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Abstract: Building boundary optimization is an essential post-process step for building extraction (by
image classification). However, current boundary optimization methods through smoothing or line
fitting principles are unable to optimize complex buildings. In response to this limitation, this paper
proposes an object-oriented building contour optimization method via an improved generalized
gradient vector flow (GGVF) snake model and based on the initial building contour results obtained
by a classification method. First, to reduce interference from the adjacent non-building object, each
building object is clipped via their extended minimum bounding rectangles (MBR). Second, an
adaptive threshold Canny edge detection is applied to each building image to detect the edges, and
the progressive probabilistic Hough transform (PPHT) is applied to the edge result to extract the
line segments. For those cases with missing or wrong line segments in some edges, a hierarchical
line segments reconstruction method is designed to obtain complete contour constraint segments.
Third, accurate contour constraint segments for the GGVF snake model are designed to quickly find
the target contour. With the help of the initial contour and constraint edge map for GGVF, a GGVF
force field computation is executed, and the related optimization principle can be applied to complex
buildings. Experimental results validate the robustness and effectiveness of the proposed method,
whose contour optimization has higher accuracy and comprehensive value compared with that of the
reference methods. This method can be used for effective post-processing to strengthen the accuracy
of building extraction results.

Keywords: remote sensing; building contour optimization; adaptive threshold Canny; PPHT;
GGVF snake

1. Introduction

Building extraction from high-resolution remote sensing images plays a key role in
mapping, city planning and management, and disaster damage analysis and response.
Classification is an important building extraction method that employs the traditional
machine learning principle [1,2] and deep learning [3,4]. However, given the presence of
shadows and vegetation occlusion, the interference of similar spectra, and the complexity of
building structures, the building extraction results are often irregular [5,6] and fail to meet
real application requirements. Meanwhile, many researchers have focused on improving
building extraction accuracy than optimizing building contours. Therefore, designing an
optimization method that can enhance the similarity between building detection results
and real building shapes has become imperative.

Remote Sens. 2021, 13, 2406. https://doi.org/10.3390/rs13122406 https://www.mdpi.com/journal/remotesensing

https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://orcid.org/0000-0002-1086-0608
https://doi.org/10.3390/rs13122406
https://doi.org/10.3390/rs13122406
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/rs13122406
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/article/10.3390/rs13122406?type=check_update&version=3


Remote Sens. 2021, 13, 2406 2 of 17

The optimization methods adopted by researchers mainly include the dominant
direction method, the bounding rectangle method, and the active contour model method.

The first category of regularized building boundary extraction methods is based
on the prevailing building direction. Lee et al. [7] proposed an optimized method by
making up a building with regular grids. First, the straight-line segments identified via
Hough transformation were obtained based on the initial building results derived from
the classification. Second, a grid was constructed by acquiring the dominant line and the
line that is parallel and perpendicular to the dominant line. Third, after calculating the
building proportion in each grid cell and judging which cell belongs to the building, the
building is reconstructed by using those grid cells that meet the specified conditions. Albert
et al. [8] used the alpha shape algorithm to obtain the initial building contour. The building
dominant direction and line segments were extracted via Hough transformation and were
combined with the corner points to obtain a regular contour via energy minimization.
Similarly, based on the hypothesis that the adjacent building edges are perpendicular
to one another, the hierarchical least-squares solution was applied in building contour
optimization [9]. Initially, relatively long line segments were extracted from the building
boundary, and their least-squares solution was determined under the assumption that
these long line segments lie in two mutually perpendicular directions. In the next step, all
line segments were included to determine the least-squares solution by using the slopes of
the long line segments as weighted approximations. Partovi et al. [10] adopted the random
sampling consistent method to fit those building edges with more than vertical correlation.
Ding et al. [11] grouped the corner points and applied the least-squares method to fit each
group of corner points into a straight line. After rotating the straight-line segments to be
perpendicular or parallel to the dominant building direction, the building was regularized
by connecting the intersection points of adjacent line segments. Although these methods
regularize the building boundary to a certain extent, they have high requirements for initial
building results. When the initial result is not good enough, these regularization methods
lack the ability to further judge the real physical boundary of the building and can only
reduce the serration segments on the contour boundary.

The second category of regularized building boundary extraction methods is based
on MBR. By viewing a building as a group of rectangles, Kwak et al. [12] decomposed
the initial building results into different rectangular parts, obtained their MBRs, and
regularized the building by reconstructing these MBRs. However, when vegetation or
other non-building objects surrounding a building are incorrectly classified as a building,
the MBR edges would not be fitted with the real building edge, thereby leading to an
inaccurate optimization. To solve this problem, Feng et al. [13] used topological rules to
check whether the building edge is occluded by vegetation. The edge points in a line were
then used to optimize the occluded edge. This method efficiently handles the occlusion
problem and improves the integrity of building extraction. Chang et al. [14] used the
Hausdorff distance algorithm to evaluate the similarity between the building and MBR
boundaries. The coordinate of the relative MBR boundary was then used to replace the
partial boundary that was similar to MBR. For those boundary parts not optimized by
these methods, the corner points were detected, filtered, and reconnected for regularization.
While these methods can further optimize building boundaries, they have more stringent
requirements for the shape of buildings. These methods can only be used to optimize
rectangular or rectangular combination buildings with right angles. Moreover, they cannot
be well regularized for buildings with non-right angle or arc features.

