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Abstract: Accurate positioning and mapping are significant for autonomous systems with navigation
requirements. In this paper, a coarse-to-fine loosely-coupled (LC) LiDAR-inertial odometry (LC-LIO)
that could explore the complementariness of LiDAR and inertial measurement unit IMU) was
proposed for the real-time and accurate pose estimation of a ground vehicle in urban environments.
Different from the existing tightly-coupled (TC) LiDAR-inertial fusion schemes which directly use all
the considered ranges and inertial measurements to optimize the vehicle pose, the method proposed
in this paper performs loosely-couped integrated optimization with the high-frequency motion pre-
diction, which was produced by IMU integration based on optimized results, employed as the initial
guess of LIDAR odometry to approach the optimality of LiDAR scan-to-map registration. As one of
the prominent contributions, thorough studies were conducted on the performance upper bound
of the TC LiDAR-inertial fusion schemes and LC ones, respectively. Furthermore, the experimental
verification was performed on the proposition that the proposed pipeline can fully relax the potential
of the LIDAR measurements (centimeter-level ranging accuracy) in a coarse-to-fine way without
being disturbed by the unexpected IMU bias. Moreover, an adaptive covariance estimation method
employed during LC optimization was proposed to explain the uncertainty of LIDAR scan-to-map
registration in dynamic scenarios. Furthermore, the effectiveness of the proposed system was val-
idated on challenging real-world datasets. Meanwhile, the process that the proposed pipelines
realized the coarse-to-fine LIDAR scan-to-map registration was presented in detail. Comparing with
the existing state-of-the-art TC-LIO, the focus of this study would be placed on that the proposed
LC-LIO work could achieve similar or better accuracy with a reduced computational expense.

Keywords: LiDAR-inertial odometry; loosely-coupled integration; adaptive covariance estimation;
positioning; mapping; autonomous systems; urban canyons

1. Introduction

Positioning and mapping are undoubtedly essential modules for autonomous tasks,
such as autonomous driving and robotic service, in unknown or partially known environ-
ments. It is well known that the Global Navigation Satellite System (GNSS) could provide
satisfactory performance in open-sky areas. However, due to the reflection caused by
static skyscrapers and dynamic tall objects such as double-decker buses, reflected signals
from the same satellite could be received and the notorious non-light-of-sight (NLOS)
receptions occur [1], which is the major difficulty significantly degrading the positioning
accuracy and preventing GNSS from utilization in intelligent transportation systems under
urban canyons [2]. The local perception sensor, Laser Detection and Ranging (LiDAR) has
attracted great attention owing to its high precision, reliability, long perception distance
and insensitivity to illumination. The major principle of LiDAR-based positioning and
mapping is to track the motions obtained by registrations between consecutive frames of
point clouds [3]. However, the LiDAR standalone-based odometry is sensitive to motion
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distortions especially in high-speed motion under highly urbanized environments with
numerous dynamic objects [4]. As per a study [5], for a Velodyne HDL-64E swiping at
10 Hz, a linear motion at 50 km /h could generate a gap of 1.38m between the beginning and
the end of a scan. A rotational motion at 25 degree/s could generate a gap of 2.19 m at 50 m
away from the LiDAR. Moreover, the point cloud registration of LIDAR odometry relies on
an accurate initial guess which is hard to obtain without the assistance of other sensors [6].
Considering the complementariness of the LIDAR and the inertial measurement unit (IMU),
the researchers proposed diverse LiDAR-inertial odometry (LIO) pipelines.

