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Abstract: The demand for mobile laser scanning in urban areas has grown in recent years. Mobile-
based light detection and ranging (LiDAR) technology can be used to collect high-precision digital
information on city roads and building façades. However, due to the small size of curbs, the
information that can be used for curb detection is limited. Moreover, occlusion may cause the
extraction method unable to correctly capture the curb area. This paper presents the development
of an algorithm for extracting street curbs from mobile-based LiDAR point cloud data to support
city managers in street deformation monitoring and urban street reconstruction. The proposed
method extracts curbs in three complex scenarios: vegetation covering the curbs, curved street curbs,
and occlusion curbs by vehicles, pedestrians. This paper combined both spatial information and
geometric information, using the spatial attributes of the road boundary. It can adapt to different
heights and different road boundary structures. Analyses of real study sites show the rationality
and applicability of this method for obtaining accurate results in curb-based street extraction from
mobile-based LiDAR data. The overall performance of road curb extraction is fully discussed, and
the results are shown to be promising. Both the completeness and correctness of the extracted left
and right road edges are greater than 98%.

Keywords: LiDAR; street curbs; feature extraction; point cloud data

1. Introduction

Mobile-based light detection and ranging (LiDAR) systems are increasingly consid-
ered useful tools for city management. A mobile-based LiDAR system includes a laser
scanner, an inertial measurement unit (IMU), and global navigation satellite system (GNSS)
capabilities. Mobile-based LiDAR can be used to collect 3D spatial information in order
to build information models for purposes such as 3D city modeling [1], road and street
planning and maintenance, virtual geographic environment modeling, and location-based
services. Mobile-based LiDAR is currently the most popular system for acquiring accurate
3D data that can be utilized in geographic modeling.

Road information is an important component of basic geographic information [2,3],
and highly accurate and precise road information plays an important role in urban planning,
traffic control, and emergency response [4,5]. However, at present, spatial vector road data
are mainly recorded as two-dimensional (2D) information rather than as three-dimensional
(3D) road data, and such 2D data are unable to serve the needs of 3D navigation and
intelligent city modeling. In recent years, with vehicles as platforms, integrated Global
Positioning System (GPS) systems, inertial navigation systems (INSs), laser scanners,
charge-coupled device (CCD) cameras, and other sensors have undergone rapid develop-
ment. Based on sensor synchronization control, geometric data on city streets and building
façades as well as texture information can be collected using a mobile-based LiDAR sys-
tem. Such systems also provide a new means of rapidly assessing road information and
generating a 3D road environment [6].
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As part of a city street scene, streets and street curbs can be abstracted to support city
managers in urban street reconstruction and environmental management. In particular,
the extraction of street curbs has been a popular topic for urban managers for some time
now [7]. In most urban road systems, the road boundaries are defined by the locations of
the curbs on both sides [8]. A curb is a line of stone or concrete forming an edge between
a pavement and a roadway. Curbs are important features for the separation of lanes
and restricted areas; thus, curb extraction is very important for ensuring the safety of
autonomous driving [9]. Vehicles should remain on the road between the left and right
curbs, while most pedestrians will be on the sidewalk. By providing information about
the outer boundaries of the roadway, methods of detecting and locating curbs can prevent
vehicles from driving onto the sidewalk [10]. Moreover, curb information can also be
used to determine the types and exact locations of road junctions, which are significant for
local path planning [11]. In addition, due to the occlusion caused by trees and high-rise
buildings in urban environments, curbs have recently become a common basis for location
estimation [12].

Beyond road system applications, edge extraction can also be applied for the monitor-
ing of train tracks. For railway managers, an important safety management concern is to be
able to detect grass lying above the train tracks so that it can be removed later. Therefore,
methods of detecting objects obstructing the boundaries of either streets or tracks can
support environmental safety monitoring for railway managers as well as autonomous
driving and city managers.

There are two general kinds of vision-based methods for extracting curbs: appearance-
based methods and geometry-based methods [13]. Various types of appearance features
(such as color, reflection intensity, and texture) have been widely used in road detection,
while geometry-based methods usually use road boundary or road surface models to
describe the geometric features of road areas. Most of these methods are susceptible to
shadow effects, and low-level cues adopted for the geometric models. Simple geometric
models cannot be used to accurately extract road areas or boundaries.