The third category of regularized building boundary extraction methods is based on
an active contour model [15]. Specifically, these methods combine the low-level image
information with high-level prior knowledge to extract and optimize buildings. Peng
et al. [16] designed an improved snake model that combined radiation features with
context information to optimize building boundaries. They obtained satisfactory results
in their experiments in dense urban areas. Ahmadi et al. [17] explored an active contour
model that extracts the building boundary based on a contour set formula. They also
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used the HSV components to modify the traditional active contour segmentation model
for building extraction. To extract buildings from imageries and LiDAR point cloud data,
the active contour model is often used to improve the completeness and correctness of
building results [18,19]. Those methods based on the active contour model are not limited
by the shape of buildings, thereby supporting the reliability and practicability of the active
contour model in the optimization of building extraction. However, some problems need
to be addressed when using the active contour model. For example, this model requires a
manual setting of the initial contour, and the concave boundary does not converge to the
actual edge.

In sum, the current methods rely on the initial results, which are limited by the
regularized building shape and the active contour model itself. In response to optimizing
the building contour to make it closer to the actual physical shape, this paper develops
an object-oriented building contour optimization method for image classification results
obtained via the GGVF snake model [20]. First, based on the initial building outlines
extracted by classification, the extended MBR clips the original image to obtain a single
building sub-image, thereby reducing the subsequent computational load and global
impact. Afterward, based on the GGVF snake model, an improved strategy is developed to
enhance adjustability. On the one hand, the initial building boundary is corroded and used
as the GGVF initial contour. On the other hand, accurate contour constraint segments for
the GGVF snake model are designed to rapidly identify the target contour. Next, adaptive
threshold Canny edge detection and PPHT [21] are then used to obtain an accurate and
adjustable contour edge map. Finally, after computing the GGVF force field, the improved
edge map is used to quickly minimize the energy function down to the building constraint
contour to obtain the final optimized contour.

The main highlights of this work are summarized as follows:

(1) This study adopts an object-oriented optimization strategy to reduce the interference
from adjacent objects. The single building image after clipping can make the opti-
mization focused on the building, reduce the impact of other adjacent objects, and
greatly decrease the amount of calculations.

(2) An improved GGVF snake model is designed by automatically obtaining the initial
contour and constraint edge map. The initial contour is modified from the classifi-
cation results, and the constraint edge map is extracted effectively via the improved
Canny detector and Hough transformation. The proposed method is not limited by
the building shape and size and has strong robustness.

The rest of this paper is arranged as follows: In Section 2, the optimization method
is introduced in detail. The experimental conditions, results, and analysis are given in
Section 3. In Section 4, the proposed method is discussed in detail. Finally, Section 5
concludes the whole paper.

2. Methodology

The GGVF snake model can transform an active contour convergence into long, thin
indentations (LTIs) and maintain the other desirable properties of gradient vector flow
(GVF) [22], such as its extended capture range. Therefore, this model is useful in optimizing
the building active contour. However, the initial seed points and edge map are vital factors
in model convergence. This paper designs a strategy for automatically providing effective
initial seed information and edge map. Based on the GGVF model and the promoted
strategy, the building contour can be optimized accurately and automatically.

First, the initial building results should be obtained via classification or other methods.
To reduce the interference from adjacent object information, each building object image
can be clipped according to the boundary rectangle of its initial building from the original
image. Afterward, adaptive threshold Canny edge detection is applied to each clipped
building image to detect the edge, and PPHT is used to detect the line segments in these
edges. These line segments are reconnected as the outer constrained edge, and the initial
building contour is used as the inner seed information, both of which are inputted into
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the GGVF snake model. With this combination, the energy can be rapidly minimized to
make the initial contour close to the real outline. The building contour can be optimized by
making full use of the line segment information. The flowchart is shown in Figure 1.
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2.1. GGVF Snake Model