Odometry schemes based on LiDAR-inertial fusion are extensively investigated. One
category is tightly-coupled (TC) fusion, which allows the direct fusion of measurements
from sensor outputs and has recently gained widespread utilization. TC methods are based
on the filter [7] or the factor graph optimization [8], both of which have been well studied.
LINS [9], in which an iterated error state Kalman filter with robocentric formulation is
employed, provides real-time ego-motion estimation. However, it has been shown in
our recent work [10] that the factor graph optimization-based sensor fusion can better
employ the correlation between consecutive epochs of measurements simultaneously,
compared with the extended Kalman filter (EKF)-based estimator. Instead of adopting the
filtering-based sensor fusion, the Lio-mapping framework [11] was proposed, optimizing
measurements from LiDAR (point-to-map association) and IMU pre-integration in a sliding
window via a factor graph. However, the accuracy highly depends on the quality of the
IMU on the ground that the IMU measurements are directly fused with the point-to-map
registration to generate the final state of the vehicle. Furthermore, such TC integration
induces a significantly high computation load thus cannot guarantee real-time performance.
The major computation load is caused by the point-to-map association, which is similar
to the visual reprojection [12], of each LiDAR frame during sliding window optimization.
In order to solve this problem, the LIO-SAM [13] is proposed for the implementation of
the keyframe-based tightly-coupled LiDAR-inertial odometry (TC-LIO) based on factor
graph optimization via incremental smoothing and mapping [14]. Local scan-to-map
registration [15] and keyframe selection are beneficial to real-time performance. Recently,
there is an inspiring work [16], the LiLi-OM, which presents a TC-LIO and mapping system.
Interestingly, two independent factor graphs are maintained by LiLi-OM. One larger factor
graph is in charge of integrating IMU pre-integration with LiDAR feature association of
selected keyframes and performing sliding window-based optimization; while the other
smaller factor graph within the sliding window is invoked to obtain poses of frames that
are not selected as keyframes. The LiLi-OM is evaluated on multiple challenging datasets
(e.g., the UrbanLoco dataset [4] and the KITTI dataset [17]) with the results showing that
the LiLi-OM significantly outperforms the LIO-SAM and the Lio-mapping. In other words,
the LiLi-OM is currently the most state-of-the-art TC-LIO scheme. Nevertheless, it is still
inevitable that the computation load is high and the performance is limited by IMU during
TC integrations.

The other category of LiDAR-inertial fusion is loosely-coupled (LC) fusion, which
allows the fusion of respective motion estimations from LiDAR odometry and IMU integra-
tions. In LOAM [3] and LeGO-LOAM [18], which are typical LIDAR odometry algorithms,
IMU is employed to provide high-frequency motion prediction for LIDAR odometry. Mean-
while, the motion distortion is partially solved. However, the bias of the IMU is not
corrected due to the assumption [3,18] that the impact of the IMU bias in a short period can
be ignored. Furthermore, an LC fusion of LiDAR and IMU [19] is achieved through vari-
eties of Kalman filters, which allows the fusion of LiDAR positioning results with rotational
velocity from IMU with the aim of testing on vehicles equipped with low-mounted multiple
LiDARs. Similarly, a 2D indoor navigation system [20] is developed through EKF fusing
standalone positioning results from LiDAR and IMU separately. However, the EKF can
only execute linear approximation once at a fixed operating point [21]. More importantly,
EKEF is subject to the first-order Markov hypothesis, under which the historical information
cannot be fully utilized by the current state [21]. Therefore, the EKF-based LC methods are
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considered to be computationally efficient but sensitive to gross outlier measurements [22].
Fortunately, the factor graph-based LC LiDAR-inertial positioning and mapping system
retains the high precision of iterative optimization and low computational complexity of
decoupled formulation. Furthermore, the computational efficiency can be enhanced on
account of sliding window-based optimization. As mentioned above, correlation between
consecutive frames of measurements can be employed within an optimization window,
which, therefore, also conduces to the accuracy. Nevertheless, for pure loosely-couped
LiDAR/inertial odometry (LC-LIO), the problem that the performance is limited by the
quality of IMU still exists.

In this paper, a coarse-to-fine LC-LIO for urban positioning and mapping was pro-
posed to deal with the aforementioned problems. On the one hand, the window-based
factor graph optimization (coarse process) is adopted to estimate the bias of the IMU by
integrating the IMU pre-integration and the LiDAR scan-to-map registration. Therefore,
the motion distortion can be mitigated by the high-frequency IMU integration based on
the corrected IMU bias. Moreover, real-time performance is guaranteed thanks to the
decoupled integration and window-based optimization. On the other hand, the refinement
of LiDAR scan-to-map registration (fine process) is performed to estimate the pose of the
vehicle based on the initial guess from the coarse process. Theoretically, the accuracy of the
LiDAR ranging measurement is centimeter-level and a similar accuracy of motion estima-
tion could be derived based on the LiDAR scan-to-map registration. However, in practice,
only the locally optimal solution with larger error is usually obtained due to the fact that
the LiDAR scan-to-map registration is mathematically a non-convex optimization. It is
well-known that providing an accurate initial guess for the non-linear optimization could
significantly contribute to removing the local minimum and converging to an ideal optimal
solution. In light of this, the initial guess produced via high-frequency IMU integration
based on the optimized state estimation from the coarse process could further relax the
high accuracy of LiDAR ranging measurements, which would induce an accurate motion
estimation. It can be considered that the contributions of this paper include three aspects:

e Development of a coarse-to-fine LC-LIO pipeline based on window optimization.
Meanwhile, the adaptive covariance estimation of the LIDAR scan-to-map registration
is proposed for further LIDAR/Inertial integration.

e  Theoretical analysis of performance upper bound of LC and TC LiDAR-inertial fusion
considering the error propagation from LiDAR and inertial measurements.

e Validation of the proposed method with challenging datasets collected in urban
canyons of Hong Kong. The convergence results of both the LC-LIO and TC-LIO are
presented to experimentally verify the theoretical analysis in the second aspect.

