation matrix corresponding to qW

Bk
.

The extrinsic transformation matrix from the IMU body frame to the LiDAR body
frame can be represented as TL

B which is calibrated offline. Therefore, the following
transformations are satisfied:

TW
Bk

= TL
BTB0

Bk
(4)

which transfers the pose under the initial IMU frame to that under the world frame, and it
will be used during IMU measurements modeling.

TW
Bk

= TW
Lk

TL
B (5)

transfers the pose of LiDAR from the scan-to-map optimization to the pose of the corre-
sponding IMU frame, which will be used during the loosely coupled optimization.

TW
Lk

= TW
Bk

TL
B
−1 (6)

transfers the pose of IMU from the LC optimization to the pose of the corresponding
LiDAR, which will be used during the high-frequency state prediction.

3. Coarse-to-Fine Loosely-Coupled LiDAR-Inertial Integration
3.1. LC-LIO Factor Graph

The illustration of the proposed factor graph is presented in Figure 2 which contains
one type of node and two types of edges. Every state of IMU, defined as (2), serves as
one node in the graph. One kind of edge connects a single state xk with k ∈ (0, n) and
the pose of the corresponding LiDAR frame TW

Lk
. TW

Lk
is generated by LiDAR scan-to-map

registration. It can be regarded as a measurement in a joint optimization that could provide
absolute constraints for the nodes to be optimized. IMU pre-integration results constrain
the relative pose from one node to another, which is the other kind of edge.

LC-LIO estimates states of the IMU within a large window. As shown in Figure 2, the
factor graph is quite sparse. There are only two or three constraints for one state. Thus,
to achieve adequate constraints for the accurate estimation and maintain the real-time
performance simultaneously, we maintain a fixed slide window containing 50 states during
factor graph optimization [25]. Since the computation complexity increases linearly with
the number of IMU states, using such a large window can still guarantee real-time capability.
As shown in Figure 3, when the number of states included in the window reaches the
pre-determined size, we preserve the last state and take it as the first frame in the new
window. Different from the tightly-coupled LiDAR/Inertial integration, the correlation
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between the historical frames and the new coming ones is weaker [16]. Therefore, it is
reasonable to remove the historical states to guarantee real-time performance.
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Factor graph optimization is typically derived as a nonlinear least-squares problem.
Once the graph is established, it can be solved by finding a group of states that conform to
all edges best [8]. After adding all the weighted squared residuals generated by two kinds
of edges in a window, the following equations can be obtained,

X = min
X

1
2

 ∑
k∈{0,··· ,n}

ρ(‖ rL
(

TW
Lk

, X
)
‖

2

CLk

) + ∑
k∈{0,··· ,n−1}

ρ(‖ rB
(

zBk
Bk+1

, X
)
‖

2

C
Bk
Bk+1

)

, (7)

X = {x0, x1, · · · , xn}, (8)

where, rL
(

TW
Lk

, X
)

represents the residuals produced by LiDAR scan-matching factor, zBk
Bk+1

and rB
(

zBk
Bk+1

, X
)

represents the measurements and the residuals produced by the IMU
pre-integration factor, respectively. X represents the states to be estimated. n represents
the size of the optimization window. The Mahalanobis norm is ‖ r ‖2

C = rTC−1r, where C
represents the covariance matrix of r, and C−1 represents the so-called information matrix.
ρ represents the robust kernel to decrease the influence of outliers. The Cauchy kernel [26]
is selected and defined as follows:

ρ(s) =
c2

2
log
(

1 +
s
c2

)
, (9)

where c represents a constant parameter that is set to 1 [27]. Ceres solver [28] is used
to solve this nonlinear problem and the Levenberg-Marquardt (L-M) algorithm [29] is
employed to iteratively minimize the cost function. The detailed definition of residual
terms and the adaptive information matrix of the LiDAR scan-to-map registration residual
in (7) would be presented in Sections 3.2–3.4, respectively.
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3.2. IMU Measurement Modeling

In this section, the modeling of the IMU measurements with pre-integration would
be presented. Even though the pre-integration is not a main contribution from this paper,
it would be elucidated in this section for the theoretical analysis in Section 4. The IMU
measurements are the rotation rate and the acceleration of the system given in the IMU
body frame. It is corrupted with the additive noise and a slowly varying bias of acceleration
and gyroscope [30]:

~
a

B
= RB

W

(
aW − gW

)
+ ba + na, (10)

ω̃B =ωB + bg + ng. (11)

It is worth noting that the transformation between the initial IMU frame {·}B0 and the
world frame is taken into account in (4). For simplicity, it would be omitted in the equations

in this section.
~
a

B
represents the raw IMU acceleration measurements in the IMU body

frame, and aW represents the noise-free acceleration of the system in the world frame. gW

represents the gravity in the world frame. RB
W ∈ SO3 represents the rotation matrix from

the world frame to the IMU body frame. ba represents slowly varying acceleration bias,
whose derivative is of Gaussian distribution. na ∼ N

(
0, σ2

a
)

represents the additive noise
of the acceleration. ω̃B is the raw IMU gyroscope measurements in the IMU body frame,
ωB represents the noise-free rotation rate of B relative to W expressed in coordinate B. bg
represents the bias ofωB. It can also be assumed that its derivative subjects to Gaussian
distribution. ng ∼ N

(
0, σ2

g

)
represents the additive noise ofωB.

There are dozens of or even hundreds of IMU measurements acquired between two
consecutive LiDAR frames. The pre-integration theory is employed to model such a large
number of IMU measurements as a single relative motion constraint [30]. The bias during
this process is assumed to remain constant. It is implemented in a local frame so that
repeated integration can be avoided when the IMU states have changed [31]. Otherwise, it
will be a heavy computational burden.

