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Abstract: Based on the optimal interpolation (OI) algorithm, a daily fusion product of high-resolution
global ocean columnar atmospheric water vapor with a resolution of 0.25◦ was generated in this
study from multisource remote sensing observations. The product covers the period from 2003 to
2018, and the data represent a fusion of microwave radiometer observations, including those from
the Special Sensor Microwave Imager Sounder (SSMIS), WindSat, Advanced Microwave Scanning
Radiometer for Earth Observing System sensor (AMSR-E), Advanced Microwave Scanning Radiome-
ter 2 (AMSR2), and HY-2A microwave radiometer (MR). The accuracy of this water vapor fusion
product was validated using radiosonde water vapor observations. The comparative results show
that the overall mean deviation (Bias) is smaller than 0.6 mm; the root mean square error (RMSE)
and standard deviation (SD) are better than 3 mm, and the mean absolute deviation (MAD) and
correlation coefficient (R) are better than 2 mm and 0.98, respectively.

Keywords: columnar atmospheric water vapor; passive microwave remote sensing; optimum inter-
polation

1. Introduction

Water vapor is an important indicator of Earth’s climate system and serves as the
dominant greenhouse gas, having higher absorption than carbon dioxide. Moreover, it
is a rich and important radiative atmospheric component that occurs for short times in
the atmosphere [1]. Under pure natural control, water vapor variability exerts strong
positive feedback on climate change [2,3], and it is also one of the major error sources when
attempting precise positioning with the Global Navigation Satellite System (GNSS) [4].
Columnar atmospheric water vapor denotes the total gaseous water contained in a vertical
column of the atmosphere, which corresponds to the absolute amount of water dissolved
in the air.

Columnar water vapor observation methods mainly include radiosondes [5], ground-
based GPS receivers [6], satellite remote sensing including optical remote sensing [7] and
satellite microwave radiometers [8], differential absorption lidar (DIAL) [9], and Raman
lidar [10]. The spatial and temporal coverage of ground-based measurement data is limited,
and optical remote sensing is affected by rigid weather conditions. The scanning range of
the spaceborne microwave radiometer reaches approximately 1000 km, which could cover
more than 90% of the global ocean area every day and provide important data to monitor
the changes in columnar atmospheric water vapor over the global ocean surface. The

Remote Sens. 2021, 13, 2402. https://doi.org/10.3390/rs13122402 https://www.mdpi.com/journal/remotesensing

https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://orcid.org/0000-0002-5618-9477
https://doi.org/10.3390/rs13122402
https://doi.org/10.3390/rs13122402
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/rs13122402
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/article/10.3390/rs13122402?type=check_update&version=1


Remote Sens. 2021, 13, 2402 2 of 15

acquisition of near real-time, large-scale atmospheric water vapor information is mainly
dependent on the measurements from continued satellite microwave radiometers. At
present, on-orbit microwave radiometers that can be used to retrieve atmospheric water
vapor mainly include NASA Aqua’s Advanced Microwave Scanning Radiometer for Earth
Observing System sensor (AMSR-E), the Tropical Rainfall Measuring Mission Microwave
Imager (TMI), the Special Sensor Microwave Imager (SSM/I) aboard the Defense Mete-
orological Satellite Program (DMSP) satellites, Coriolis WindSat, etc. However, due to
the influence of clouds and rain, the effectiveness of data coverage for these microwave
radiometers varies in space and time. An effective method of obtaining a daily available
global mean product of atmospheric water vapor is to merge satellite observations from
multiple sources.