The remainder of this paper is arranged as follows. Firstly, the overall framework
of the proposed system would be elucidated in Section 2. Furthermore, details of the LC
optimization framework would be expounded in detail in Section 3, including the illustra-
tion of the proposed factor graph (Section 3.1), IMU measurement modeling (Section 3.2),
LiDAR measurement modeling (Section 3.3) and adaptive information matrix description
(Section 3.4). Moreover, the theoretical analysis of the upper bound of both LIOs would
be described in Section 4. Furthermore, the implementation and experimental results
would be interpreted in Section 5. Finally, a conclusion of this study would be presented in
Section 6.

2. Overview of the Proposed LC-LIO

The structure of the proposed LIO is shown in Figure 1, which is a coarse-to-fine LC
integration system based on factor graph optimization. The yellow and blue represent
the coarse and fine processes, respectively. The inputs of the system include the raw 3D
point clouds from the 3D LiDAR and gyroscope and accelerometer readings from IMU.
The output is the six-degree-of-freedom pose of LIDAR and a globally consistent map. As
per the raw point clouds from LiDAR, the feature points on sharp edges and planar surface
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patches are extracted first [3]. IMU measurements between the current and the last LIDAR
frames are pre-integrated.

Raw Point Cloud Fr« : Globally consistent map
. Map Maintenance atly P
L Feature Extraction(Sect. 3.3) ——— P 13 —
» (Sect. 3.3)
Edge points £ Registered cloud
Plane points PL« W py Local map M},

Data association residualr,, r,,

Scan-to-Map
Registration(Sect.3.3)

Initial guess T/} |

Information matrix l ?can m*‘z;hmini)
of Scan matchin. actorrg(T,,, o
Adaptive Information factor w 5 ) Optimized )
. ‘ Lic Loosely Coupled Non-Linear motion states X High-Frequency State
Matrix Inference(Sect. . — .
3.4) Optimization(Sect. 3.1) Prediction (Sect. 3.3)
Pre-integrationfactor ry (zgiﬂ,){)[ l Corrected bias ba,, bg,

IMU raw dataa®t,&?

V IMU Pre-Integration(Sect. 3.2)

Figure 1. Flowchart of the proposed coarse-to-fine loosely coupled LiDAR-inertial odometry. The yellow boxes represent

the coarse process via the LC optimization. The blue box represents the fine process via the scan-to-map registration. The
LC optimization provides an initial guess for the scan-to-map registration of the next frame.

In terms of the coarse process, pre-integration results and the scan-to-map registration
results will construct the pre-integration factor and the scan matching factor, respectively,
during the current LC non-linear optimization. Residuals of scan-to-map registration
will be converted to an information matrix of the scan matching factor by an exponential
function. Based on the optimized states and IMU measurements, high-frequency motion
state prediction is performed to provide an initial guess for the scan-to-map registration of
the next LiDAR frame.

In terms of the fine process, a scan-to-map registration, employing the initial guess
generated by the last LC optimization, is performed to achieve a fine estimation of the
pose of LIDAR. A globally consistent map is also updated by registering the new coming
point cloud to the map. The initial guess from the coarse process can exert significant
impacts on the avoidance of falling into local optima and the removal of motion distortion
of the point cloud. The details about the proposed method would be presented in the
following sections.

Matrices are denoted as upper-case and bold letters. Vectors are denoted as lowercase
with bold letters. Variable scalars are denoted as lower-case and italic letters. Constant
scalars are denoted as lowercase letters. To clarify the proposed pipeline, the notations and
frames used in the whole paper are defined as follows.

e The LiDAR body frame is represented as {-}*, which is fixed at the center of the
LiDAR sensor.

e The IMU body frame is represented as {-}*, which is fixed at the center of the
IMU sensor.

e The world frame is represented as {-}"* , which is originated at the initial position of
the vehicle. It is assumed to coincide with the initial LIDAR frame.