A large number of researchers willing to use appearance-based methods to extract
street curbs. Brenner et al. [14] utilized a mobile-based LiDAR system and collected point
cloud data with StreetMapper. Later, Kaartinen et al. [15] used a permanent test field to test
the performance of research-based MLS systems, and the results showed that the accuracy
of the point cloud data depends on the accuracy of sensors. Graham [16] provided an
overview of the most recent MLS technology, and the same article also offered promising
approaches for street object extraction in the form of automated algorithms for MLS data
processing. Graham’s results showed that it could be difficult to capture the complete point
clouds and all different types of objects. However, the author seems to have collected the
simplest data set—a data set without barriers. Therefore, the robustness of the method is
not established. Li et al. [17] utilized the intensity of the reflectance of objects to recognize
different road markings. Guan et al. [18] used image data to extract road markings as
a basis for quality control or quality assessment in city management. Yang et al. [19]
segmented a geometric reference feature image using intensity and elevation difference
information and defined solid-edge lines as road outlines and broken lines as lane lines.
Finally, the roadmap was estimated by integrating semantic knowledge, such as shape
and size. These authors used reflection intensity or brightness information to extract road
edged. Notably, intensity data are highly dependent on the angle of incidence of the laser
pulse, the range of the scanner to the object, and the material properties of the road surface.

In addition, some authors have used geometric methods to extract street curbs. Liu
et al. [20] presented an algorithm for edge detection with a two-dimensional laser rangefinder.
The slope, height difference, and height variance features were used to extract the candidate
edge points in DEM, and ID GPR was used to represent the straight edge and curve edge.
Hervieu et al. [21] introduced a novel prediction/estimation process that used two RIEGLs
to identify curbs and ramps. The angle between the normal direction of a point and
the ground was considered an important feature to classify a point as a candidate curb.
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Zhang et al. [22] used a 2D LiDAR sensor and projected point cloud data onto the plane
perpendicular to the ground, followed by curb extraction based on the elevation feature of
the curb. Jaakkola et al. [23] proposed automatic methods for classifying the road marking
and curbstone points and modeling the road surface as a triangulated irregular network.
Nonetheless, this method had not been further verified in sheltered areas or curved streets.
Rodríguez-Cuenca et al. [24], based on a rasterization and segmentation approach for curb
detection, this method was able to detect upper and lower curb edges. However, it was
difficult to deal with occluded curbs in curved sections and with boundaries without 3D
shapes. Then, Rodríguez-Cuenca et al. [25] proceeded to propose a segmentation algorithm
based on morphological operations to determine the location of street boundaries.

Many different methods of curb detection have been tested, but there is still no reliable
curb detection system on the automotive market. In essence, the detection of curbs in
general road scenes is challenging for the following reasons: (1) The heights of curbs can
vary greatly, not only in different scenes but also in the same image or scanner frame.
(2) Due to the small size of curbs, the information that can be used for curb detection is
limited. (3) Occlusion, which is very common in road scenes, may cause a method based
on line fitting to be unable to correctly capture the curb area [26].

Various types of appearance features are generally based on the reflection intensity
or texture information to extract the road edge, while geometry-based methods usually
use the road boundary or road plane model to describe the geometric features of the road
area. Generally, most of these methods are affected by the degradation caused by shadows,
and the algorithms used in simple geometric models can not accurately depict the road
area or boundary. This article mainly extracts the curbs of complex three-dimensional
urban scenes. The three complex scenes include vegetation covering the curbs, curved
curbs, and occlusion curbs. The authors found that on some highways, there is grass next
to the motorway, and no special sidewalk in reality. It makes walking inconvenient due
to the bushes and tall weeds growing next to or over the curb. Thus, the author believes
that the other side of the traffic lane in the roadside (pedestrian zone) information would
be introduced into the three-dimensional model of the city, and certain algorithms can
be used to identify whether it is grass or wasteland suitable for people to walk above
the pedestrian zone. Grassland and weeds are very important factors that affect people’s
walking. Therefore, it is necessary to determine the type of ground cover above and near
the curb.