Currently, a popular water vapor fusion technique is to make use of products derived
from meteorological satellite remote sensing images. Huber proposed a method of sparse
representation in 1985 [11], and Lei Wang et al. [12] proposed a fusion method with coupled
sparse representation for infrared and water vapor cloud maps, which outperformed tradi-
tional pixel averaging and wavelet transform methods. Kai Liu [13] applied multiresolution
analysis and multiscale geometric analysis fusion methods to conduct fusion experiments
based on infrared and water vapor maps. In their experiment, the fused images showed
visually good results and highlighted water vapor edge information. To our knowledge,
limited types of research have attempted to generate remote sensing fusion products of
global ocean columnar atmospheric water vapor from multisource satellite water vapor
product data. The remote sensing system (RSS) has merged microwave radiometer data
from the SSM/I [14], Special Sensor Microwave Imager Sounder (SSMIS), GMI, TMI [15],
WindSat, Advanced Microwave Scanning Radiometer 2 (AMSR2), and AMSR-E [8] to a
monthly average global ocean columnar atmospheric water vapor product with a spatial
resolution of 1◦×1◦. In an attempt to better describe the dynamic changes in water vapor,
a water vapor product with a higher spatial and temporal resolution is of great necessity.
Therefore, this study focuses on producing a gridded, blended columnar atmospheric
water vapor product with high spatial and temporal resolution based on multisource
microwave data.

A variety of fusion algorithms have been proposed, including the successive correction
method [16], blended analysis method [17], objective analysis method [18], Kalman filter
method [16], and optimal interpolation (OI) method [19–21]. The characteristics of these
methods were introduced in a previous article by the authors [22]. Compared with the
other methods, the OI method is characterized by a higher efficiency with low computation
and can be explored to obtain the global fusion product with better precision.

This study used a columnar atmospheric water vapor product from five satellite-
borne microwave instrument sets: the AMSR-E, AMSR2 [23], WindSat, SSMIS, and HY-2A
microwave radiometer (MR) [24]. Compared with the RSS dataset, the new daily available
columnar atmospheric water vapor product has a better spatial resolution of 0.25◦. Using
the OI method, a new 0.25◦/daily high spatial and temporal resolution fusion water vapor
product from 2003 to 2018 was generated. The accuracy of the established atmospheric
water vapor fusion products was verified using radiosonde observation data. The technical
process of this study is shown in Figure 1.
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Figure 1. Technical process of the water vapor fusion product.

2. Materials and Methods
2.1. Materials
2.1.1. Satellite Remote Sensing Data

The global ocean columnar atmospheric water vapor fusion product was obtained
by using multiple satellite observations from ASMR-E, ASMR2, WindSat, and SSMIS.
Additionally, water vapor data obtained from the microwave radiometer onboard HY-2A,
China’s first ocean dynamic environment satellite, were also employed in the fusion process.
The general information in the water vapor dataset of the satellite borne radiometer is
summarized in Table 1.

Table 1. Satellite radiometer remote sensing data of water vapor.

Sensors Resolution Data Time Period Used Spatial Coverage

AMSR-E Daily/25 km January 2003–October 2011 Global ocean
AMSR2 Daily/25 km July 2012–December 2018 Global ocean
WindSat Daily/25 km January 2003–December 2018 Global ocean
SSMIS Daily/25 km January 2003–December 2018 Global ocean

HY-2A MR Swath/97 km October 2011–December 2015 Global ocean
SSMIS includes data from the F16, F17 and F18 satellites.

SSMIS, WindSat, AMSR-E, and AMSR2 data were provided by RSS at a spatial res-
olution of 0.25◦, and the datasets include water vapor, wind speed, and cloud liquid
water data. To control the water vapor quality, outliers beyond the range of 0–70 mm
were eliminated based on the GCOM-W1 Shizuku Data Users Handbook [25]. HY-2A
microwave radiometer data were provided by the National Satellite Ocean Application
Service (NSOAS) for L2 level products, including various sea–air parametric products
of the HY-2A microwave radiometer. Additionally, quality control was performed for
HY-2A water vapor data to retain the data within the normal range (0–70 mm). Using the
HY-2A MR L2 swath data product, we developed a 0.25◦ grid data product based on the
drop-in-the-box algorithm [26]. To further ensure the accuracy of the fusion results, water
vapor data for all the above microwave radiometers that have an absolute deviation greater
than 10 mm (greater than 3 times the standard deviation) of the corresponding background
field data were excluded.
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2.1.2. Water Vapor Background

Water vapor reanalysis data from the European Centre for Medium-Range Weather
Forecasts (ECMWF) were used as the background field data. ECMWF provides European
Reanalysis (ERA) interim (i.e., ERA-Interim) 1◦/daily water vapor four times per day (at
00:00:00, 06:00:00, 12:00:00, and 18:00:00). In this study, the four ERA data points were used
to generate the daily water vapor average as the first-guess field.