The k-th frame of LiDAR point cloud is represented as . A frame is generated when
LiDAR completes one-time scan coverage. The coordinate of a point i, i € F, under the Ly
coordinate is represented as fiL" . The transformation matrix of the k-th frame of LiDAR point
cloud under the world frame is represented as TLWk € Special Euclidean Group (SE(3)) [23]:

W

R w
Tz{:[ L Pfk], M
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where pz‘; € R3 stands for the translation, and szk € Special Orthogonal Group(3)(SO(3)) [24]
stands for the rotation matrix. SO(3) and SE(3) are both Lie group [23]. In SO(3) each
element is an orthogonal matrix with the determinant 1 representing the rotation for
3D space. In SE(3) each element consists of a rotation matrix and a translation vector
representing the rigid motion for 3D space.

The k-th state of the IMU under the world frame, namely the state of the IMU at the
time when the k-th frame of LiDAR point cloud is captured, can be expressed as:

w W W
Xk = {Pkakaquk'bak/bgk]/ @)
where x; consists of the position pg‘l{, velocity Vg\]{, rotation q%‘}i in quaternion form, ac-

celerometer bias bay and gyroscope bias bg;,. Among them, the k-th transformation matrix
of IMU can be represented as Tg‘i € SE(3) [23]:

RW w
Ty = [ é%k pfk ] ©)

where RE\Z € SO(3) represents the rotation matrix corresponding to qg‘;.

The extrinsic transformation matrix from the IMU body frame to the LiDAR body
frame can be represented as T5 which is calibrated offline. Therefore, the following
transformations are satisfied: 5

W L
Tp, =TTy 4)

which transfers the pose under the initial IMU frame to that under the world frame, and it
will be used during IMU measurements modeling.

Ty =T[ Tg (5)

transfers the pose of LIDAR from the scan-to-map optimization to the pose of the corre-
sponding IMU frame, which will be used during the loosely coupled optimization.

T =Ty T (6)

transfers the pose of IMU from the LC optimization to the pose of the corresponding
LiDAR, which will be used during the high-frequency state prediction.

3. Coarse-to-Fine Loosely-Coupled LiDAR-Inertial Integration
3.1. LC-LIO Factor Graph

The illustration of the proposed factor graph is presented in Figure 2 which contains
one type of node and two types of edges. Every state of IMU, defined as (2), serves as
one node in the graph. One kind of edge connects a single state x; with k € (0,n) and
the pose of the corresponding LiDAR frame TZ"k. Tzvk is generated by LiDAR scan-to-map
registration. It can be regarded as a measurement in a joint optimization that could provide
absolute constraints for the nodes to be optimized. IMU pre-integration results constrain
the relative pose from one node to another, which is the other kind of edge.

LC-LIO estimates states of the IMU within a large window. As shown in Figure 2, the
factor graph is quite sparse. There are only two or three constraints for one state. Thus,
to achieve adequate constraints for the accurate estimation and maintain the real-time
performance simultaneously, we maintain a fixed slide window containing 50 states during
factor graph optimization [25]. Since the computation complexity increases linearly with
the number of IMU states, using such a large window can still guarantee real-time capability.
As shown in Figure 3, when the number of states included in the window reaches the
pre-determined size, we preserve the last state and take it as the first frame in the new
window. Different from the tightly-coupled LiDAR/Inertial integration, the correlation
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between the historical frames and the new coming ones is weaker [16]. Therefore, it is
reasonable to remove the historical states to guarantee real-time performance.

Y 771'77 l' v h -

X — X1 —&2 > Xy Xn
| |
| | . |
|
| | | \
P B
T Vi ™ T T T
w
T.,  Pose of LIDAR frame | | | IMU measurements
Xn State Scan matching factor IMU pre-integration factor

Figure 2. Factor graph of the proposed LC-LIO. The light purple circle represents the state of the IMU
frame. There are two types of factors introduced to constrain the states, namely the scan matching
factor and IMU pre-integration factor.

() The current optimization window [ | The next optimization window
Xn  State ® Throw away the state ¥ Preserve the state

Figure 3. Illustration of the sliding window during the proposed LC optimization.