The rest of the paper is organized as follows. In Section 2, we present our approach
and the workflow. In Section 3, we explain the individual steps involved and the technical
basis of curb extraction in three complex environments. In Section 4, we introduce the case
study area and the data acquisition. Then we discuss our visual results and quantitative
evaluation in Section 5. We conclude in the sixth section where we point to open questions
and unresolved problems.

2. System Overview

In this paper, a 3D laser scanner data is used for road edge detection. Different from
previous methods, the algorithm proposed in this paper attempts to improve the robustness
of the results by combining both spatial information and geometric information.

In this study, we use the 3D point cloud data obtained by the Robin scanner, which
can generate accurate point clouds. Robin uses the RIEGL VUX-1HA scanner and the
specific parameters of the Robin scanner are described in data acquisition in Section 4. This
paper introduced a novel method for extracting street curbs. Multiscale dimensionality
criterion classification is used to classify and extract vegetation point cloud data. Then,
using the characteristics of elevation, echo intensity, and slope change, the street curbs can
be detected from the accurate LiDAR point cloud. We use the Otsu threshold method [27]
to determine the intensity value, establish the DEM model to determine the elevation slope,
and identify the curb according to the spatial slope information of the curb. Then, the
quadratic Bézier curve spline was applied to fit the road boundary line segment. Finally,
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using the Radial Bounded Nearest Neighbor Graph (RBNN) clustering algorithm, the
extracted boundary points are clustered to remove some pseudo boundary points. The full
procedure of proposed method shows in Figure 1.
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Figure 1. The procedure of the proposed method.

Our approach has several advantages. First, different from existing methods that rely
only on elevation differently or edge detection, our method considers different shapes and
different environments of curbs. It can automatically detect and locate the curb without
knowing its shape, length, or distance from the car. In addition, it can deal with special
situations such as road curbs blocked by driving vehicles and pedestrians, the curvature of
roads, and so on. Finally, it does not need much prior information. We tested our method
with a mobile laser scanner in the urban area of Shanghai. The results verify the robustness
and effectiveness of our method.

3. Method

This paper presents the development of an algorithm for the extraction of road curbs
in an urban area. The procedure consists of three steps: multiscale dimensionality classifi-
cation to classify and extract vegetation from point cloud data; the use of the characteristics
of elevation, echo intensity, and slope change to detect street curbs from the LiDAR point
cloud; and the use of the KNN clustering algorithm to cluster the extracted boundary
points and remove some pseudo boundary points.

3.1. Classification

Although street curbs extraction algorithms using LiDAR often produce good results
with better accuracy and integrity, due to the lack of spectral information, vegetation needs
to be removed before filtering classification. Thus, before extracting curb information from
the data collected during the mobile laser scanner acquisition process, we need to remove
the data on objects that are not of interest to us, such as grass and trees. In this stage, we
need to classify all of the data and remove the extraneous data through classification. To
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this end, vegetation information will be classified first. In this paper, we use a multiscale
dimensionality criterion to classify 3D LiDAR data from different kinds of natural scenes.

In the general urban environment, the main types of features are buildings, vegetation,
grassland, road information, road signs, cars, and humans. In the proposed algorithm for
road edge extraction, all external information that can interfere with edge extraction in an
urban environment is taken into account, and different solutions are proposed for different
situations. At the stage of multi-scale dimensionality criterion classification, vegetation and
grassland point clouds should be identified. The mirror effect (reflection) of 3D scanning
water bodies can be an important source of noise (possibly with a high elevation) in the
point cloud data. However, it would be further segmented in the process of slope filtering,
the reason for that is the elevation change of the water surface is very small. Buildings are
identified mainly in the process of intensity filtering.

The main purpose of vegetation classification is to restrain the branches of street trees
or the point cloud data of areas of lawn on both sides of the sidewalk, which may affect
the extraction of road edges. In the process of vegetation classification, we only need to
identify the dense branches of roadside trees and the point cloud of the lawn. Because
the accuracy and precision of multi-scale dimensionality criterion classification are very
high for vegetation extraction, there are few false extraction cases. Even if some vegetation
is not recognized in the dense vegetation point cloud data, the discrete point cloud will
not affect the road edge extraction, and the discrete point cloud will be recognized in the
subsequent KNN algorithm.