By introducing two spatially varying weighting functions into the GVF formulation,
Xu and Prince proposed an external force called GGVF [20]. As a generalization of GVF,
GGVF was reported to improve contour convergence to LTIs and robustness to noise.
GGVF is defined as the equilibrium solution to the following partial differential equation:

vt(x, y, t) = g(|∇ f |)∇2v(x, y, t)− h(|∇ f |)[v(x, y, t)−∇ f ] (1)

where
g(|∇ f |) = exp(−|∇ f |/k) (2)

h(|∇ f |) = 1− exp(−|∇ f |/k) (3)

where t is the iteration time, v(x, y, t) is iteratively calculated from the initial vector field
v(x, y, 0), and vt(x, y, t) denotes the partial derivative of vector field v(x, y, t) with respect
to t, and ∇2 is the Laplacian operator. Here, |∇f | is the gradient of the edge map. The
weighting function g(·) and h(·) apply to the first (smoothing term) and second terms (data
term) in the right-hand side of Equation (1), respectively. The parameter k regulates to some
extent the tradeoff between the smoothing and data terms and should be set according
to the amount of noise in the image. According to Equations (2) and (3), as k increases,
g(|∇f |) and h(|∇f |) in Equation (1) increases and decreases, respectively. That means, as
k becomes larger, the GGVF external forces at the indentation boundary are more easily
changed. In addition, the larger the tradeoff parameter k, the greater the impact of noise.
Therefore, it is necessary to estimate the appropriate maximum k for a given image [23].
The range of k is usually (0.01, 0.2).
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2.2. Objected-Oriented GGVF Initial Contour Acquirement

The information surrounding the building in high-resolution remote sensing imagery,
such as the adjacent buildings, vegetation, roads, and other objects, are sometimes wrongly
recognized, leading to reductions in detection accuracy and efficiency. Therefore, the analy-
sis range of each building is shrunk by clipping each building as a single object according
to its boundary rectangle. Specifically, the initial building results can be acquired by using
classification or other methods. In this paper, the shadow-shifted classification method
proposed in [1] is applied, and the boundary rectangle of each building is obtained and
dilated several times to derive its clipping range. The building image object is eventually
obtained. Figure 2 shows the schematic diagram of how the building object images are
acquired. The initial building contour obtained in this step not only provides the initial
building seed information to the GGVF snake model but also can be used to obtain a clipped
building image to further detect some line segments as constraint boundary information
for optimizing the contour in the GGVF snake model.
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2.3. GGVF Constraint Edge Map Extraction

Accurate contour constraint segments are important for the GGVF snake model to find
the target contour quickly in the optimization process. In this paper, an adaptive threshold
Canny edge detection is applied to each building image to detect the edge. Afterward,
PPHT is applied to the edge result to extract the line segments. For those cases with missing
or wrong line segments in some edges, a hierarchical line segments reconstruction method
is proposed to obtain complete contour constraint segments.

2.3.1. Adaptive Canny Edge Detection

The reliable building edges extracted by the Canny detector are vital for line segments
using PPHT. First, each clipped image is smoothed via Gaussian convolution. The 2D first
derivatives are then used to calculate the gradient magnitude and direction. The first-order
derivative of an image f (i, j) at location (i, j) is defined as the following 2D vector [24]:

G[ f (i, j)] =
[

Gi
Gj

]
=

 ∂ f
∂i
∂ f
∂j

 (4)

The absolute gradient magnitude (edge strength) is computed as

|G[ f (i, j)]| =
∣∣∣G2

i + G2
j

∣∣∣ (5)

The gradient direction (edge orientation) is defined as

θ = arctan
Gi
Gj
− 3

4
π (6)

Second, a non-maximal suppression process is applied to the gradient magnitude
image to remove the local maxima. Only those pixels with an edge strength higher than
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that of their two adjacent pixels in the gradient direction are identified as edge candidates.
To remove false edge segments caused by noise and fine texture, a hysteresis tracking
process is further applied with two thresholds in which all candidate edge pixels below the
lower threshold are labeled as non-edges, whereas all pixels above the low threshold that
can be connected to any pixel above the high threshold through a chain of edge pixels are
labeled as edge pixels.

These two thresholds should be suitable for each building to obtain accurate edge
detection results. To extract the edge accurately, an adaptive threshold strategy is employed
to determine the optimal thresholds for each building. First, the gradient magnitude is
normalized to (0, 1). Based on the histogram of the gradient magnitude, the probability
sum of one level K can be calculated by consecutively adding the probabilities of each grey
level lower than K. PNE denotes the rate of the non-edge point in the whole image.

PNE = K× Im × In (7)

where K is the rate of non-edge points in the whole edge points, and Im and In are the image
height and width, respectively.

Assume that LF_hist is the grey level of the first non-edge point whose probability
sum is greater than PNE for the first time, and LT_hist is the grey level total number of the
histogram, where LT_hist = 64. The high threshold Thigh represents the ratio between LF_hist
and LT_hist and can be determined automatically. The low threshold Tlow is then defined as
the ratio of Thigh, where R∈ (0, 1).

Thigh =
LF_hist

LT_hist
(8)

Tlow = R× Thigh (9)

As long as R is suitable, Tlow can be determined automatically and adaptively. A series
of tests show that R= 0.4 and K = 0.7 are suitable experimental values for most buildings
to obtain a reasonable edge. Therefore, the improved automatic threshold strategy is
useful for improving the edge accuracy and providing a solid basis for line detection based
on PPHT.