In practice, IMU measurements are discrete and are synchronized with the LiDAR
frames by linear interpolation. Median integral is employed to derive the pre-integration
results. Bt and Bt+1 are assumed to be two consecutive time instants between Bk and Bk+1,
and δt represents the time interval between Bt and Bt+1. The angular velocity and the
acceleration during δt can be expressed as:

ω =
1
2

((
ω̃Bt − bgk

)
+
(
ω̃Bt+1 − bgk

))
(12)

In addition:

a =
1
2

(
qBk

Bt

(
~
a

Bt − bak

)
+ qBk

Bt+1

(
~
a

Bt+1 − bak

))
(13)

The pre-integration of rotation qBk
Bk+1

, velocity βBk
Bk+1

and the translation αBk
Bk+1

between
Bk and Bk+1 under the Bk coordinate is recursively derived, respectively, according to the
following equations:

qBk
Bt+1

= qBk
Bt
⊗
[

0
1
2ωδt

]
, (14)

α
Bk
Bt+1

= α
Bk
Bt

+β
Bk
Bt

δt +
1
2

aδt2, (15)

β
Bk
Bt+1

= β
Bk
Bt

+ aδt. (16)

The derived compound measurements generated by pre-integration can be repre-
sented as:

zBk
Bk+1

=
{
α

Bk
Bk+1

,βBk
Bk+1

, qBk
Bk+1

, bak+1, bgk+1

}
, (17)
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It acts as the measurements of relative motion between two IMU states to constrain
them. The residual rB

(
zBk

Bk+1
, X
)

can be defined as:

rB
(

zBk
Bk+1

, X
)
=


rp
rq
rv
rba
rbg


15×1

=



qW
Bk
−1
(

pW
Bk+1
− pW

Bk
− vW

Bk
∆t− 1

2 gW∆t2
)
−αBk

Bk+1

2
[
qBk

Bk+1
−1 ⊗

(
qW

Bk
−1 ⊗ qW

Bk+1

)]
xyz

qW
Bk
−1
(

vW
Bk+1
− vW

Bk
− gW∆t

)
−βBk

Bt+1

bak+1 − bak
bgk+1 − bgk


, (18)

where [·]xyz extracts the imaginary part of a quaternion. Bias may be minorly corrected
after each window optimization. The details are shown in Appendix A.

3.3. LiDAR Scan Matching Modeling

LiDAR achieves the range measurements between the LiDAR itself and the sur-
rounded objects. As there is abundant three-dimensional geometry information in a deep
urban canyon that is mainly man-made such as buildings, road signs and overpasses, it is
feasible to extract enough edge points and plane points from LiDAR point clouds without
further consideration of point density [32] and distribution [33]. The feature extraction
manner [3] is employed here, through which the smoothness of the neighborhood around
the operating point fLk

i can be calculated as:

c =
1

|S|·‖ fLk
i ‖
‖ ∑

j∈S,j 6=i

(
fLk

i − fLk
j

)
‖, (19)

where S represents a set of neighbor points of fLk
i , which are on the same scan ring of fLk

i .
c represents the smoothness of S, |S| represents the total number of points in S and ‖ · ‖
represents the L2 norm. Points with lower smoothness are selected as plane feature points,
while points with larger smoothness are selected as edge points. Please refer to reference [3]
for more details.

The pose of F Lk , TW
Lk

, is calculated by registering F Lk to a local mapMW
k−1 with a

specified size [3,34]. The local map comprises the registered feature points of LiDAR
frames before F Lk and is organized in a KD-tree for efficient search. It will slide towards
the current frame if the frame approaches the map boundary [35]. The current frame
will always be kept inside the local map. Consequently, a significant number of point
candidates are guaranteed for registration. If E Lk and P Lk are taken as the set of edge
points and plane points of F Lk , respectively, the coordinates of points in these two sets
will be under the F Lk frame. If EW and PW are taken as the set of edge points and plane
points of the local map, respectively, the coordinates of points will be under the world
frame. During registration, for the i-th point fLk

e,i ∈ E
Lk and fLk

p,i ∈ P
Lk , TW

Lk
is employed to

project them onto the local map as:

fW
(·),i = TW

Lk
fLk
(·),i, (20)

where (·) represents e or p.
The initial guess of TW

Lk
can be obtained by:

TW
Lk

= TW
Lk−1
∗ TL

B ∗ TBk−1
Bk
∗ TL

B
−1, (21)

where, TW
Lk−1

represents the pose of the last LiDAR frame from LC optimization as per

Equation (6). TBk−1
Bk

represents the motion increment between the last LiDAR frame
and the current one, and it can be obtained from IMU measurement integrations as per
Equations (12)–(16). The initial guess benefits from the accuracy of LC integration and
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high-frequency of IMU, and thus can improve the robustness of scan-to-map registration,
especially in the degenerate case.

The final result of TW
Lk

can be obtained through the iterative matching of these two
categories of points, when TW

Lk
is iteratively optimized until it converges, or the maximal

number of iterations is finished. The objective of the feature matching is to minimize the
point-to-line residuals from edge points and the point-to-plane residuals from plane points.

For an edge point fW
e,i , there are 5 nearest edge points around it in EW on the local map.

Subsequently, eigendecomposition is performed on the covariance matrix of those five
points. If the maximum eigenvalue is significantly larger than the other two, it is expectable
for the five points to be on the same line of fW

e,i . The line passes the geometric center of the

five points fW
c,ei and its direction vector

→
n is the eigenvector corresponding to the maximum

eigenvalue. As shown in Figure 4a, the residual is formulated as the distance between fW
e,i

and the simulated line:

re,i

(
fLk

e,i , TW
Lk

)
= de,i =

‖
(

fW
e,i − fW

e,1

)
×
(

fW
e,i − fW

e,2

)
‖

‖ fW
e,1 − fW

e,2 ‖
, (22)

where, fW
e,1 and fW

e,2 are two points on the simulated line distributed on either side of fW
c,ei [16].

For a plane point fW
p,i, there are also 5 nearest plane points around it on the map, which

can be represented as fW
p,j ∈ PW , j = {1, . . . , 5}. It is expectable for fW

p,j and fW
p,i to be

on the same plane. Let u = [pa, pb, pc]T denote the coefficient vector of the plane and
A =

[
fW

p,1, · · · , fW
p,5

]
. u is achieved by solving the following overdetermined linear equation:

A·u = −1. (23)
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Figure 4. Illustration of point-to-line residual for edge feature point and point-to-plane residual
for plane feature point used in LiDAR scan-to-map registration: (a) Point-to-line residual for an
edge feature point fW

e,i of the current LiDAR frame, the orange line is the fitted line passing fW
c,ei;

(b) Point-to-plane residual for a plane point fW
p,i of the current LiDAR frame, the orange plane is the

fitted plane using fW
p,j ∈ PW , j = {1, . . . , 5}.