In accordance with the 3D geometric characteristics of the scene elements at multiple
scales, the algorithm applied in this paper classifies the surface vegetation and road surface
by means of multiscale local dimension features, which can be used to identify vegetation
in complex scenes with very high accuracy. For example, this algorithm can be used
to describe the local geometry of the midpoint of a scene and represent simple basic
environmental features (ground and vegetation) [28]. The workflow of the multiscale
dimensionality criterion algorithm is shown in Figure 2.
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across multiple scales.

The main idea of the multiscale local dimension features is to describe the local
dimension attributes of the scene at each point and different scales. For the example shown
in Figure 3, when the scale is 10 cm, the rock surface looks like a 2D surface, the gravel
looks like 3D objects, and the vegetation looks like a combination of 1D and 2D elements
because it contains stem-like elements and leaves. When the scale is 50 cm, the rock surface
still looks 2D, the gravel also appears to be 2D, and the vegetation has the properties of 3D
shrubbery. By combining information from different scales, we can thus establish obvious
features for recognizing certain object categories in a scene.
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We define features at each scale, use training samples to determine which combination
of scales enables the best separation of two or more categories, and then analyze the local
dimension characteristics at a given scale. For each point in the scene, a neighborhood
sphere is calculated at each scale of interest. Principal component analysis (PCA) is
performed based on the recalculated Cartesian coordinates of the point in the sphere. Let
λi, i = 1, 2, 3, denote the eigenvalues generated via PCA in order of decreasing size, as
follows: λ1 > λ2 > λ3. The variance ratio of each eigenvalue is defined as:

pi = λi/λ1 + λ2 + λ3. (1)

When only one eigenvalue can explain the total variance of the neighborhood ball
(i.e., the variance ratio of that eigenvalue is 1), the neighborhood around that point in
the scene is distributed in only one dimension. When two eigenvalues are needed to
explain the variance, the neighborhood around that point in the scene is distributed in two
dimensions. Similarly, a completely 3D point cloud is a cloud for which the variances of
all three eigenvalues are of approximately the same magnitude. Specifying these scales
is equivalent to placing a point X in a triangle field, which can be done in terms of the
center-of-gravity coordinates independently of the shape of the triangle. By varying the
diameter of the sphere, we can observe the shape of the local point cloud at different scales.

The features thus generated by repeatedly calculating local dimension features at each
scale of interest are called multiscale features. Given NS scales, for each point in the scene,
we can obtain an eigenvector that describes the local dimension features of the point cloud
around that feature point at multiple scales.

The general idea behind the classification approach is to define the best combination
of dimensions for measurement such that the maximum separability of two or more
categories can be achieved. We rely on a semi-automatic construction process to construct
a classifier that can find the best combination of scales (note that all scales contribute to
the final classification but with different weights), that is to maximize the separability of
two categories, i.e., vegetation samples manually defined by the user and ground samples,
for separation from the point cloud. The accuracy of vegetation classification at different
scales is 99.66% [28].

3.2. Extraction Algorithm

Curbs are located in the adjacent regions between roads and sidewalk/green belt
areas. Curbs can be regarded as road boundaries. In general, a simple model of a road point
cloud has the following characteristics: (1) Reflectivity. The material of the road surface
generally consists of asphalt, cement, or concrete. Therefore, its intensity characteristics
are different from those of vegetation, bare ground, etc. Vegetation will produce multiple
echoes, so its reflection value will usually be higher than the echo intensity of the road.
(2) Elevation. The road generally lies near the ground surface. Therefore, the elevations of
road points and ground points are similar to each other and generally lower than those
of the surrounding buildings, trees, and other objects. (3) Slope characteristics. Roads are
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normally designed in accordance with certain standards to exhibit only small changes in
elevation within a small area, especially in urban areas. Therefore, the slope of the road
network should be relatively small. Thus, to find the locations of curbs, the characteristics
of points on each street should be analyzed using three indicators: reflectivity, elevation
change, and slope change. The workflow of extraction part shows in Figure 4.
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3.2.1. Intensity Filtering

Although point cloud echo intensity information is relatively vague in terms of MLS
point cloud data, when the differences between the media attributes of adjacent targets are
obvious, one can easily distinguish between different features, such as the surface of a street
and the road marking a line in the middle of the street, by analyzing the corresponding
laser echo intensity information.