2.3.2. Line Segments Detection and Optimization Based on PPHT

The building line segments are extracted to construct the building constraint edge
map. PPHT can further extract line segments from those edges obtained by the Canny
detector. However, given the complex background of buildings, some line segments
extracted by PPHT may not be accurate or enough to construct the constraint edge map.
Therefore, based on the line segments extracted by PPHT, a strategy for customizing
an effective constraint edge map for different conditions is defined. First, line fitting is
applied to connect the adjacent parallel line segments to reduce inference. Second, for
the wrongly detected line segments caused by the clipping image, those line segments
near the image edge are deleted. The topology relationship between the line segment and
the initial building contour is taken into account to delete ineffective segments. Third, a
complementary strategy is applied to make the constraint edge map complete by making
up for those missing line segments in some directions.

Line Segments Extraction by PPHT

The basis of the Hough transformation is given in Equation (10), where (θ, ρ) and (x, y)
represent the Hough transformation and image domains, respectively, whereas δ refers
to the Dirac delta function. Each point (x, y) in the original image F(x, y) is transformed
into a sinusoid ρ=xcos(θ) − ysin(θ), and H(θ, ρ) represents the total number of sinusoids
that intersect at the point (θ, ρ). Therefore, Equation (10) returns the total number of points
comprising the line in the original image. By choosing a line-cut threshold T for H(θ, ρ)
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and by using the inverse Hough transformation, the original image is filtered in order to
keep only those lines that contain at least T points [25].

H(θ, ρ) =
∫ ∞

−∞

∫ ∞

−∞
F(x, y)δ(ρ− x cos(θ)− y sin(θ))dxdy (10)

The line segments are extracted by using PPHT, which is improved based on Hough
transformation. The main process is to set up an accumulator for each small space in the
parameter space and then randomly select the front scenic spot on the image and map this
spot to the parameter space to draw a curve. When the intersection of the curves reaches
the minimum threshold, the line corresponding to this point is identified. Search for the
points on the line in the image, and then connect the qualified points into line segments. If
the line segment length meets the minimum length, then record the starting and ending
points of the line segment and then repeat the above steps.

Line Segments Fitting

After extracting the line segments, some of them are merged if they are parallel and
near enough to reduce similar segments. First, all detected line segments are grouped
into set Lset_1=

{
l1
1 , . . . , l1

n
}

and copied as another set Lset_2=
{

l2
1 , . . . , l2

n
}

. Each line segment
in Lset_1 will be compared with all the segments in Lset_2 to measure the perpendicular
distance and the intersection angle between them. Assume that l1

i and l2
j are the line

segments in Lset_1 and Lset_2, respectively, whereas PS
i , and PE

i and PS
j and PE

j are the

start and end points of l1
i and l2

j , respectively. Suppose that the perpendicular distance

and intersection angle of l1
i and r line segments { l2

j1, . . . , l2
jr

}
are small enough to meet the

merging requirement. In this case, { l2
j1, . . . , l2

jr

}
will be labeled as the matched segments

of l1
i . Beginning with l2

j1, a new average line segment lN
j1 will be generated by connecting

the middle points of the start and end points. Afterward, l2
j1 and the corresponding l1

j1 will

be removed from Lset_2 and Lset_1. lN
j1 will be compared with the remaining unmatched

line segments in { l2
j1+1, . . . , l2

jr

}
. Continue updating by following the above steps until all

matched segments are finished. The final average line segment of l1
i will then be added to

Lremain until all segments in Lset_1 are finished. The remaining segment group will then be
used as the simplified set to replace the original segment group.

Algorithm 1 Line fitting

1: Input Lset_1 =
{

l1
1 , . . . , l1

n
}

and Lset_2=
{

l2
1 , . . . , l2

n
}

.
2: For each l1

i in Lset_1
3: Ltemp=l1

i
4: For each l2

j in Lset_2

5: If (Ltemp and l2
j are not the same and meet the fitting conditions)

6: Ltemp = Fitting(Ltemp, l2
j )

7: Delete l1
j from Lset_1

8: Delete l2
j from Lset_2

9: End
10: Add Ltemp to Lremain
11: End
12: Output Lremain

The approximate schematic process of line fitting is shown in Figure 3. Merge_1 shows
the fitting of two original PPHT line segments; Merge_2 shows the iterative fitting of the
fitting line segment and the original PPHT line segment.
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Figure 3. Line segments from PPHT (blue) merged into one or more collinear line segments (red).

Removing Building Roof Line Segments

Some falsely detected line segments inside the roof region are removed according
to their topology relationship with the initial building contour. First, the initial building
contours are shrunk via morphology erosion to ensure they are inside the building. Second,
the topology relationship between each line segment and the erased building contour is
calculated. If one or more endpoints of a line segment are in the erased contour, then
the line segment is deleted. Therefore, the remaining line segments around the building
contour can be used to accurately construct the building constraint edge map.