As shown in Figure 4b, the residual is formulated as the distance between fW
p,i and the

simulated plane:

rp,i

(
fLk

p,i, TW
Lk

)
= dp,i =

‖ uT ·fW
p,i + 1 ‖
‖ u ‖ . (24)

The pose of the current LiDAR frame TW
Lk

serves as an absolute constrain of the
corresponding state in the factor graph as shown in Figure 2. Equation (5) can be employed
to transfer TW

Lk
to the same coordinate of xk, which can be expressed as:

zW
Bk

=

[
~
p

W
Bk

,
~
q

W
Bk

]
, (25)
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The residual rL
(

TW
Lk

, X
)

generated by LiDAR scan-to-map registration is defined as

the difference between zW
Bk

and xk:

rL
(

TW
Lk

, X
)
=

 pW
Bk
− ~

p
W
Bk

2
[

~
q

W
Bk

−1
⊗ qW

Bk

]
xyz

. (26)

3.4. Adaptively Weighted LiDAR-Inertial Fusion

The LC nonlinear optimization relies heavily on the solutions from LiDAR scan-to-
map registration to accurately estimate the bias of IMU and directly constrain the motion
state in factor graph optimization. In challenging scenarios, such as feature insufficient or
highly dynamic environments, the solution from scan-to-map registration is prone to local
optimum or even divergence. The factor graph optimization minimizes residual factors
altogether as Equation (7). Abnormal solutions are inconsistent with the state and lead to
large residuals of the scan matching factor calculated as Equation (26). Normal solutions
are relatively in line with the state relatively better and can generate smaller residuals. The
LC nonlinear optimization could be misled or even destroyed by poor solutions.

To effectively mitigate the influence of the poor LiDAR scan-to-map registration
solutions and meanwhile strengthen that of the normal solutions, the weighting matrix
applied to the scan matching factors is adaptively regulated during the LC nonlinear
optimization. The weighting matrix is CLk

−1 for rL
(

TW
Lk

, X
)

as shown in Equation (7).
For a typical optimization-based state estimation problem, the overall residual is an

effective indicator for the quality of the derived solution [36]. Inspired by this fact, an
attempt is made to derive the potential uncertainty of the LiDAR scan-to-map registration
based on the residuals of point-to-line and point-to-plane association as follows:

QLk =

∑
f

Lk
e,i ∈E

Lk

{
re,i

(
fLk

e,i , TW
Lk

)}
+ ∑

f
Lk
p,i∈pLk

{
rp,i

(
fLk

p,i, TW
Lk

)}
NLk

e + NLk
p

. (27)

where, QLk represents the quality of TW
Lk

solved by LiDAR scan-to-map registration, and

NLk
e and NLk

p represent the number of edge points and plane points on F Lk , respectively.
More outliers during registration would produce larger QLk and worse solution, while
smaller QLk implies a better solution. Therefore, the scan matching factors containing TW

Lk

with smaller QLk tend to be assigned with more weight, while those containing TW
Lk

with
lager QLk tend to be assigned with less weight. As the state X is assumed to subject to
Gaussian distribution, an exponential function is selected experimentally to formulate the
weight of the scan matching factor. The function should have the following characteristics:

• A monotonically decreasing function of QLk ;
• A positive function of QLk ;
• Decreasing rate and ranges concerning QLk can be regulated by the control parameters

and thus be employed in general scenarios.

With these reasons taken into account, the function is expressed as:

wLk =

(
c1·

1− exp
(
c2 ·QLk

)
1− exp

(
c2 · rLk ,max

) + c3

)−1

, (28)

where wLk represents the weighting coefficient of the scan matching factor corresponding
to the k-th LiDAR frame, rLk ,max represents the biggest registration residual of this frame.
c1, c2 and c3 represent control parameters. It depends on the prior information about the
scenario and is empirical to some degree. As shown in Figure 5, c1 and c3 decides the range
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of wLk , while c2 decides the decreasing rate of wLk . These three parameters remain constant
for all scan matching factors.
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4. Performance Upper Bound Analysis of Tightly Coupled and Loosely Coupled
LiDAR-Inertial Integration

In this section, the error propagation process of both the LC and TC LiDAR/inertial
integration would be presented from the theoretical perspective, in an attempt to show the
performance upper bounds of LiDAR scan-to-map registration in different pipelines given
the same sensor measurements.

4.1. Error Propagation of LiDAR Measurement in TC-LIO

The general cost function of factor graph-based TC-LIO can be expressed as:

X = min
X

1
2


‖ rp(X) ‖2 + ∑

fLk
i ∈ F

Lk

k ∈ {0, · · · , n}

ρ(‖ rTC,stmr

(
fLk

i , X
)
‖

2

CLk

)+ ∑
k∈{0,··· ,n−1}

ρ(‖ rTC,B
(

zBk
Bk+1

, X
)
‖

2

C
Bk
Bk+1

)


, (29)

where rp(X) represents the prior factor from marginalization [16], if any. rTC,stmr(·) and
rTC,B(·) represents LiDAR scan-to-map registration residual and IMU pre-integration
residual, respectively. Measurements from LiDAR and IMU are fused directly to constrain
the state to be estimated. The raw measurements from LiDAR could reach centimeter-
level accuracy. However, the measurements from IMU are much noisy with an order of
magnitude lower accuracy, even if its bias is continuously corrected during optimization.
Regardless of the prior factor and taking the error of the raw measurements into account,
for one state xk the full Jacobian matrix JTC, f ull derived by its residual can be expressed as

JTC, f ull =

[
JrTC,stmr

JrTC,B

]
=

 ∂rTC,stmr(fLk+∆f,xk)
∂xk

∂rTC,B
(

z
Bk
Bk+1

+∆z,xk

)
∂xk

=
 ∂rTC,stmr(fLk ,xk)

∂xk
+

∂rTC,stmr(∆f,xk)
∂xk

∂rTC,B
(

z
Bk
Bk+1

,xk

)
∂xk

+
∂rTC,B(∆z,xk)

∂xk

. (30)

For simplicity simplify, fLk represents all the feature points including the plane and
edge points without differentiation. The Jacobian matrix of LiDAR scan-to-map registration
residuals corresponding to the state is represented as one submatrix, JrTC,stmr

, rather than
listed at separate rows of JTC, f ull . The Jacobian matrix of IMU pre-integration residuals
corresponding to the state is represented as JrTC,B . During the minimization of (29), JTC, f ull
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is iteratively evaluated. An error of IMU measurements and LiDAR measurements are
represented as ∆z and ∆f, respectively. The errors from both measurements are propagated
to JrTC,stmr

via the state xk shared by both kinds of residuals rTC,stmr and rTC,B . Therefore,
the final convergence of rTC,stmr relies on the quality of IMU and the accuracy of its noise
modeling. Unfortunately, the noise of the IMU drifts and is hard to obtain, even if the
noise is estimated or corrected simultaneously by the LiDAR scan-to-map registration. As
a result, the potential for the high accuracy of the raw LiDAR measurements is not fully
relaxed. A similar argument is also presented in a study [37] where a similar coarse-to-fine
LiDAR/visual integration scheme is proposed. It maintains that there is a significant differ-
ence between the accuracy level of the visual measurements and the LiDAR measurements,
and therefore, the direct and joint optimization of the residuals derived from two kinds of
observations can not relax the potential for LiDAR measurements.