Moreover, the reflection coefficient of a ground surface material, which determines
the amount of laser echo energy that is reflected, depends on the wavelength of the laser,
the thickness of the dielectric material, and the brightness of the surface of the medium.
Although some of these parameters may vary in different locations, the land cover types
considered in this study can be classified in accordance with certain general principles.
Significant differences in intensity values between media allow researchers to set clear
thresholds to distinguish them [29]. Among the three types of land cover considered here,
lawns and trees have the highest intensity values, while roads and bare ground have the
lowest. In a road environment, the road surface generally consists of an asphalt or concrete
material, from which the reflection of a laser beam is low and diffuse [30]. For the mobile
survey system used in this paper, Optech’s Lynx system, intensity values are provided for
several different media, based on which road objects can be significantly distinguished
based on the intensity distributions of the associated major object classes [17] (see Table 1).

Table 1. Values of laser reflectivity of different media.

Intensity Medium Object Classification

1–100 Asphalt, concrete Street, bridge
100–300 Paint coat Road marking line

>300 Vegetation Grass, tree

Due to the difference in weather conditions and different LiDAR instruments, the
intensity of different objects is not constant. In this study, the statistics of reflectivity
intensity of different objects (average, minimum, maximum, and standard deviation of
reflectivity values of different objects in the study site) are shown in Table 2. It can be seen
from Table 2 that the average strength of buildings is the highest. In addition, the standard
deviations of concrete, asphalt, and grass are relatively low.
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Table 2. Statistics of intensity values.

Medium Average Intensity Max. Min. STD

Asphalt 49.193 157 9 7.817983
Building 70.120 255 3 52.15585

Grass 57.954 116 1 10.68206
Concrete 14.150 138 0 7.989562

To determine the multiple thresholds of intensity values belonging to buildings and
road markings, the concept of the Otsu threshold [27] is employed in this study because it
does not require user-defined parameters for determining thresholds from the histogram.
The working principle of the intensity filtering is that thresholds are determined as the
maximum values or maxi-mum peaks in the Otsu’s intra-class variance. The basic idea
of this method is that well-thresholded classes have to be distinct with respect to the
intensity values of their pixels and the converse must be true. The important property of
the method is that it is based entirely on computations performed on the histogram of an
image. In this way, the Otsu threshold method is used to determine the intensity value
T that maximizes the variance between the background (building) and foreground (road
marking) categories [31]. After threshold segmentation, the LiDAR points are divided into
building points and road marking points.

The steps of road marking detection are listed below:

• Compute the normalized intensity histogram. Let ni be the value of the i-th histogram
bin, and let M be the number of road points; then, the normalized intensity (pi) is:

pi=
ni
M

(2)

• The cumulative sum P(k) is the probability that a LiDAR point belongs to the range
[0, k] and is calculated as:

P(k) = ∑k
i=0 pi (3)

• Compute the cumulative mean intensity m(k) in the range [0, k]:

m(k) = ∑k
i=0 ipi (4)

• The global cumulative mean mG is the mean intensity of the whole histogram, where
L is the number of possible intensity values that the LiDAR can record:

mG = ∑L−1
i=0 ipi (5)

• Compute the global intensity variance σ2
G:

σ2
G = ∑L−1

i=0 (i−mG)
2 pi (6)

• The local variance σ2
L is the variance of a specific intensity:

σ2
L =

mGP(k)−m(k)
P(k)(1− P(k))

(7)

• The threshold T is the value of k that maximizes σ2
L:

T = argmax
0≤k≤R−1

σ2
L(k) (8)
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The value of T can be calculated only once or can be recalculated with each new arrival
of LiDAR data. Due to the variance of the intensities of the road markings and asphalt
along a street (caused by wear), we recomputed T when new LiDAR data are received.