2.1.3. Radiosonde Data

Data from more than 1000 global radiosonde stations provided by the National Centers
for Environmental Information (NCEI) and from 90 stations located in the oceanic region
were collected. The locations of the radiosonde stations are shown in Figure 2. All atmo-
spheric profile data measured from 2003 to 2018 were extracted, and then the atmospheric
water vapor was calculated. Because the radiosonde cannot directly measure the water
vapor, the atmospheric water vapor density is calculated by using the altitude, atmospheric
temperature profile, and relative humidity profile data measured by the radiosonde, and
the column water vapor is obtained by the vertical integration of the water vapor density,
which is used to validate the accuracy of the new water vapor product.

ρV = 1.739× 109 × RH × θ5 × exp(−22.64θ)
θ = 300/T

(1)

where ρV is atmospheric vapor density (g/cm3), T is atmospheric temperature profile data
(◦C), and RH is atmospheric relative humidity profile data (%).
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Figure 2. Locations of the radiosonde stations. The red dots indicate the positions of the radiosondes.

The validity of the calculation results was then checked; radiosonde data with the
highest measurement heights less than 10,000 m were eliminated, and outliers from 0 to
70 mm were excluded. The spatial distribution of the radiosonde stations used is shown in
Figure 1.

2.2. Methods
2.2.1. Water Vapor Remote Sensing Product Fusion Algorithm

The OI algorithm is used for the production of water vapor fusion products. The OI
algorithm minimizes the analytical variance of the solution as long as the background,
observations, and analytical fields are deemed unbiased estimates [21,22]. It is widely
used in the production of data products, such as sea surface temperature [27] and wind
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fields [28]. According to the OI algorithm, the final value on the fused product grid point k,
i.e., the water vapor content fusion value Ak, is calculated as follows:

Ak = Bk +
N

∑
i=1

(Oi − Bi)Wki (2)

where Bk is the background field (first guess) value at the fusion grid point k, Oi is the
water vapor value measured by the microwave radiometer, Bi is the background value at
the microwave radiometer observation point grid i. Oi − Bi is the difference between the
radiometer inversion value and the background field value, and Wki is the corresponding
least-square weight factor, which is obtained by minimizing the variance and water vapor
of the analyzed field. In the case with no radiometer observations near a grid point
(distance thresholds of λx and λy, which are calculated below), the weight is taken as 0,
and background values are adopted. N is the number of observation points near the fusion
product grid k. According to the least squares principle, for the weighting factors, we have
the following:

Wki

N

∑
i=1

Mij =
〈
πjπk

〉
(3)

where Mij =
〈
πiπj

〉
+ ε2

i δij is the expected value of the background field correlation error,
and εi is the ratio of the data error at point i to the standard deviation of the background
field, which is taken as 0.5.

δij =

{
1 i = j
0 i 6= j

(4)

The expected value of the background field correlation error can be expressed as fol-
lows: 〈

πiπj
〉
= exp[

−(xi − xj)
2

λ2
x

+
−(yi − yj)

2

λ2
y

] (5)

where x and y represent the zonal and meridional distances of the grid data, respectively;
and λx and λy are the zonal and meridional correlation scales of water vapor, calculated as
238 and 179 km, respectively [22]. Each weighting factor of grid point k can be obtained by
solving the linear equation system (3).