The illustration of the measurement error propagation for TC-LIO is shown in Figure 6,
in which the error of IMU measurements is directly absorbed to the LiDAR scan-to-map
registration due to the tightly coupled integration.
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Figure 6. Error propagation in the LiDAR scan-to-map registration for TC-LIO and LC-LIO. An error of IMU measurements
and LiDAR measurements are represented as ∆z and ∆f, respectively. For TC-LIO, X represents the states to be estimated
during LiDAR-Inertial integration. LiDAR measurement modeling is directly affected by both ∆z and ∆f. For LC-LIO,
LiDAR scan-to-map registration is only disturbed by ∆f, which is the error of its own.

4.2. Error Propagation in LiDAR Measurement Modeling of LC-LIO

The general cost function of factor graph-based LC-LIO can be expressed as Equation (7).
During the minimization of Equation (7), for one state xk the full Jacobian matrix JLC, f ull
derived by its residual can be expressed as:

JLC, f ull =

[
JrLC,L
JrLC,B

]
=

 ∂rLC,L
(

TW
Lk
+∆TW

Lk
,xk

)
∂xk

∂rLC,B
(

z
Bk
Bk+1

+∆z,xk

)
∂xk

=
 ∂rLC,L

(
TW

Lk
,xk

)
∂xk

+
∂rLC,L

(
∆TW

Lk
,xk

)
∂xk

∂rLC,B
(

z
Bk
Bk+1

,xk

)
∂xk

+
∂rLC,B(∆z,xk)

∂xk

, (31)

where, TW
Lk

represents the pose of LiDAR solved by the iterative optimization of scan-to-
map registration in a separate module and ∆TW

Lk
represents the error of TW

Lk
. To make a

distinction between TC demonstrated in Section 4.1 and LC, the subscript ‘’LC” is added for
residual items rL(·) and rB(·) in Equation (7). The registration minimizes the point-to-line
and point-to-map matching residuals, as shown in Equations (22) and (24):
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TW
Lk

= min
TW

Lk

1
2

 ∑
f

Lk
i ∈F

Lk

‖ rLC,stmr

(
fLk

i , TW
Lk

)
‖

2

 = min
TW

Lk

1
2

 ∑
f

Lk
e,i ∈E

Lk

‖ re,i

(
fLk

e,i , TW
Lk

)
‖

2
+ ∑

f
Lk
p,i∈P

Lk

‖ rp,i

(
fLk

p,i, TW
Lk

)
‖

2

. (32)

During the minimization, the Jacobian matrix JrLC,stmr
of the matching residuals

rLC,stmr(·) corresponding to TW
Lk

can be expressed as:

JrLC,stmr
=

∂rLC,stmr

(
fLk + ∆f, TW

Lk

)
∂TW

Lk

 =

∂rLC,stmr

(
fLk , TW

Lk

)
∂TW

Lk

+
∂rLC,stmr

(
∆f, TW

Lk

)
∂TW

Lk

. (33)

where, ∆TW
Lk

are obtained by the error of LiDAR measurements only. In other words, the
LiDAR scan-to-map registration cannot be directly affected by the error arising from IMU
measurements.

The illustration of the measurement error propagation for LC-LIO is shown in Fig-
ure 6, and the LiDAR scan-to-map registration is decoupled from IMU measurements.
Moreover, the high-frequency IMU measurements provide an initial guess of the pose
estimation in time for the registration, which is significantly beneficial to obtaining an ideal
optimal solution.

4.3. Performance Upper Bound Analysis

LiDAR scan-to-map registration is modeled as an iterative nonlinear optimization
problem both in TC-LIO and LC-LIO as mentioned above. The difference is that it is jointly
optimized with IMU measurements in TC-LIO as Equation (29) while separately optimized
in LC-LIO as (32). Based on the L-M algorithm, the iteratively estimated pose TW

L during
the registration whether in TC-LIO or LC-LIO can be expressed as follows [3]:

TW
Lk

= TW
Lk

(
Jr(·),stmr

TJr(·),stmr
+ λDiag

(
Jr(·),stmr

TJr(·),stmr

))−1(
−Jr(·),stmr

Tr(·),stmr

)
, (34)

where (·) represents TC or LC. λ represents the damping factor of the L-M algorithm.
Diag

(
Jr(·),stmr

TJr(·),stmr

)
represents matrix constructed by diagonal elements of the matrix

Jr(·),stmr
TJr(·),stmr

.
For the TC-LIO, the LiDAR scan-to-map registration and the IMU measurement

modeling share the same motion state. TW
Lk

is obtained via the jointly optimized state xk
and the pre-calibrated extrinsic transformation matrix between the IMU and the LiDAR.
During the registration, the Jacobian matrix JrTC,stmr

and the residual rTC,stmr are both
decided by xk as demonstrated in Equations (29) and (30). As shown in Figure 7, apart
from the potential error from LiDAR measurements, when computing the residual and the
Jacobian matrix, the error of IMU is also involved in the shared state which would affect the
solution to TW

Lk
in Equation (34). For LC-LIO, the two models are separated. The iterative

optimization of LiDAR scan-to-map registration is free from IMU measurement modeling
as demonstrated in Equation (32). It utilizes the high accuracy of LiDAR measurement
and the high-frequency pose estimation from IMU as the initial guess. In short, in TC-LIO
the performance upper bound of the LiDAR scan-to-map registration is blocked by the
additional error of IMU. While in LC-LIO, it is mainly decided by the accuracy of the
LiDAR measurements.
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5. Experimental Results
5.1. Experiment Setup
5.1.1. Sensor Setups

Two experiments were conducted in typical urban canyons in Hong Kong with the
aim of verifying the effectiveness of the proposed method. Meanwhile, the datasets [38] in
this study were open to the community for further algorithm development and verification.
The detail of the data collection vehicle can be found through the site of our open-sourced
UrbanNav dataset (https://github.com/weisongwen/UrbanNavDataset, accessed on
15 June 2021). A Velodyne HDL-32E 3D LiDAR sensor is employed to collect 3D point
clouds at a frequency of 10 Hz. An Xsens Ti-10 IMU was adopted to acquire acceleration
and angular velocity at a frequency of 200 Hz. The NovAtel SPAN-CPT, a GNSS (GPS,
GLONASS and Beidou) RTK/INS (fiber-optic gyroscopes, FOG) integrated navigation
system was employed to provide ground truth of the pose. All the data were collected and
synchronized with the open-source robot operation system (ROS) [39]. The transformation
matrixes among different coordinates of the sensors were calibrated in advance. The
proposed methods were implemented in C++ and executed on a laptop equipped with an
Intel i7-9750H CPU and 24.0 GB RAM using the ROS in Ubuntu Linux.