3.2.2. Elevation Filtering

In urban areas, the elevation distribution of roads is continuous, and the terrain tends
to undulate. Additionally, the range of changes in a small scanning range tends to be flat,
in accordance with the characteristics of streets. In a scanned scene, the elevations of roads
are generally lower than those of buildings, trees, and street lamps; thus, an elevation
threshold H can be set to remove some of the nonground points (shows in Figure 5). If
the height of the vehicle laser scanner is used as the threshold H, the exact value of this
threshold is uncertain and depends on the vehicle type; however, this approach can prevent
the elimination of good points based on changes in slope and elevation. This approach can
generally be used in flat urban areas, based on the characteristics of the streets, and the
study area considered in this paper can be seen to be flat from the slope measurements in
the digital elevation model. Thus, elevation filtering can be achieved in this way in the
study presented here.
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Once the threshold value has been determined, if the elevation value of a point in
the point cloud is larger than the threshold value, then that point is removed from the
point cloud data. However, for points whose values are less than the threshold, then
corresponding data are preserved to be used for slope filtering.

3.2.3. Slope Filtering

The slope filtering algorithm consists of two steps: pseudo scanning line generation
and road edge detection.

We define the slope between two consecutive points in the generated pseudo scan line
and the elevation difference of the point relative to its neighborhood in the pseudo scan
line (Figure 6). First, for the point cloud perpendicular to the orbit data, we divide it into
several data blocks of a given length. The outline of each data block is sliced according to a
given width. Accordingly, each profile contains both points related to the road pavement
and points related to objects outside the road boundary. All points of each profile are
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projected onto a plane perpendicular to the slice direction. In an MLS system, the frame
is defined as a right-handed orthogonal coordinate system with any user-defined point
as the origin. The frame orientation is fixed such that the X-axis points toward the front
of the vehicle, the Y-axis points toward the right side of the vehicle, and the Z-axis points
toward the bottom of the vehicle. A curb will be perpendicular or almost perpendicular to
the road surface, corresponding to a sharp jump in height [32]. Therefore, we estimate the
curb location in accordance with a gradient difference criterion and finally separate road
points from nonroad points in this way. We assume that the slope between the road surface
and road boundary will usually be larger than the slope of the continuous road surface. In
addition, the elevation of a sidewalk point will be higher than that of a nearby road point.
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The slope difference method is used to detect curbs among off-highway points. In this
work, a decision tree based on ISO-25142 [33] and experimental values were implemented
to mark the regions in the preliminary category (Figure 7). Although it is impossible to
establish a clear classification based on geometric parameters, ISO-25142 is listed as a good
reference. According to ISO-25142 reports and street design and construction manuals
from many countries indicate that curbs are generally between 1.5 and 25 cm high.
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Therefore, we mathematically define the following two observations as:{
if
(

Sslope > ST&(Dmin ≤ Di ≤ Dmax

)
), curb candidate

otherwise, non-curb point

}
(9)

where Sslope is the slope of two consecutive points, ST is a given slope threshold, and Di is
the elevation difference of a point and its neighbor. Dmin and Dmax are the minimum and
maximum thresholds, respectively.

In our algorithm, if Sslope gets a slope greater than ST, it means that the point has
reached a possible curb. If the height difference Di near the curb candidate is within the
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range of [Dmin, Dmax], the curb candidate will be marked as a curb; otherwise, it will be
marked as a non-curb point.

3.3. Curb Refinement

Since the curbs extracted by the above method are sparse in the test area, the next task
is to refine the curb edges. We generate smooth edges from these curb points by refining
the road boundary.

Balado [34] proposed a curb refinement based on split and merge operations. But the
effect is not satisfactory in irregular occlusion such as cars. We use the quadratic Bézier
curve spline to fit the curb boundary line segment, which converts the road boundary point
into a road boundary curve with topological information.

The curb to be refined is classified into straight line and curve. If reconnected road
edges are collinear, the curbs are connected by straight lines. If reconnected road edges are
not collinear, the curbs are connected by curve fitting (Figure 8). Extend the edge of the
road to the intersection, and then reconnect the extension line into a Bézier curve.

The Bézier curve is the parameter path traced by function B(t) for the given points
P0, P1, and P2. The reconnection process can be written as a problem of finding the three
control points of the Bézier curve. Points P0 and P2 are the start and endpoints of the
smooth area respectively.

B(t) = (1 − t)2P0 + 2(1 − t)tP1 + t2P2, t∈[0,1] (10)

If the curbs of the two parts are collinear, then P1 is in the middle of P0 and P2. If the
curb to be reconnected is not collinear, place P1 at the intersection of the two-point tangent
projection lines of P0 and P2. The non-collinear area of the curb produces a parabolic
segment.