Factor graph optimization is typically derived as a nonlinear least-squares problem.
Once the graph is established, it can be solved by finding a group of states that conform to
all edges best [8]. After adding all the weighted squared residuals generated by two kinds
of edges in a window, the following equations can be obtained,

1 2 B 2
X=minz¢ Y p(lee(TELX) 1)+ Y olles(zg  X) 1l 5 )¢/ @)
1), 2, e (M) T )+ | B e X g
X= {XO,X], e ;Xn}/ (8)

where, 1o (Tzvk, X) represents the residuals produced by LiDAR scan-matching factor, zgi+1

and rp (zgiﬂ, X) represents the measurements and the residuals produced by the IMU
pre-integration factor, respectively. X represents the states to be estimated. n represents
the size of the optimization window. The Mahalanobis norm is || r HZC = rTC!r, where C
represents the covariance matrix of r, and C~! represents the so-called information matrix.
p represents the robust kernel to decrease the influence of outliers. The Cauchy kernel [26]
is selected and defined as follows:

2
p(s) = %log(H C%) )

where ¢ represents a constant parameter that is set to 1 [27]. Ceres solver [28] is used
to solve this nonlinear problem and the Levenberg-Marquardt (L-M) algorithm [29] is
employed to iteratively minimize the cost function. The detailed definition of residual
terms and the adaptive information matrix of the LiDAR scan-to-map registration residual
in (7) would be presented in Sections 3.2-3.4, respectively.
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3.2. IMU Measurement Modeling

In this section, the modeling of the IMU measurements with pre-integration would
be presented. Even though the pre-integration is not a main contribution from this paper,
it would be elucidated in this section for the theoretical analysis in Section 4. The IMU
measurements are the rotation rate and the acceleration of the system given in the IMU
body frame. It is corrupted with the additive noise and a slowly varying bias of acceleration
and gyroscope [30]:

~B
a = Rﬁ, (aw - gw) +ba+n,, (10)

@b = w? +bg +n,. (11)
It is worth noting that the transformation between the initial IMU frame {-}BO and the
world frame is taken into account in (4). For simplicity, it would be omitted in the equations

in this section. SB represents the raw IMU acceleration measurements in the IMU body
frame, and a" represents the noise-free acceleration of the system in the world frame. g"’
represents the gravity in the world frame. R, € SO; represents the rotation matrix from
the world frame to the IMU body frame. ba represents slowly varying acceleration bias,

whose derivative is of Gaussian distribution. n, ~ N (O, 0'5) represents the additive noise

of the acceleration. @? is the raw IMU gyroscope measurements in the IMU body frame,
w? represents the noise-free rotation rate of B relative to W expressed in coordinate B. bg
represents the bias of w?. It can also be assumed that its derivative subjects to Gaussian
distribution. ng ~ N (O, Ug,) represents the additive noise of w?.

There are dozens of or even hundreds of IMU measurements acquired between two
consecutive LiDAR frames. The pre-integration theory is employed to model such a large
number of IMU measurements as a single relative motion constraint [30]. The bias during
this process is assumed to remain constant. It is implemented in a local frame so that
repeated integration can be avoided when the IMU states have changed [31]. Otherwise, it
will be a heavy computational burden.

In practice, IMU measurements are discrete and are synchronized with the LiDAR
frames by linear interpolation. Median integral is employed to derive the pre-integration
results. B; and By 1 are assumed to be two consecutive time instants between By and By 1,
and Jt represents the time interval between By and B;11. The angular velocity and the
acceleration during Jt can be expressed as:

w = %((&)Bf —bgk) + (G)B*“ —bgk)> (12)

1/ B [~B B ~Bi1
a= 3 (qB’t‘ (a — bak> + qB’t‘+1 (a — bak) ) (13)

The pre-integration of rotation qg’;ﬂ, velocity Bgiﬂ and the translation ocgi+1 between

In addition:

By and By 1 under the By coordinate is recursively derived, respectively, according to the
following equations:

By __ B 0
dg,., =98, ® { Lwét }, (14)
B B B 1 .-
ocB’;+1 = o + By ot + Eaét , (15)
B B

The derived compound measurements generated by pre-integration can be repre-
sented as:

B, _ By By By
2By T {O‘Bk+1’ I3Bk+1’qu+1’bak‘|'l’bg’“rl / (17)
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o

By
z
Biy1”

X)

It acts as the measurements of relative motion between two IMU states to constrain
them. The residual r3 (zgiﬂ, X) can be defined as:

= Iy =

Tog 1151

where [], .

By

[ W-1 W W W 1, WAL2 7
a5, (PBk+1 ~ Py~ VBkAi'L — 28" At > ~ %y

2lag;,, @ (a5 e al,)]

xyz

W—1( W W w By
9B, (VBk+1 “ VB~ 8 At) —Bs,,,
baj 1 — bay
bg; 1 —bg; ]

3.3. LiDAR Scan Matching Modeling

LiDAR achieves the range measurements between the LiDAR itself and the sur-
rounded objects. As there is abundant three-dimensional geometry information in a deep
urban canyon that is mainly man-made such as buildings, road signs and overpasses, it is
feasible to extract enough edge points and plane points from LiDAR point clouds without
further consideration of point density [32] and distribution [33]. The feature extraction
manner [3] is employed here, through which the smoothness of the neighborhood around

the operating point fl.Lk can be calculated as:

1

Y (g =6

Cc = 7[4{
S| £% 1| jesyzi

, (18)

extracts the imaginary part of a quaternion. Bias may be minorly corrected
after each window optimization. The details are shown in Appendix A.