To obtain the (Oi − Bi) values before data fusion, we developed a new 0.25◦ back-
ground field (Bk) using a 1◦ water vapor background. The flow of the fusion algorithm is
shown in Figure 3.
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2.2.2. Validation Method

The assessment of the global ocean water vapor product using radiosonde data
requires the average of the radiosonde data from the same station on the same day. To do
this, the proximate observation date of the radiosonde data with the water vapor fusion
product was identified, and a spatial window of 0.25◦ for data matching was used.

The quality evaluation indicators include the mean deviation (Bias), mean absolute
deviation (MAD), standard deviation (SD), root mean square error (RMSE), and correlation
coefficient (R). Bias reflects the systematic deviation of the fused water vapor from the
radiosonde-measured water vapor and indicates the degree of dispersion of the fused
water vapor from the radiosonde-measured water vapor. MAD can avoid the positive and
negative offsets of deviation and can better reflect the system deviation. SD represents the
dispersion of deviation to Bias, and RMSE is used to indicate the accuracy of the fused water
vapor compared to the measured water vapor of the radiosonde. The abovementioned
parameters are defined in Equations (6)–(9) as follows:

Bias =
1
N ∑N

i=1 (Ai − Bi) (6)

RMSE =

√
1
N ∑N

i=1 (Ai − Bi)
2 (7)

SD =

√
∑N

i=1
[
(Ai− Bi)− (A− B)

]2
N

(8)

R =
∑N

i=1
[
(Ai− A)(Bi− B)

]√
∑N

i=1 (Ai− A)
2
∑N

i=1 (Bi− B)2
(9)

where N denotes the total number of matched data between the water vapor fusion and
radiosonde data, A represents the fused water vapor, and B corresponds to the radiosonde-
measured water vapor.

3. Results
3.1. Remote Sensing Fusion Product

The OI algorithm is applied to merge the atmospheric water vapor results retrieved
from the HY-2A MR, SSMIS, WindSat, AMSR-E, and ASMR2 microwave radiometers. As a
result, a total of 16 years of global daily oceanic atmospheric water vapor remote sensing
fusion product data from 2003 to 2018 were generated with a resolution of 0.25◦ × 0.25◦.
The time range began from 1 January 2003 through 31 December 2018. All products
were formatted as NetCDF, which includes datasets of water vapor, grid information
of latitude and longitude (grid number 720 × 1440), and ancillary information, which
illustrates the data product production agency, production date, and time. The data
products recorded three sets of data fields: longitude (lon), latitude (lat), and global ocean
columnar atmospheric water vapor (water vapor). The longitude covered a range of
0.125◦E–359.875◦E, with 3 decimal places reserved; the data were available with a floating-
point type. The latitude spanned a range of 89.875◦S–89.875◦N, with 3 decimal places
reserved, and the data were stored with the floating point type. The valid range of water
vapor data was 0–70,000, with an invalid value of −999 and a scale factor of 0.001, and
the data type is an integer. A sample of the global ocean atmospheric water vapor fusion
product on 1 January 2018 is shown in Figure 4. As shown in Figure 4, the missing areas of
each single satellite data can complement each other well, and the fusion data can largely
fill the gaps of each single satellite data and generate the water vapor product over the
global ocean surface.
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Figure 4. Comparison of water vapor fusion data and single spaceborne radiometer data on 1 January 2018. The white
areas in the middle and low latitudes in Figure 4 are areas that cannot be observed by satellites. The observation ability of
spaceborne radiometers in polar regions is poor due to the influence of sea ice.

The data coverage of the microwave radiometer is defined as the proportion of the
effective observation data grid to the global ocean grid. Figure 5 shows the daily coverage
of these multisource spaceborne radiometer data in 2018. As shown in Figure 5, the daily
coverage in 2018 fluctuated between 80% and 84%. To better describe the data coverage
over the global ocean, the daily average multisource spaceborne radiometer data coverage
map in 2018 is given, as shown in Figure 6. Except for the sea ice areas in the North and
South Poles, at least one satellite radiometer data point is included in one grid. The data
coverage over the mid-latitude ocean is better, and the coverage in the low-latitude region
is slightly lower than that in the mid-latitude region due to the influence of satellite orbits.
This finding also shows that the background data can be corrected by using multisource
satellite observations.