5.1.2. Evaluation Metrics

According to the extensive evaluations of the existing LiDAR/inertial integration
pipelines [16], the LiLi-OM achieved the best performance among these existing TC solu-
tions (such as LIO-SAM [13] and Lio-mapping [11]). Therefore, the comparison was directly
drawn on the proposed LC-LIO and LiLi-OM. As LC-LIO was a pure odometry algorithm,
the loop closure function of LiLi-OM was disabled during the evaluation. It could be noted
that both estimated trajectories were aligned with the ground truth with EVO [40], which
was a popular toolkit for the performance evaluation of odometry estimation. For the
quantitative evaluation, the Relative Pose Error (RPE) was calculated using EVO [40]. It
compares the relative pose in a fixed time interval of the estimated ones with that of the
ground-truth [41]. Given a sequence of estimated pose E = {Test,1, Test,2, . . . , Test,n} and
the corresponding ground-truth G =

{
Tgt,1, Tgt,2, . . . , Tgt,n

}
, the RPE between the i-th

and the j-th pose can be expressed as:

δTi,j = (Tgt,i
−1Tgt,j)

−1
(Test,i

−1Test,j). (35)

The rotation part and the translation part of δTi,j are regarded as the Relative Rotation
Error (RRE) and the Relative Translation Error (RTE), respectively. The following three
pipelines can be compared to show the effectiveness of the proposed method:

(1) LiLi-OM [16]: Tightly-coupled integration of LiDAR/inertial method.
(2) LC-LIO-FC: The proposed coarse-to-fine loosely-coupled integration of LiDAR/inertial

with fixed covariance.

https://github.com/weisongwen/UrbanNavDataset
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(3) LC-LIO-AC: The proposed coarse-to-fine loosely-coupled integration of LiDAR/inertial
with adaptive covariance based on Equation (28).

5.2. Experiments in Urban Canyon 1: The HK-Data20200314 Dataset
5.2.1. Performance Analysis

The HK-Data20200314 is collected in Kowloon Tong which is a suburban area with
lower buildings and less dynamic objects compared with the HK-Data20190428. The total
length is 1.21 km. Table 1 shows the performance results of the RPE of LiLi-OM, LC-LIO-FC
and LC-LIO-AC in the urban canyon 1. In order to improve the repeatability, five tests
are carried out and an average is calculated as the final RPE result. For LiLi-OM, the
Root Mean Squared Error (RMSE) of RRE is 1.762◦ with a mean value of 1.133◦. RMSE
of RTE is 0.693 m with a mean of 0.605 m. The percentage improvement of RMSE can
be defined as subtracting the smaller ones from the larger ones and then dividing the
latter by the difference. By LC-LIO-FC, a 30% improved RMSE of 1.249◦ with a mean
value of 0.885◦ for RRE and a 50% improved RMSE of 0.348 m with a mean of 0.271 m
for RTE can be achieved. The improvement indicates the superiority of the proposed LC
framework. The best precision is achieved by LC-LIO-AC as marked in bold font. After
applying the adaptive covariance estimation, the RMSE of RRE decreases to 0.8◦, with
a mean value of 1.115◦, and the RMSE of RTE decreases to 0.233 m, with a mean value
of 0.262 m. Due to the fact that there are few dynamic objects and adequate structured
features, LiDAR scan-to-map registration is generally reliable. As a result, the precision
of LC-LIO-AC is slightly better than that of LC-LIO-FC. However, the improvement still
shows the effectiveness of the adaptive covariance estimation.

Table 1. RPE of LiLi-OM, LC-LIO-FC and LC-LIO-AC produced by EVO [40] in the urban canyon 1.
The bold values represents best precision.

Dataset Method
Relative Rotation Error (◦) Relative Translation

Error (m)

Mean Value RMSE Mean Value RMSE

Urban Canyon 1
(HK-

Data20200314)

LiLI-OM 1.133 1.762 0.605 0.693

LC-LIO-FC 0.885 1.249 0.271 0.348

LC-LIO-AC 0.800 1.115 0.233 0.262

Figure 8 presents the estimated trajectories from LC-LIO-AC and LiLi-OM and the
ground-truth in the urban canyon 1. As shown in Figure 8b when the first lap is traversed,
the two algorithms can achieve similar trajectories which almost overlap with the ground
truth. When the second lap is traversed, the trajectory estimated by LC-LIO-AC performs
better. While the trajectory from LiLi-OM deviates from the ground truth worth especially
at the top two turns.

Figure 9 presents the RPE of LiLi-OM, LC-LIO-FC and LC-LIO-AC on the entire
trajectory of one experiment. As shown in Figure 9a, the RRE of LiLi-OM is significantly
larger than that of LC-LIO-FC at most selected control points marked by numbers, which
correspond to the place represented in Figure 8a. It is more difficult to perform LiDAR
scan-to-map registration at turns due to the dramatic changes in rotation. Therefore, the
relative rotation error at turns is larger than that on straight roads. However, the LC-LIO-
FC outperforms LiLi-OM at most turns on the ground that it can register each LiDAR
frame more precisely in the rotation domain with the assistance of LC IMU predictions,
which demonstrates the effectiveness of the proposed LC framework. There is further
improvement of the RRE especially at the nine marked challenging places of LC-LIO-AC
compared with LC-LIO-FC. The adaptive covariance estimation contributes to the defense
of degenerate LiDAR scan-to-map registration.
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Figure 8. The trajectory of the dataset collected in the urban canyon 1: HK-Data20200314. (a) The
ground truth aligned on Google Earth from the bird-eye view. The start point is represented with the
pink circle with the number “1”. The other eight annotated places are the eight turns. (b) Trajectory
comparison, the black trajectory is ground truth, the red and blue trajectories are estimated by
LiLi-OM and LC-LIO-AC, respectively.
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where (∙) represents 𝑒 for edge points or 𝑝 for plane points. 𝑟ℱ𝐿𝑘 ,(∙) represents the final 

registration residuals of the edge points or plane points on the currently involved LiDAR 
frame ℱ𝐿𝑘. 𝑁(∙) represents the total number of edge points or plane points. 𝐓𝐿𝑘

𝑊 represents 

the pose of ℱ𝐿𝑘 estimated by the registration. For the TC framework LiLi-OM, 𝐓𝐿𝑘
𝑊 can be 

obtained through 𝐱𝑘 optimized using measurements from both LiDAR and IMU as shown 

in (29). For the LC framework LC-LIO-AC, 𝐓𝐿𝑘
𝑊 can be obtained via iterative minimizing 

the scan-to-map registration residual with measurements from LiDAR alone as shown in 

Equation (32). 𝜌 represents the Cauchy Kernel defined as (9). In LiLi-OM it can be imple-

mented by Ceres modifying the residual iteratively during the TC optimization which 

cannot be ignored. Consequently, it is taken into account here.  