(19)

where S represents a set of neighbor points of fl.L" , which are on the same scan ring of fl.Lk .
c represents the smoothness of S, |S| represents the total number of pointsin S and || - ||
represents the L, norm. Points with lower smoothness are selected as plane feature points,
while points with larger smoothness are selected as edge points. Please refer to reference [3]

for more details.

The pose of Flx, TE‘;, is calculated by registering F* to a local map M}¥ | with a
specified size [3,34]. The local map comprises the registered feature points of LiDAR
frames before 1 and is organized in a KD-tree for efficient search. It will slide towards
the current frame if the frame approaches the map boundary [35]. The current frame
will always be kept inside the local map. Consequently, a significant number of point
candidates are guaranteed for registration. If £L+ and P+ are taken as the set of edge
points and plane points of F*, respectively, the coordinates of points in these two sets
will be under the 7'« frame. If £ and P are taken as the set of edge points and plane
points of the local map, respectively, the coordinates of points will be under the world

frame. During registration, for the i-th point feL’l‘ € &l and f;Lgf‘i € P, TE{ is employed to

project them onto the local map as:

where (-) represents e or p.

W _ WLl
f(),l - Tka(_k),i,

The initial guess of TZ‘i can be obtained by:

W _ oW L Br—1 L—1
TLk_TLk,l*TB*TBk *Tg 7,

(20)

(21)

where, Tﬂ,l represents the pose of the last LIDAR frame from LC optimization as per

Equation (6). Tg’;’l represents the motion increment between the last LIDAR frame
and the current one, and it can be obtained from IMU measurement integrations as per
Equations (12)-(16). The initial guess benefits from the accuracy of LC integration and



Remote Sens. 2021, 13, 2371

9 of 24

high-frequency of IMU, and thus can improve the robustness of scan-to-map registration,
especially in the degenerate case.
The final result of TKZ can be obtained through the iterative matching of these two

categories of points, when T} is iteratively optimized until it converges, or the maximal
number of iterations is finished. The objective of the feature matching is to minimize the
point-to-line residuals from edge points and the point-to-plane residuals from plane points.

For an edge point fe ', there are 5 nearest edge points around it in £" on the local map.
Subsequently, eigendecomposition is performed on the covariance matrix of those five
points. If the maximum eigenvalue is significantly larger than the other two, it is expectable
for the five points to be on the same line of fg\f The line passes the geometric center of the

five points f!",. and its direction vector n is the eigenvector corresponding to the maximum

c,ei
eigenvalue. As shown in Figure 4a, the residual is formulated as the distance between fgf

and the simulated line:

(14,1 —a = (o) - (B -8s) @)

’ , W W
“ [RATS AN

where, fe 1 and fe 5 are two points on the simulated line distributed on either side of fc L [16].
there are also 5 nearest plane points around it on the map, which
.,5}. It is expectable for fW and fw to be

on the same plane. Let u = [pa, pb, pc]T denote the coefficient vector of the plane and

For a plane point fp ir

can be represented as fw ePW,j=1{1,..

[fp 'RRR fg\g} . uis achieved by solving the following overdetermined linear equation:

Au=—1. (23)
£ o
? ’
: dp,i "
' |
: ei f;‘:‘,/z . ! fg;a
O - ) fpa o d fﬂ,’g
. z >
v fv. £ -

el c.el ez

(@) (b)

Figure 4. Illustration of point-to-line residual for edge feature point and point-to-plane residual
for plane feature point used in LiDAR scan-to-map registration: (a) Point-to-line residual for an
edge feature point £/’ of the current LiDAR frame, the orange line is the fitted line passing fc i
(b) Point-to-plane re51dual for a plane pomt f ; of the current LiDAR frame, the orange plane is the

fitted plane using f j € PW,j = {1,...,5}.