Complementing the Incomplete Building Constraint Edge Map

PPHT may not provide complete line segments to construct an effective constraint
edge map for GGVF snake model convergence. A reasonable building constraint edge
map should contain all edge directions of a building. Therefore, a strategy is developed
to complement the missing edge parts. First, by comparing the distance between each
PPHT segment and the initial contour for matching, some contours without matched PPHT
segments are labeled as the missing edge parts. Second, for these regions, the Shi–Tomasi
corner point detection algorithm is applied to the original image to obtain some useful
corner points. If some corner points are present in this area, then they are connected to the
endpoint in order. Otherwise, the endpoints of the missing parts are connected directly to
form a complete constraint edge map. This map is then used in order for the converged
GGVF to extract contours accurately. Otherwise, an unclosed or inaccurate edge map will
affect the final contour.

2.4. GGVF Force Field Computation

Applying the initial contour and the constraint edge map to the GGVF snake model
will help this model rapidly reach convergence to obtain the optimized contour [26]. The
initial GGVF vectors v(x, y) = [u(x, y), v(x, y)] are generally normalized with respect to their
magnitudes via vector-based normalization. To set up the iterative solution, let the spatial
sample intervals be ∆x and ∆y, and let the time step for each iteration be ∆t.

As in [20], the partial differential equation v(x, y, t) specifying GGVF can be imple-
mented by using an explicit finite difference scheme, which is stable if the time step ∆t and
the spatial sample intervals ∆x and ∆y satisfy

∆(t) ≤ ∆x∆y
4gmax

(11)

where gmax is the maximum value of g(·) over the range of gradients encountered in the
edge map image. An implicit scheme for the numerical implementations of Equation (1)
would be unconditionally stable and is therefore not needed in this condition, thereby
increasing the speed of the explicit scheme.

An example with intermediate results is shown in Figure 4. The main process includes
initial building contour acquisition (Figure 4b), building object clipping (Figure 4c), adap-
tive threshold Canny edge detection (Figure 4d), PPHT line segment detection (Figure 4e),
and GGVF snake iterative calculation to obtain the final result (Figure 4f).
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3. Experiments Results
3.1. Datasets and Experimental Strategy
3.1.1. Dataset Description

The main experimental areas are in Illinois, Virginia, and Kansas, as shown in Figure 5.
The image spatial resolution is 0.4 m. These experimental areas include buildings different
in spectra, shape, size, texture, and density. Therefore, these images are adequate to verify
the reliability and robustness of the proposed method.
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3.1.2. Accuracy Indexes

To objectively evaluate the effectiveness of the proposed method, truth images are
extracted by professional staff, and four commonly used accuracy indexes, including
completeness (CM), correctness (CR), comprehensive value (F1), and overall accuracy (OA),
are used as measures in comparisons with the truth data [27].
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CM =
|VTP|

|VTP|+ |VFN|
(12)

CR =
|VTP|

|VTP|+ |VFP|
(13)

F1 =
2×CR×CM

CR×CM
(14)

OA =
|VTP|

|VTP|+ |VFP|+ |VTN|
(15)

where |VTP| is the total number of building pixels that are classified to the building, |VFP|
is the total number of non-building pixels that are recognized as buildings, and |VFN| is
the total number of building pixels that are labelled as non-buildings.

3.2. Comparison of Experimental Results
3.2.1. Effectiveness Evaluation for Different Initial Results

To verify whether the proposed method can be applied to different initial methods, the
initial building results extracted by the shift shadow algorithm (SSDA) and the traditional
GGVF snake method (TD-GGVF) are optimized by using the proposed method. The
SSDA method performs building extraction by classifying an image into the building, bare
land, shadow, and vegetation. The building samples are obtained by shifting the shadow
region, and the results are verified by using the shadow index. The TD-GGVF obtains
the building contour based on the traditional GGVF snake model by manually setting
the initial seed points, and then the edge map is obtained based on the original image.
These methods based on different principles can provide initial building results that are
irregular. Therefore, the proposed method is applied to these two initial results to test its
effectiveness. The initial building and optimization results of SSDA and TD-GGVF are
shown in Figure 6, and the accuracy comparison results are shown in Table 1.