As shown in Figure 10, the average registration residual of plane points plotted in 

the top panel is generally smaller than that of edge points plotted in the bottom panel, in 

that the number of plane points is larger than that of edge points in space. It makes the 

registration more reliable for plane points. More importantly, the average registration er-

ror of both plane points and edge points generated by LiLi-OM is larger than those of LC-

LIO-AC. The vehicle moves more slowly at the places marked in gray boxes as depicted 

by the black line representing velocity in Figure 10. The slow motion ensures precise scan-

to-map registration as the overlaps among LiDAR frames are considerable. The registra-

tion residuals of LiLi-OM at such times are notably larger than LC-LIO-AC. It is because 

LC-LIO-AC preserves the advantage and is free from disturbance of IMU measurements 

thus achieves locally lower registration residuals at such times. On the contrary, in LiLi-

OM, as a TC-LIO, the hard shaking and noisy IMU measurements cause disturbance to 

Figure 9. The RPE of LiLi-OM, LC-LIO-FC and LC-LIO-AC on the entire trajectory of one experiment
in the urban canyon 1. The number corresponds to the nine places denoted in Figure 8a. (a,b) present
RRE and RTE, respectively. The gray circles represent that the RTE of the three methods are compara-
ble as the vehicle moves slowly at the turns.

Figure 9b shows the RTE of the three methods with the places at gray circles indicating
comparative accuracy. During IMU pre-integration, the translation is determined by
rotation as shown in Equations (12)–(16). For LiLi-OM, LiDAR scan-to-map registration is
directly coupled with IMU pre-integration. The RTE of LiLi-OM is notably larger than that
of LC-LIO-FC on account of its larger RRE. In other words, a larger error at the turn results
in more deviation of the estimated trajectory from the ground truth after that turn. The
RTE of LC-LIO-AC is improved significantly at several places compared with LC-LIO-FC
due to the assistance of adaptive covariance estimation. However, when at the eight turns,
as marked by gray circles in Figure 9b, the RTE of the three methods are comparable. Due
to the fact that the road of this dataset is narrow, the vehicle moves more slowly at turns
and the translation is small. Consequently, the RTE of the three methods is always smaller
at such places.

5.2.2. Quantitative Analysis of the Performance Upper Bound in TC-LIO and LC-LIO

For LiDAR scan-to-map registration, a smaller matching residual between feature
points on the scan and the map demonstrates better convergence and thus resulting in
a more optimal estimation [8]. To demonstrate that the error of IMU would block the
performance of the LiDAR scan-to-map registration for TC-LIO while it is opposite for
LC-LIO, the comparison has been drawn on the final registration residuals for each frame
of LiLi-OM and LC-LIO-AC that are correspondent in time. It could be observed that the
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final registration residuals of both edge points and plane points are defined as the average
registration residual of all the registered points in the corresponding categories when the
registration converges. Therefore, it can be expressed as:

rF Lk ,(·) =
1

N(·)
∑
f

Lk
(·),i

√
ρ

(
‖ rL

(
fLk
(·),i, TW

Lk

)
‖

2
)

. (36)

where (·) represents e for edge points or p for plane points. rF Lk ,(·) represents the final
registration residuals of the edge points or plane points on the currently involved LiDAR
frame F Lk . N(·) represents the total number of edge points or plane points. TW

Lk
represents

the pose of F Lk estimated by the registration. For the TC framework LiLi-OM, TW
Lk

can be
obtained through xk optimized using measurements from both LiDAR and IMU as shown
in (29). For the LC framework LC-LIO-AC, TW

Lk
can be obtained via iterative minimizing

the scan-to-map registration residual with measurements from LiDAR alone as shown
in Equation (32). ρ represents the Cauchy Kernel defined as (9). In LiLi-OM it can be
implemented by Ceres modifying the residual iteratively during the TC optimization
which cannot be ignored. Consequently, it is taken into account here.

As shown in Figure 10, the average registration residual of plane points plotted in
the top panel is generally smaller than that of edge points plotted in the bottom panel,
in that the number of plane points is larger than that of edge points in space. It makes
the registration more reliable for plane points. More importantly, the average registration
error of both plane points and edge points generated by LiLi-OM is larger than those
of LC-LIO-AC. The vehicle moves more slowly at the places marked in gray boxes as
depicted by the black line representing velocity in Figure 10. The slow motion ensures
precise scan-to-map registration as the overlaps among LiDAR frames are considerable.
The registration residuals of LiLi-OM at such times are notably larger than LC-LIO-AC.
It is because LC-LIO-AC preserves the advantage and is free from disturbance of IMU
measurements thus achieves locally lower registration residuals at such times. On the
contrary, in LiLi-OM, as a TC-LIO, the hard shaking and noisy IMU measurements cause
disturbance to LiDAR scan-to-map registration. It is concluded that the performance upper
bound of LiDAR scan-to-map registration in TC-LIO is worse than that of LC-LIO because
of the IMU error propagated in as an encumbrance.
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Figure 10. The final LiDAR scan-to-map registration residual of feature points when the registration
converges on each frame of LiLi-OM and LC-LIO-AC that are corresponding in time in the urban
canyon 1. The black line represents the velocity of these frames calculated by LC-LIO-AC. The gray
boxes marked from 1 to 9 correspond to the nine places marked in Figure 8a. The top and bottom
panels represent the residual for plane and edge points, respectively.