Remote Sens. 2021, 13, 2402 8 of 15

Remote Sens. 2021, 13, x FOR PEER REVIEW 8 of 15 
 

 

grid. The data coverage over the mid-latitude ocean is better, and the coverage in the 
low-latitude region is slightly lower than that in the mid-latitude region due to the in-
fluence of satellite orbits. This finding also shows that the background data can be cor-
rected by using multisource satellite observations. 

 
Figure 5. Daily coverage of multisource spaceborne radiometer water vapor data of 2018. The data 
coverage of the microwave radiometer is defined as the proportion of the effective observation 
data grid to the global ocean grid. 

 
Figure 6. Number of effective observations of multisource spaceborne radiometer water vapor 
data of 2018. This figure is expressed using the daily average data calculated by using the effective 
water vapor observation data of spaceborne radiometers in 2018. 

3.2. Precision Validation of Fusion Products Over the Past 16 Years 
The generated global oceanic atmospheric water vapor fusion data for all 16 years 

from 2003 to 2018 were compared with the corresponding radiosonde data with a 0.25° 
spatial window and a 1 day temporal window. A total of 45,198 matched data pairs were 
obtained, and the Bias, MAD, RMSE, and R were calculated for the water vapor product, 
as shown in Table 2. 

Table 2. Statistics on the precision of global ocean water vapor fusion products. 

Year Data Matches Bias (mm) MAD (mm) SD (mm) RMSE (mm) R 
2003 2365 0.50 2.07 2.79 2.84 0.99 
2004 2961 0.52 1.94 2.60 2.65 0.99 

Figure 5. Daily coverage of multisource spaceborne radiometer water vapor data of 2018. The data
coverage of the microwave radiometer is defined as the proportion of the effective observation data
grid to the global ocean grid.

Remote Sens. 2021, 13, x FOR PEER REVIEW 8 of 15 
 

 

grid. The data coverage over the mid-latitude ocean is better, and the coverage in the 
low-latitude region is slightly lower than that in the mid-latitude region due to the in-
fluence of satellite orbits. This finding also shows that the background data can be cor-
rected by using multisource satellite observations. 

 
Figure 5. Daily coverage of multisource spaceborne radiometer water vapor data of 2018. The data 
coverage of the microwave radiometer is defined as the proportion of the effective observation 
data grid to the global ocean grid. 

 
Figure 6. Number of effective observations of multisource spaceborne radiometer water vapor 
data of 2018. This figure is expressed using the daily average data calculated by using the effective 
water vapor observation data of spaceborne radiometers in 2018. 

3.2. Precision Validation of Fusion Products Over the Past 16 Years 
The generated global oceanic atmospheric water vapor fusion data for all 16 years 

from 2003 to 2018 were compared with the corresponding radiosonde data with a 0.25° 
spatial window and a 1 day temporal window. A total of 45,198 matched data pairs were 
obtained, and the Bias, MAD, RMSE, and R were calculated for the water vapor product, 
as shown in Table 2. 

Table 2. Statistics on the precision of global ocean water vapor fusion products. 

Year Data Matches Bias (mm) MAD (mm) SD (mm) RMSE (mm) R 
2003 2365 0.50 2.07 2.79 2.84 0.99 
2004 2961 0.52 1.94 2.60 2.65 0.99 

Figure 6. Number of effective observations of multisource spaceborne radiometer water vapor data
of 2018. This figure is expressed using the daily average data calculated by using the effective water
vapor observation data of spaceborne radiometers in 2018.

3.2. Precision Validation of Fusion Products Over the Past 16 Years

The generated global oceanic atmospheric water vapor fusion data for all 16 years
from 2003 to 2018 were compared with the corresponding radiosonde data with a 0.25◦

spatial window and a 1 day temporal window. A total of 45,198 matched data pairs were
obtained, and the Bias, MAD, RMSE, and R were calculated for the water vapor product,
as shown in Table 2.
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Table 2. Statistics on the precision of global ocean water vapor fusion products.