From the initial building results, each building extraction method faces the common
problem that the building boundaries are irregular. The proposed optimization method
can further improve the accuracy of the building boundary. The initial results of the SSDA
are shown in the first column in Figure 6, which shows that the proposed method can
effectively distinguish buildings from confusing bare land by automatically extracting
and verifying samples. However, given the similarity of the spectrum between building
and some non-building objects and the occlusion of adjacent vegetation, some false and
missing detections are still observed. As reflected in its results, the TD-GGVF method can
efficiently extract the building when the building boundary in the original image is clear.
Nevertheless, the spectral characteristics of the building and its surroundings are complex.
The extraction result becomes inaccurate when the building boundary is not prominent,
when the spectrum of the building roof is not uniform, or when a local abnormal spectrum
is present on the building roof. The proposed method aims to address these irregularities
caused by wrong recognition. As shown in the optimization results, the improvements
in the accurate edge extraction and the approximation of the GGVF snake model can
refine the building boundary to restore the missing and wrong segmentation parts. The
building contour constraint line segments in the proposed method can avoid the spectral
interference of the TD-GGVF method. As shown in Table 1, the comprehensive value and
overall accuracy of the proposed method are higher than those of the SSDA method. The
comprehensive value is improved by 1.41% (SSDA) and 0.98% (TD-GGVF) on average,
whereas the overall accuracy is improved by 2.49% (SSDA) and 1.77% (TD-GGVF). The
comparison results show that the proposed optimization method can be effectively and
automatically used for different building results acquired by classification or the snake
model. The optimization is not limited by the building shape and size and can be applied
as an effective post-processing tool for improving building regularization and accuracy.



Remote Sens. 2021, 13, 2406 11 of 17

Remote Sens. 2021, 13, x FOR PEER REVIEW 11 of 18 
 

 

parts. The building contour constraint line segments in the proposed method can avoid 
the spectral interference of the TD-GGVF method. As shown in Table 1, the comprehen-
sive value and overall accuracy of the proposed method are higher than those of the SSDA 
method. The comprehensive value is improved by 1.41% (SSDA) and 0.98% (TD-GGVF) 
on average, whereas the overall accuracy is improved by 2.49% (SSDA) and 1.77% (TD-
GGVF). The comparison results show that the proposed optimization method can be ef-
fectively and automatically used for different building results acquired by classification 
or the snake model. The optimization is not limited by the building shape and size and 
can be applied as an effective post-processing tool for improving building regularization 
and accuracy. 

 
#1 

    
 (a) (b) (c) (d) 

#2 

    
 (e) (f) (g) (h) 

#3 

    
 (i) (j) (k) (l) 

#4 

    
 (m) (n) (o) (p) 

TP FP FN  
Figure 6. Comparison of the optimization results by using the proposed method for different 
building extraction methods (#1-#4 is shown in Figure 5). ( a, e, i and m): building results obtained 
by the SSDA method; (b, f, j and n): optimization results based on SSDA; (c, g, k and o): building 
results obtained by the TD-GGVF method; and (d, h, l and p): optimization results based on TD-
GGVF. 

Table 1. Comparison of building extraction and optimization results in Figure 6 (the highest val-
ues are bold). 

Test Image Building Extracted Methods CM/% CR/% F1/% OA/% 

#1 

SSDA 97.25 98.38 97.81 95.72 
Optimization results based on SSDA 98.03 98.29 98.16 96.38 

TD-GGVF 98.31 95.23 96.74 93.70 
Optimization results based on TD-GGVF 99.03 97.51 98.26 96.59 

#2 
SSDA 95.79 87.17 91.28 83.96 

Optimization results based on SSDA 92.95 94.84 93.89 88.48 
TD-GGVF 88.72 96.44 92.42 85.91 

Figure 6. Comparison of the optimization results by using the proposed method for different building extraction methods
(#1-#4 is shown in Figure 5). (a,e,i,m): building results obtained by the SSDA method; (b,f,j,n): optimization results based on
SSDA; (c,g,k,o): building results obtained by the TD-GGVF method; and (d,h,l,p): optimization results based on TD-GGVF.

Table 1. Comparison of building extraction and optimization results in Figure 6 (the highest values are bold).

Test Image Building Extracted Methods CM/% CR/% F1/% OA/%

#1

SSDA 97.25 98.38 97.81 95.72
Optimization results based on SSDA 98.03 98.29 98.16 96.38

TD-GGVF 98.31 95.23 96.74 93.70
Optimization results based on TD-GGVF 99.03 97.51 98.26 96.59

#2

SSDA 95.79 87.17 91.28 83.96
Optimization results based on SSDA 92.95 94.84 93.89 88.48

TD-GGVF 88.72 96.44 92.42 85.91
Optimization results based on TD-GGVF 90.57 97.43 93.87 88.46

#3

SSDA 92.97 94.36 93.66 88.07
Optimization results based on SSDA 94.50 95.15 94.83 90.16

TD-GGVF 94.68 90.36 92.47 86.00
Optimization results based on TD-GGVF 92.24 94.05 93.14 87.16

#4

SSDA 95.56 91.55 93.51 87.82
Optimization results based on SSDA 96.73 93.36 95.01 90.50

TD-GGVF 93.79 94.71 94.25 89.13
Optimization results based on TD-GGVF 95.31 93.75 94.52 89.62

3.2.2. Comparison with Other Contour Optimization Methods

Different contour optimization methods, including the Douglas–Peucker straight-
line approximation method (DPSLA) [28], the multi-stars constraint segmentation and
regularization method (MCSR), and the proposed method, are applied to the same initial
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building results (first column of Figure 7) for comparison. DPSLA aims to find a fitting
polygon of building results by removing those contour points near the line segments
connected by the front and back points of these contour points. MCSR optimizes the
building edge by grouping, line fitting, and line rotation after corner extraction. The results
of the representative patches in each test image are visualized in Figure 7, and the precision
is shown in Table 2.