As shown in Figure 4b, the residual is formulated as the distance between fW and the
simulated plane:

|| ul f |

) =d,; = —F—— (24)

L
r «(f kT
P ||u||

pi’

The pose of the current LiDAR frame Tzvk serves as an absolute constrain of the
corresponding state in the factor graph as shown in Figure 2. Equation (5) can be employed
to transfer Tzvk to the same coordinate of x;, which can be expressed as:

W -W
zg, = |PB, 98, |/ (25)
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The residual r (Tzvk, X) generated by LiDAR scan-to-map registration is defined as

the difference between z'é\i and x:

w o ~W
W Pp, — P,

e (TLk,X) = | w1 (26)
2lqp, ®qp

xyz

3.4. Adaptively Weighted LiDAR-Inertial Fusion

The LC nonlinear optimization relies heavily on the solutions from LiDAR scan-to-
map registration to accurately estimate the bias of IMU and directly constrain the motion
state in factor graph optimization. In challenging scenarios, such as feature insufficient or
highly dynamic environments, the solution from scan-to-map registration is prone to local
optimum or even divergence. The factor graph optimization minimizes residual factors
altogether as Equation (7). Abnormal solutions are inconsistent with the state and lead to
large residuals of the scan matching factor calculated as Equation (26). Normal solutions
are relatively in line with the state relatively better and can generate smaller residuals. The
LC nonlinear optimization could be misled or even destroyed by poor solutions.

To effectively mitigate the influence of the poor LiDAR scan-to-map registration
solutions and meanwhile strengthen that of the normal solutions, the weighting matrix
applied to the scan matching factors is adaptively regulated during the LC nonlinear

optimization. The weighting matrix is C kal forr, (Tzvk, X) as shown in Equation (7).

For a typical optimization-based state estimation problem, the overall residual is an
effective indicator for the quality of the derived solution [36]. Inspired by this fact, an
attempt is made to derive the potential uncertainty of the LiDAR scan-to-map registration
based on the residuals of point-to-line and point-to-plane association as follows:

Ly W Ly W
e BT) 4 2 (7))
QLk = : L L, . (27)
Nek + Npk

where, Qp, represents the quality of T{Vk solved by LiDAR scan-to-map registration, and

N#* and N# ¥ represent the number of edge points and plane points on F*, respectively.
More outliers during registration would produce larger Q;, and worse solution, while
smaller Q;, implies a better solution. Therefore, the scan matching factors containing Tzvk

with smaller Q;, tend to be assigned with more weight, while those containing TZ\; with
lager Q;, tend to be assigned with less weight. As the state X is assumed to subject to
Gaussian distribution, an exponential function is selected experimentally to formulate the
weight of the scan matching factor. The function should have the following characteristics:

A monotonically decreasing function of Qr,;

A positive function of Qy,;

Decreasing rate and ranges concerning Q;, can be regulated by the control parameters
and thus be employed in general scenarios.

With these reasons taken into account, the function is expressed as:

-1
wl, - (c 1—exp(cz- QLk)) +C3> , (28)

»
1 —exp(c2 - 71, max

where w|, represents the weighting coefficient of the scan matching factor corresponding
to the k-th LiDAR frame, 7, ,uqx represents the biggest registration residual of this frame.
c1, ¢ and c3 represent control parameters. It depends on the prior information about the
scenario and is empirical to some degree. As shown in Figure 5, c; and c3 decides the range
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of wy,, while c; decides the decreasing rate of wy, . These three parameters remain constant
for all scan matching factors.

200 200 200 : :
—¢3=0.005
150" 150 , 150 €3=0.007
—¢3=0.01
2100 2100 2100
50 50 50
0 0 — 0
0 005 01 0.15 0 005 0.1 0.15 0 005 01 0.15
Q Q Q
(@) (b) (c)

Figure 5. Illustration of the impacts of the control parameters ¢y, c; and c3 on the weighting. Q (x-axis) represents the quality
of the solution provided by scan-to-map registration derived from the average matching residual. The y-axis represents the
weighting coefficient w;, . When one parameter changes, the other two remain constant. (a—c) are the illustrations of the
weighting under different value of ¢, co and c3, respectively.

4. Performance Upper Bound Analysis of Tightly Coupled and Loosely Coupled
LiDAR-Inertial Integration

In this section, the error propagation process of both the LC and TC LiDAR/inertial
integration would be presented from the theoretical perspective, in an attempt to show the
performance upper bounds of LIDAR scan-to-map registration in different pipelines given
the same sensor measurements.