Year Data Matches Bias (mm) MAD (mm) SD (mm) RMSE (mm) R

2003 2365 0.50 2.07 2.79 2.84 0.99
2004 2961 0.52 1.94 2.60 2.65 0.99
2005 2916 0.87 2.04 2.66 2.80 0.99
2006 2771 0.99 2.52 3.17 3.33 0.98
2007 2616 0.36 2.24 3.02 3.04 0.99
2008 2847 0.48 2.04 2.78 2.83 0.98
2009 3036 0.66 1.80 2.43 2.53 0.99
2010 3490 0.43 1.53 2.11 2.15 0.99
2011 3098 0.41 1.84 2.67 2.70 0.99
2012 3014 0.24 1.56 2.15 2.16 0.99
2013 2969 0.30 1.72 2.42 2.44 0.99
2014 2998 0.57 1.87 2.52 2.59 0.98
2015 2870 0.37 1.96 2.70 2.73 0.98
2016 2755 0.30 1.85 2.60 2.62 0.99
2017 2520 0.54 1.78 2.51 2.57 0.99
2018 1965 0.66 1.65 2.27 2.36 0.99

Table 2 shows that the RMSE and SD of the water vapor fusion results are better
than 3 mm. Positive deviations smaller than 0.6 mm were observed for Bias and those
better than 2 mm were observed for MAD, while R was stronger than 0.98. An analysis
of the error distribution of remotely sensed fused water vapor and radiosonde water
vapor from 2003 to 2018 was carried out to visually illustrate the comparison over the past
16 years. As shown in Figure 7, the errors presented a normal distribution, with a slight
bias toward positive values. The overall estimated Bias was 0.36 mm (95% confidence
interval: 0.33–0.38 mm), and the SD was 2.56 mm (95% confidence interval: 2.54–2.58 mm).
A high correlation was found between the two water vapor datasets.
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Figure 7. Comparison of the water vapor fusion products with radiosonde data from 2003 to 2018. Error distributions of the
fusion product in 2003–2018 are shown in the graph on the left. The right picture shows the scatter distribution of water
vapor fusion data and radiosonde data.

A Taylor diagram was drawn to show the robustness of the results using the fusion
product and the radiosonde data in 2018, as shown in Figure 8. In the Taylor diagram, the
red point represents the fusion product. The Y-axis denotes the standard deviation (SD) of
the data, the radial blue line corresponds to the correlation coefficient (R), and the green
dotted line represents the RMSE. Figure 8 suggests that the correlation coefficient between
the fusion product and the field data was very strong, with a correlation of approximately
0.99, an RMSE of 2.36 mm, and a standard deviation close to the RMSE.
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fusion product.

To examine the improvement of the water vapor fusion product relative to the ERA-
Interim background data, the ERA-Interim background data from 2016 to 2018 were
selected to verify the accuracy of the radiosonde data (Table 3). Tables 2 and 3 show that
compared with the water vapor ERA-Interim background data, the accuracy of the water
vapor fusion product has been improved, which is likely due to the modification of the
background data by the more accurate satellite water vapor observation data.

Table 3. Statistics of ERA-Interim global ocean water vapor background precision in 2016–2018.