An analysis of the comparison results in Figure 7 reveals that the proposed method is
more powerful and feasible than other methods, improving buildings of different shapes.
DPSLA is sufficient that some small broken line segments can be approximated into a
straight line, and the building outline is regularized to a certain extent. However, DPSLA is
greatly affected by the initial building results and is unable to correct the wrong and missing
parts in the initial results. Moreover, MCSR in [11] is useful in optimizing rectangular
building contours and helps regularize the initial results. Nevertheless, for complex
buildings with arcs or non-right angles, MCSR improperly deals with these edges, thereby
leading to misclassification in these areas. By contrast, by combining the profile spectrum
and texture characteristics of buildings, the proposed method makes full use of the active
contour model to accurately approximate the real contours. Therefore, this method is not
affected by the initial building results and building shapes. Despite some wrong detection
or missing parts in initial buildings, the proposed method correctly self-adapts through
the optimization process. The data analysis results in Table 2 show that compared with
DPSLA and MCSR, the proposed method has a comprehensive value that is 1.63% (DPSLA)
and 2.16% (MCSR) higher on average and an overall accuracy that is 2.86% (DPSLA) and
3.84% (MCSR) higher on average. Therefore, the optimization capability of the proposed
method is more powerful and self-adjustable than that of other methods to approach the
real building shape.
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Table 2. Comparison of image optimization results obtained by different optimization methods in Figure 7 (the highest
values are bold).

Test Image Building Contour Optimization Method CM/% CR/% F1/% OA/%

#1
DPSLA 97.97 97.72 97.84 95.78
MCSR 97.11 95.99 96.55 93.34

The proposed 98.03 98.29 98.16 96.38

#2
DPSLA 96.20 86.58 91.13 83.72
MCSR 94.76 88.50 91.53 84.38

The proposed 92.95 94.84 93.89 88.48

#3
DPSLA 94.34 92.23 93.27 87.39
MCSR 90.28 92.97 91.61 84.52

The proposed. 94.50 95.15 94.83 90.16

#4
DPSLA 96.17 90.32 93.15 87.19
MCSR 96.91 90.48 93.58 87.94

The proposed 96.73 93.36 95.01 90.50

4. Discussion
4.1. The Positive Effect of Improved Automatic Canny Detector

The Canny detector automatic threshold is vital in determining effective edge seg-
ments that can be used in the next PPHT. To illustrate the advantages of the adaptive
threshold method in Canny detection, a comparison test using a different threshold strat-
egy is performed, as shown in Figure 8. The results in Figure 8b,e are obtained from the
whole image by using the global unified threshold method, whereas those in Figure 8c,f are
obtained by using the improved automatic threshold strategy. Each building is detected
by its corresponding customized threshold. Given the differences in the characteristics of
each building, the global threshold cannot be suitable for each building, thereby creating
deviations in the edge detection results. In comparison, the designed strategy in the Canny
detector can obtain different thresholds for each building without manual help. Therefore,
the threshold facilitates the accurate detection of edges.
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4.2. The Positive Effect of Constructing Constraint Line Segments Based on PPHT

Effective line segments serve as vital bases for constructing a complete constraint
contour for the GGVF snake model. To verify the effectiveness of these constraint line
segments on buildings with different shapes, the results are compared with the original
PPHT results, as shown in Figure 9. The straight-line segment detected by PPHT is shown
in Figure 9c. Some line segments are overlooked or redundant in the detection (denoted by
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the red closed line), thereby resulting in missing or inaccurate constraint line segments on
one side of the detected building contour. Results of the improved constraint line segments
are shown in Figure 9d. Compared with the PPHT line segments, the missing contour
line segments can be supplemented more accurately, and some inside line segments are
removed. Therefore, the constraint line segments that conform to the building contour can
be obtained and used to construct an edge map.
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Eight individual building images are randomly selected and compared with the results
without the improved PPHT constraint line segments. In Figure 10, the first row shows
the truth building contour, the second row presents the results based on the original PPHT
line segments, and the third row presents the results based on the improved PPHT line
segments. The PPHT optimization results are smooth on the boundary and close to the true
shape of the building. Given that the optimization on PPHT can provide more accurate
constraint line segments for constructing an edge map, this approach can be used to
compute a final contour that is near the original boundary of the building. The comparison
results verify the effectiveness and reliability of PPHT optimization.
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Figure 10. (a–h): building contour footprints; (i–p): building extraction results obtained by using the original PPHT line
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4.3. Overall Comparison Analysis