5.2.3. Mapping Result

Figure 11a shows the map generated by LC-LIO-AC in urban canyon 1 rendered with
intensity value. The top and bottom panels shown in Figure 11b represent the zoomed-in
maps of the first place and the second place marked in Figure 11a, respectively. The map
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preserves elaborated structural details of the surroundings even at turns. In addition
to accurate positioning results, LC-LIO-AC produces a globally consistent point map
composed of point clouds registered by LiDAR scan-to-map registration.
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Figure 11. The map is generated by LC-LIO-AC in the urban canyon 1 and rendered with intensity value. (a) The entire
map in bird-eye view. (b) The top panel is the zoomed-in map around the first place marked in (a), the bottom panel is
the zoomed-in map around the second place marked in (a). (c) The top and the bottom panels are the environments that
correspond to the first and the second place, respectively.

As shown in Figure 12, there is an obvious contrast between both maps generated by
LC-LIO-AC with and without the coarse-to-fine process. When the vehicle passes the same
place the second time, the map generated by LC-LIO-AC with the coarse-to-fine process is
more clear while that generated by LC-LIO-AC without the coarse-to-fine process suffers
blur. The proposed coarse-to-fine process of LC-LIO-AC, which provides an initial guess to
the LiDAR scan-to-map registration as demonstrated in Equation (21), contributes to the
refinement of the globally consistent map thus the robustness and the repeatability can be
guaranteed. As for the LC-LIO-AC without the feedback from the coarse-to-fine process,
the pose produced by the last scan-to-map registration is employed as the initial guess. In
an open area shown in Figure 12 where the vehicle moves fast, there is a significant motion
difference between the last and the current frame. Taking the pose of the last frame as the
initial guess for the current one will lead to degeneration in the long run.
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Figure 12. Comparison of the zoomed-in maps generated by LC-LIO-AC without and with the coarse-to-fine process
around the third-place marked in Figure 11a where the vehicle passes by twice. The top panel and the bottom panel of
both (a,b) are in the bird-eye view and approximately in the front view, respectively. (a) The map is generated without the
coarse-to-fine process. When the vehicle passes the door the second time, a mismatch occurs between the point clouds
registered in both times. (b) The map is generated with the coarse-to-fine process. The point clouds registered at the first
time and the second time overlap. The map is more clear.
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5.3. Experiments in the Urban Canyon 2: The HK-Data20190428 Dataset
5.3.1. Performance Analysis

The HK-Data20190428 is collected in a typical urban canyon near Tsim Sha Tsui in
Hong Kong which is complex containing numerous skyscrapers, dynamic objects and
vegetation. The vehicle goes back to the start point and continues on the same path as
previous for a while. The total length reaches up to 2.01 km. Due to the heavy traffic,
stop-and-go driving is unavoidable for the vehicle. The superiority of the proposed LC-LIO
is fully developed. Table 2 shows the RPE of LiLi-OM, LC-LIO-FC and LC-LIO-AC. For
LiLi-OM, the RMSE of RRE is 0.878◦ with a mean value of 0.458◦. The RMSE of RTE
is 0.891m with a mean value of 0.609 m. For LC-LIO-FC, the RMSE of RRE is 0.671◦

with a mean value of 0.421◦. The RMSE of RTE is 0.431 m with a mean value of 0.249 m.
The improvement indicates the superiority of the proposed LC framework. The best
precision can be achieved by LC-LIO-AC as marked in bold font. The RMSE of the RRE
and RTE is 45% and 70% better, respectively, compared to LiLi-OM. They are 40% and 30%
better compared to LC-LIO-FC. The effectiveness of the adaptive covariance estimation
is validated.

Table 2. RPE of LiLi-OM, LC-LIO-FC and LC-LIO-AC produced by EVO [40] on urban canyon 2. The
bold values represents best precision.

Dataset Method
Relative Rotation Error (◦) Relative Translation

Error (m)

Mean Value RMSE Mean Value RMSE

Urban Canyon 2
(HK-

Data20190428)

LiLi-OM 0.458 0.878 0.609 0.891

LC-LIO-FC 0.421 0.671 0.249 0.431

LC-LIO-AC 0.331 0.478 0.182 0.267

Figure 13 depicts the ground truth and the estimated trajectories from LC-LIO-AC
and LiLi-OM in the urban canyon 2. As shown in Figure 13b, the trajectory estimated by
LC-LIO-AC matches the ground truth better than LiLi-OM, especially at turns. Figure 14
presents the RRE and RPE of the three methods for one experiment. Exactly as the analysis
in Section 5.2.1, the RRE is larger at turns than on straight roads. Nevertheless, LC-LIO-FC
outperforms LiLi-OM at most turns owing to the LC IMU predictions. With the assistance
of adaptive covariance estimation, which reduces the weight of the scan matching factor
when the LiDAR scan-to-map registration residual is large under challenging scenes, LC-
LIO-AC outperforms LC-LIO-FC at all turns. The larger rotation error leads to a larger
translation error again. Due to the wide street and the hurried traffic in urban canyon 2,
the vehicle moves fast even at turns. Different from the condition in urban canyon 1, the
RTE of LiLi-OM is still larger at turns.
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Figure 13. The trajectory of the dataset collected in the urban canyon 2: HK-Data20190428. (a) The ground truth aligned on
Google Earth from the bird-eye view. The first marked place is the start point. The other ten marked places are the nine
turns. (b) Trajectory comparison, the black trajectory is ground truth, and the red and blue trajectories are estimated by
LiLi-OM and LC-LIO-AC, respectively.
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Figure 14. The RPE of LiLi-OM, LC-LIO-FC and LC-LIO-AC on the entire trajectory of one experiment in the urban canyon 2.
The number corresponds to the places marked in Figure 13a. (a) The top panel is the RRE and the bottom panel is the RTE
of the three methods. (b) The top panel is the image captured when the RTE of LiLi-OM reaches up to 8 meters. The bottom
panel is the zoomed-in RTE for LiLi-OM at that point. (c) The images are captured when the RTE of all the three methods is
equally large as illustrated in (a).

In Figure 14, the zoomed-in detail of the RTE of LiLi-OM reaches up to eight meters.
As shown in Figure 14b, an open intersection exists and a fast-moving taxi is passing by.
The dynamic object so close complicates the LiDAR scan-to-map registration and finally
results in large registration errors. LC-LIO-FC and LC-LIO-AC survive at this scene as LC
fusion is more robust in comparison to TC fusion when the registration almost fails. The
fused sensors in LC fusion are relatively independent during the state estimation while
those in TC fusion are tightly linked. To be specific, at such scenes, in TC fusion one healthy
IMU pre-integration factor directly confronts hundreds of thousands of unhealthy factors
with large errors during optimization. While in the proposed LC fusion, there is at least
one IMU pre-integration factor versus the single unhealthy scan-matching factor which
functions to overcome the occasional failure of LiDAR scan-to-map registration.