4.1. Error Propagation of LIDAR Measurement in TC-LIO
The general cost function of factor graph-based TC-LIO can be expressed as:

.1 L 2 B 2
X=min S 00 1P+ X ellmcam (65X) 1. )+ X ellrres(zg,X) I ) @9
fiLk c FL L ke{0,- n-1} Byy1
ke{o,---,n}

where r,(X) represents the prior factor from marginalization [16], if any. r7¢c s, (-) and
rrc g(-) represents LIDAR scan-to-map registration residual and IMU pre-integration
residual, respectively. Measurements from LiDAR and IMU are fused directly to constrain
the state to be estimated. The raw measurements from LiDAR could reach centimeter-
level accuracy. However, the measurements from IMU are much noisy with an order of
magnitude lower accuracy, even if its bias is continuously corrected during optimization.
Regardless of the prior factor and taking the error of the raw measurements into account,
for one state x; the full Jacobian matrix Jrc r,; derived by its residual can be expressed as

] M’ngw arTC/smér (ka Xk ) + arTC,stgH (Afxg)
_ I'TC,stmr _ Xk _ X X
Jre fun = ’ = By = By (30)
4 Jeres drre, (Z3k+1 +Az’x") Irres (Z3k+1 Xk ) 4 drrep(Azx)
oxy o, oxg

For simplicity simplify, f* represents all the feature points including the plane and
edge points without differentiation. The Jacobian matrix of LIDAR scan-to-map registration
residuals corresponding to the state is represented as one submatrix, J,, ., rather than
listed at separate rows of Jr¢ ¢,;;- The Jacobian matrix of IMU pre-integration residuals
corresponding to the state is represented as J,, . .. During the minimization of (29), Jrc, .11
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is iteratively evaluated. An error of IMU measurements and LiDAR measurements are
represented as Az and Af, respectively. The errors from both measurements are propagated
toJy, Cotmr via the state x; shared by both kinds of residuals rr¢ sty and rrc 5. Therefore,
the final convergence of r1¢ s, relies on the quality of IMU and the accuracy of its noise
modeling. Unfortunately, the noise of the IMU drifts and is hard to obtain, even if the
noise is estimated or corrected simultaneously by the LIDAR scan-to-map registration. As
a result, the potential for the high accuracy of the raw LiDAR measurements is not fully
relaxed. A similar argument is also presented in a study [37] where a similar coarse-to-fine
LiDAR/visual integration scheme is proposed. It maintains that there is a significant differ-
ence between the accuracy level of the visual measurements and the LIDAR measurements,
and therefore, the direct and joint optimization of the residuals derived from two kinds of
observations can not relax the potential for LIDAR measurements.

The illustration of the measurement error propagation for TC-LIO is shown in Figure 6,
in which the error of IMU measurements is directly absorbed to the LiDAR scan-to-map
registration due to the tightly coupled integration.

Tightly Coupled LiDAR-Inertial Integration \\
\
1
Jointly Optimization i
MU X LiDAR i
Measurement Measurement !
Modeling Modeling i
| Af LiDAR
«—— Measurement

Loosely Coupled LiDAR-Inertial Integration error

P

MU z . ™ LiDAR
Measurement [———» ].011.1tly- P Measurement
. P Optimization Modeli
Modeling — odeling ]
Aba, Abg Initial T v

-~

____________________________________________________________

Figure 6. Error propagation in the LiDAR scan-to-map registration for TC-LIO and LC-LIO. An error of IMU measurements

and LiDAR measurements are represented as Az and Af, respectively. For TC-LIO, X represents the states to be estimated
during LiDAR-Inertial integration. LIDAR measurement modeling is directly affected by both Az and Af. For LC-LIO,
LiDAR scan-to-map registration is only disturbed by Af, which is the error of its own.

Jicfun =

L — |

4.2. Error Propagation in LIDAR Measurement Modeling of LC-LIO

The general cost function of factor graph-based LC-LIO can be expressed as Equation (7).
During the minimization of Equation (7), for one state x; the full Jacobian matrix J; ¢, ¢,
derived by its residual can be expressed as:

J arLC,[: (Tl‘/‘\; +ATZ\I/€ ,Xk) aI‘LC’L (TK\I/C ,Xk) al‘LCL <ATK\2,Xk)
ce | — ox Ix;c ox; @31)
- B B
J C,8 ] Incs (ZB:H +Azx ) rics (ZB}IEH Xk ) orrc,5(Az,xi) '
an an + an

where, Tzvk represents the pose of LIDAR solved by the iterative optimization of scan-to-

map registration in a separate module and AT}" represents the error of T}'. To make a
distinction between TC demonstrated in Section 4.1 and LC, the subscript “LC” is added for
residual items r.(-) and rz(+) in Equation (7). The registration minimizes the point-to-line
and point-to-map matching residuals, as shown in Equations (22) and (24):
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