Year Bias (mm) MAD (mm) SD (mm) RMSE (mm) R

2016 0.64 1.94 2.86 2.93 0.99
2017 0.62 1.82 2.69 2.76 0.99
2018 0.87 1.96 3.17 3.29 0.99

To discuss the global distributions of the monthly standard deviation between this
fusion product and the RSS product, the years 2016–2018 were used as an example, and the
global map of monthly SD is depicted in Figure 9. The results show that the MAD and SD
of the two products are 0.72 mm and 0.98 mm, respectively, and the correlation coefficient
(R) is 0.99. As shown in Figure 9, over most global oceans, the standard deviation is mainly
less than 1 mm. The largest standard deviation between the two SST products appears
in the middle- and low-latitude areas (especially coastal areas), and the maximum occurs
in equatorial South America. Thus, it can be concluded that the new gridded product
coincides with the RSS product over most global oceans except for some coastal areas. A
possible reason for the large standard deviation in these areas is contamination from land
and precipitation.
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Figure 9. Global distributions of the monthly standard deviation between the fusion product and
RSS product during 2016–2018. First, the monthly water vapor of each month from 2016 to 2018
was obtained by using the fused water vapor data. Then, the calculated monthly water vapor data
were compared with the monthly water vapor data of the RSS. Finally, the standard deviation was
obtained by using the monthly water vapor data of 36 months.

A quantitative comparison with radiosonde data was conducted, and the statistical
results are summarized in Table 4. Taking into account the spatial resolution of these
two products, the spatial window for the comparison between the fusion product in this
paper and the radiosonde data was set to 0.25◦, while that of the RSS product was set to
0.5◦. Since there were no monthly average radiosonde data, all the radiosonde data in one
month were compared with the monthly average of the two satellite-derived water vapor
products. As seen from Table 4, the overall error between the two products is very small.
The difference is probably caused by the different spatial resolutions of these two water
vapor products. The spatial resolution of the fusion product in this study is comparably
higher, given that the product here could be characterized with more spatial details of the
spatial variations for water vapor.

Table 4. Accuracy comparison between the fusion product and RSS product from 2016 to 2018.
The monthly water vapor of each month from 2016 to 2018 was obtained using the fusion water
vapor data.

Data Year MAD (mm) SD (mm) RMSE (mm) R

Fusion
product 2016 1.58 2.30 2.30 0.99

Fusion
product 2017 1.69 3.89 3.89 0.97

Fusion
product 2018 1.67 2.46 2.48 0.99

RSS product 2016 1.61 2.38 2.39 0.99
RSS product 2017 1.74 3.85 3.86 0.97
RSS product 2018 1.73 2.53 2.58 0.99

4. Discussion

The water vapor background used in this paper is from the ERA-Interim reanalysis
product. ERA5 data are the most recent global atmospheric reanalysis data produced by the
ECMWF; they have been available since 2018 and have succeeded the ERA-Interim [29,30].
In this study, two water vapor fusion products were generated based on the OI algorithm
using multisource spaceborne radiometer data and these two kinds of background data in
2018. The two fusion products and the ERA5 reanalysis data were verified by radiosonde
data. Tables 3 and 5 indicate that although the accuracy of ERA5 is relatively low, signif-
icant differences in accuracy were not observed between the two products because the
background field data were well corrected by the observations of multisource spaceborne
radiometers with higher accuracy. Therefore, the ERA5 data can be used to generate fusion



Remote Sens. 2021, 13, 2402 12 of 15

data at the early stage or contribute to the ERA-Interim dataset to generate water vapor
fusion products.

Table 5. Accuracy comparison of fusion products using different background fields in 2018 (including the accuracy of
ERA5).

Data Bias (mm) MAD (mm) SD (mm) RMSE (mm) R

Fusion product using ERA-interim 0.66 1.65 2.27 2.36 0.99
Fusion product using ERA5 0.72 1.68 2.28 2.39 0.99