It is worth mentioning that the LiLi-OM achieves similar accuracy with the proposed
LC-LIO-FC and LC-LIO-AC in some epochs. As shown in Figure 14a,c, at place C1 with
many pedestrians and place C2 with fast-moving objects around, all three methods achieve
large RTE among which LiLi-OM performs slightly better. It indicates that the fusion
mechanism could not improve the problem of LiDAR scan-to-map registration itself at its
root which is essentially a problem of data association [42] with enough stable feature points
acquisition being the key prerequisite. The few sparse scenarios where stable feature points
are hardly guaranteed lead to the degeneration of the LiDAR scan-to-map registration. As
the three methods adopt the same feature extraction strategy presented by [3], LC-LIO-FC
and LC-LIO-AC fail to turn the tide at such extremely challenging scenes. Furthermore,
the LiLi-OM performs slightly better is in that a TC integration scheme could directly
employ both the IMU and LiDAR measurements to constrain the pose of the vehicle which
enhances the robustness against the degeneration scenarios. For that reason, it can be
argued that a promising solution is to detect the context of the environment (e.g., stable
features abundant or sparse area) to achieve mutual complementarity by further combining
loosely and tightly coupled integrations alternatively.

5.3.2. Quantitative Analysis of the Performance Upper Bound in TC-LIO and LC-LIO

The average LiDAR scan-to-map registration residuals of plane points and edge
points generated by LiLi-OM and LC-LIO-AC on corresponding LiDAR frames in the
urban canyon 2 are plotted in Figure 15. On the whole, the residual of LC-LIO-AC is
smaller than that of LiLi-OM on both types of feature points. The performance of LiDAR
scan-to-map registration in LC-LIO-AC is better than that of LiLi-OM. As shown in the
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gray boxes, when the vehicle stops to wait for the green light with the corresponding
velocity depicted by the black line being zero, the registration residuals of LC-LIO-AC are
significantly smaller than those of LiLi-OM, especially obvious for edge points. As the
scenario is high-dynamic containing pedestrians and vehicles, the edge points are more
fragile to the IMU bias which would cause damage to LiDAR scan-to-map registration.
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Figure 15. The final LiDAR scan-to-map registration residual of feature points after the registration
converges on each frame of LiLi-OM and LC-LIO-AC that are corresponding in time in the urban
canyon 2. The black line represents the velocity of these frames calculated by LC-LIO-AC. The
segments in gray boxes represent when the vehicle stop for a while and the velocity is zero. The top
and bottom panels represent the residual for plane and edge points, respectively.

5.3.3. Mapping Result of the Proposed LC-LIO

The proposed LC-LIO-AC finished the global reconstruction of the real world in the
urban canyon 2 with the generated map shown in Figure 16. The scanned buildings,
vegetation and the pedestrian are all registered accurately in a globally consistent map.
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Figure 16. The map is generated by LC-LIO-AC in the urban canyon 2 and rendered with intensity
value. The top left panel presents the entire map in a bird-eye view. The four places marked in the
entire map are zoomed in and the details are shown with the same number marked on the panel.
The buildings locating at the first place near an intersection, the vegetation locating at the second and
the third place, and the pedestrian around the fourth place are all reconstructed clearly.

6. Conclusions and Future Perspectives

In this paper, the coarse-to-fine LC-LIO has been developed to perform motion estima-
tion and mapping in urban canyons for autonomous navigation. The LiDAR scan-to-map
registration, which is the fine process, can produce a globally consistent map and conduct
a precision motion estimation with the timely and high-frequency initial guess provided
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by the LC integrated IMU based on factor graph optimization as the coarse process. Our
algorithm is capable of providing real-time, long-term and accurate motion states and point
cloud maps. Furthermore, the superiority of the proposed pipeline compared with TC
fusion has been verified from the perspective of theoretical error propagation. The experi-
ment results on typical urban canyons in Hong Kong indicate that the proposed LC-LIO
outperforms LiLi-OM in accuracy, which is currently the state-of-the-art TC-LIO scheme.

In the future, the absolute positioning from the Global Navigation Satellite System
(GNSS) real-time kinematic positioning (RTK) will be integrated with the proposed LC-LIO
pipeline to achieve the drift-free motion estimation and map. Moreover, according to recent
findings [43–45], the generated map of the surrounding area can effectively detect the GPS
outlier measurements in urban canyons. Therefore, it deserves to make an exploration on
the potential of the proposed LC-LIO pipeline in improving the GPS positioning.
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Appendix A

To avoid repeating the repropagation, we update the IMU bias used in pre-integration
by the first-order approximations of the results concerning the bias, as the equations listed
as follows [30]:

δα
Bk
Bk+1

= Jαbaδbak + Jαbgδbgk, (A1)

δβ
Bk
Bk+1

= Jβbaδbak + Jβbgδbgk, (A2)

δqBk
Bk+1

=

[
1

1
2 Jq

bgδbgk

]
, (A3)

where δα
Bk
Bk+1

, δβ
Bk
Bk+1

and δqBk
Bk+1

represent the update ofαBk
Bk+1

, βBk
Bk+1

and qBk
Bk+1

, respectively.

J(·)ba and J(·)bg represent the Jacobian matrix of IMU pre-integration measurements to ba and
bg, respectively.

The covariance matrix of the IMU pre-integration residual contains two parts. The
error of the current IMU pre-integration results δzBk

Bt+1
which is generated from the error

of the last one δzBk
Bt

and the noise of the current IMU raw measurements nt+1 is expressed
as follows:

δzBk
Bt+1

= FBt+1
Bt

δzBk
Bt

+ GBt+1
noisent+1, (A4)

Correspondingly, the covariance matrix is derived recursively according to:

CBk
Bt+1

= FBt+1
Bt

CBk
Bt

FBt+1
Bt

T
+ GBt+1

noiseCnoiseG
Bt+1
noise

T
, (A5)
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where F represents the Jacobian matrix of IMU pre-integration at two consecutive time
points, for example, FBt+1

Bt
represents the Jacobian matrix of zBk

Bt+1
to zBk

Bt
. G represents

the Jacobian matrix of IMU pre-integration corresponding to the noises of IMU measure-
ments. These noises refer to the above-mentioned additive noises and the derivative of
the bias. Cnoise represents the covariance matrix of these two types of Gaussian noise
and it has already been calibrated. Please refer to the description from [30] for more
detailed derivation.
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