To analyze the contribution of each improvement in the whole optimization process
and compare the proposed method with other contour methods in terms of quantity, over
200 buildings are randomly selected from the WHU building dataset [29], and their contours
are optimized by using different strategies in Canny detection, constraint line segments,
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and other optimization methods. The accuracy results are shown in Figure 11. Figure 11a
shows the accuracy difference between using the adaptive and manual thresholds in the
Canny detection step. The improvement in Canny detection accuracy can increase the F1
and overall precision by 2.35% and 3.83%, respectively. Figure 11b shows the accuracy
difference between using the optimized and original PPHT constraint line segments. The
improvement in constraint line segments enhances the F1 and overall precision by 3.92%
and 6.47%, respectively. Figure 11c compares the proposed method that uses both the
adaptive threshold Canny and PPHT segment optimization with the original method that
lacks these two improvements. Combining the self-adaptive Canny detector with the
optimized PPHT segments improves the F1 and overall precision by 4.94% and 8.13%,
respectively. Therefore, the proposed method is proven effective. Figure 11d compares the
proposed method with two other methods for optimizing the building contour, namely,
DPSLA and MCSR, and shows that the proposed method obtains the higher F1 and overall
precision. In sum, the proposed method optimizes the GGVF snake model by introducing
the Canny detector and PPHT line segments, which are useful in constructing a suitable
constraint edge map for each building and improving building accuracy.
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4.4. Comparisons of Time Complexity

In this part, we discuss the main time complexity [30] of the proposed and compared
methods in the experiments. In the proposed method, the first step is to gain the building
contours [31] and sub-images. The second step is to detect Canny [32] edge with the
adaptive threshold. The third is to obtain the building constraint edge map. The last step
is to gain the final building contour through GGVF [33]. The main time complexity of
each step is shown in Table 3. As we can see, the main time cost is in the fourth step,
and the total time complexity of the proposed method is O(WlHl + n2

k + WsHs + ncnh +
n3

it). As we have Wl ≥Ws and Hl ≥ Hs, the time cost can be simplified as O(WlHl + n2
k +

WsHs + ncnh+ n3
it) ≈ O(WlHl + n2

k + ncnh + n3
it). The complexity of DPSLA [28] depends

mainly on the number of building contour points. Thus, in general, the complexity of the
DPSLA is O(WlHl + n2

c ). As for the main time complexity of MCSR [11], it depends on the
number of building contour points and the number of corner points detected. For MSCR,
the time complexity is O(WlHl + Ncnc). The method proposed in this paper has higher time
complexity than that of the compared methods. This is because the method proposed in
this paper has more steps and considers them more comprehensively.



Remote Sens. 2021, 13, 2406 16 of 17

Table 3. The time complexity of the compared methods 1.

Methods
Time Complexity

First Step Second Step Third Step Fourth Step Total

The proposed O(WlHl) O(n2
k + WsHs) O(ncnh) O(n3

it) O(WlHl + n2
k + ncnh + n3

it)
DPSLA [28] O(WlHl) O(n2

c ) — — O(WlHl + n2
c )

MSCR [11] O(WlHl) O(Ncnc) — — O(WlHl + Ncnc)
1 In the table, Wl and Hl are the width and height of the VHR image, Ws and Hs are the width and height of the clipped building object
image, nk is the convolution kernel size of Gaussian filter, nc is the number of building contour points, nh is the number of lines detected,
nit is the number of iterations of GGVF, and Nc is the number of corners detected by Harris.

5. Conclusions

Building extraction results often show irregular building contours because of in-
accurate recognition, and most of the extant optimization methods are limited only to
rectangular non-complex buildings. To devise a contour optimization method for complex
buildings, an object-oriented strategy combined with the GGVF snake model is proposed
in this paper. First, based on the initial building extraction results, each building object is
clipped from images to reduce the impact of the adjacent non-building objects. Second,
a building boundary shrunk based on the initial result is used as the initial contour of
the GGVF and is automatically obtained. Third, a Canny edge detection with adaptive
threshold and the optimized PPHT line segments are designed to obtain a highly accurate
constraint edge map. Fourth, after inputting the accurate and automatic initial contour
and edge map into the GGVF snake model, the building contour is calculated feasibly and
self-adaptively. The proposed method is not limited by the complexity of buildings. Exper-
imental verifications confirm that the proposed method not only optimizes the building
outline but also improves the final accuracy of building extraction to a certain extent. This
method can also optimize the contour similar to the real building shape. The proposed
method may be applied as a post-process method for building extraction to improve the
regularity and accuracy of buildings.
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