ERA5 reanalysis 1.08 2.12 3.44 3.60 0.99

Note that AMSR-E ceased data services in late 2011 and was succeeded by the AMSR2
and HY-2A microwave radiometers from 2011 to 2015. Therefore, the usage of AMSR2 and
HY-2A MR was considered in this study. Among the fusion products in the 13 years of
data, the data sources for the period of 2003–2010 were provided by AMSR-E, WindSat,
and SSMIS observations. The fusion data in 2011 had a mixture of AMSR-E and HY-2A
microwave radiometer data. The AMSR-E data were then replaced by blending the AMSR2
and HY-2A microwave radiometer data for the following period of 2012–2015. To examine
the performance of the AMSR2 and HY-2A microwave radiometer data compared with
those based on AMSR-E data, a comparative analysis of these two types of water vapor
fusion data in 2003–2010 and in 2012–2015 was carried out. From 2003 to 2010, the Bias was
0.60 mm (95% confidence interval: 0.57–0.64 mm), and the SD was 2.70 mm (95% confidence
interval: 2.67–2.72 mm). From 2012 to 2015, the Bias was 0.38 mm (95% confidence interval:
0.34–0.42 mm), and the SD was 2.50 mm (95% confidence interval: 2.48–2.53 mm). The
error distribution of the two products is shown in Figure 10. Additionally, as suggested
in Table 4, the 2012–2015 fusion products are better than the 2003–2010 products in terms
of Bias, SD, and RMSE. Therefore, products based on AMSR2 and HY-2A microwave
radiometer data generally show better quality than the product based on AMSR-E data.
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Figure 10. Error comparison of fusion products using different data sources.

Compared with the fusion data of 2012–2015, the fusion data of 2016–2018 were
not mixed with HY-2A MR data because the HY-2A MR ceased operation after 2016. A
comparative analysis of these two types of water vapor fusion data from 2016–2018 and
2012–2015 was carried out. As shown in Figure 11, from 2016 to 2018, the Bias was 0.48 mm
(95% confidence interval: 0.42–54 mm), and the standard deviation was 2.49 mm (95%
confidence interval: 2.45–2.52 mm). The error distribution of the product in 2016–2018
is shown in Figure 9. A comparison between Figures 10 and 11 suggests that the 2016–
2018 fusion products are slightly better than the 2012–2015 products. However, limited
differences were observed in the overall accuracy between them.
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The remote sensing water vapor fusion product described in this study was generated
under the support of the National Key Research and Development Program of China (No.
2016YFA0600102), which is a project of the Ministry of Science and Technology of the
People’s Republic of China. The water vapor fusion product is expected to be tested by an
independent institute or university later in 2021. Therefore, the merged product should not
be released before the assessment; it may be publicly accessed in the near future.

5. Conclusions

Water vapor is an important parameter for studying the global energy balance be-
cause it affects ocean radiation, latent heat, and the global water cycle. Analyzing and
understanding the spatial and temporal patterns of water vapor are thus crucial for global
climate change. In this study, multisource remote sensing water vapor observation data
from SSMIS, WindSat, AMSR-E, ASMR2, and HY-2A microwave radiometers were used to
develop an extended daily water vapor multisource remote sensing fusion product based
on the OI algorithm. The merged daily available product features a high spatial resolution
of 0.25◦ from 2003 to 2018. Then, the accuracy of the produced global ocean atmospheric
water vapor fusion products was examined using radiosonde observations. The main
conclusions are summarized as follows.

(1) Over the past 16 years, the RMSE and SD of satellite-derived atmospheric water vapor
fusion products in the global ocean combined with radiosonde data are generally
better than 3 mm. The Bias shows a positive deviation and is generally smaller than
0.6 mm. MAD is generally better than 2 mm, and R is stronger than 0.98. The errors of
remotely sensed water vapor are normally distributed and slightly skewed to positive
values from 2003 to 2018.

(2) The possibility of replacing AMSR-E data with AMSR2 and HY-2A microwave ra-
diometer data was studied after the data service of AMSR-E ceased. The findings
showed that the fusion products obtained by combining AMSR2 and HY-2A mi-
crowave radiometer data show higher accuracy compared with the water vapor
fusion products using AMSR-E data, based on the Bias, SD, and RMSE results. Thus,
AMSR2 and HY-2A microwave radiometer data can be used to replace AMSR-E data.

Author Contributions: W.S. developed the OI algorithms and validated the accuracy of the products;
J.W. helped to conceive and design the analysis; Y.L. and J.M. contributed to in situ data collection
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have read and agreed to the published version of the manuscript.
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