Remote Sens. 2021, 13, x FOR PEER REVIEW 11 of 22 
 

 

Figure 7. Decision tree for preliminary geometric classification [33]. 

Therefore, we mathematically define the following two observations as: 

if(Sslope > ST&(Dmin ≤ Di ≤ Dmax)), curb candidate 
otherwise, non-curb point (9)

where Sslope is the slope of two consecutive points, ST is a given slope threshold, and Di is 
the elevation difference of a point and its neighbor. Dmin and Dmax are the minimum and 
maximum thresholds, respectively. 

In our algorithm, if Sslope gets a slope greater than ST, it means that the point has 
reached a possible curb. If the height difference Di near the curb candidate is within the 
range of [Dmin, Dmax], the curb candidate will be marked as a curb; otherwise, it will be 
marked as a non-curb point. 

3.3. Curb Refinement 
Since the curbs extracted by the above method are sparse in the test area, the next 

task is to refine the curb edges. We generate smooth edges from these curb points by re-
fining the road boundary. 

Balado [34] proposed a curb refinement based on split and merge operations. But the 
effect is not satisfactory in irregular occlusion such as cars. We use the quadratic Bézier 
curve spline to fit the curb boundary line segment, which converts the road boundary 
point into a road boundary curve with topological information. 

The curb to be refined is classified into straight line and curve. If reconnected road 
edges are collinear, the curbs are connected by straight lines. If reconnected road edges 
are not collinear, the curbs are connected by curve fitting(Figure 8). Extend the edge of the 
road to the intersection, and then reconnect the extension line into a Bézier curve. 

The Bézier curve is the parameter path traced by function B(t) for the given points P0, 
P1, and P2. The reconnection process can be written as a problem of finding the three con-
trol points of the Bézier curve. Points P0 and P2 are the start and endpoints of the smooth 
area respectively. 

B(t) = (1 − t)2P0 + 2(1 − t)tP1 + t2P2, t∈[0,1] (10)

If the curbs of the two parts are collinear, then P1 is in the middle of P0 and P2. If the 
curb to be reconnected is not collinear, place P1 at the intersection of the two-point tangent 
projection lines of P0 and P2. The non-collinear area of the curb produces a parabolic seg-
ment. 

 
Figure 8. Schematic diagram of curb refinement on unconnected boundaries. (a) The curb which 
connected by a straight area. (b) The curb which connected by a curve fitting area. 

3.4. Curb Clustering 
The KNN algorithm is an object classification algorithm based on the nearest training 

samples in the feature space. In the classification process, unlabeled query points are 
simply assigned the same labels as their K nearest neighbors. Usually, an object is classi-
fied by majority vote according to the labels of its K nearest neighbors [35]. 

Figure 8. Schematic diagram of curb refinement on unconnected boundaries. (a) The curb which
connected by a straight area. (b) The curb which connected by a curve fitting area.

3.4. Curb Clustering

The KNN algorithm is an object classification algorithm based on the nearest training
samples in the feature space. In the classification process, unlabeled query points are
simply assigned the same labels as their K nearest neighbors. Usually, an object is classified
by majority vote according to the labels of its K nearest neighbors [35].

If K = 1, the object is simply classified as belonging to the class of the object closest to
it. In the case of binary classification (two data classes), it is better to use an odd integer
value of K to prevent the fuzziness of the classification results due to similarity between the
two data classes [36]. After converting each image into a fixed-length real vector, we use
the most common distance function for KNN classification, called the Euclidean distance:

d(x, y) = ||x− y|| =
√
(x− y)·(x− y)= (∑m

i=1(xi − yi)
2)

1/2
(11)

where x and y are histograms in X = RM.
Due to the discontinuities of section lines that can be caused by occlusion by vehi-

cles, pedestrians, or trees, a process of inspecting and checking the results of boundary
extraction is needed to obtain accurate road boundaries. For this purpose, according to
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the characteristic that the curb is extended but the curb occlusion is not extended, KNN
clustering is used to cluster the candidate road points into multiple groups. In actual
situations, due to curbs and pedestrian occlusion, the data is non-Gaussian or cannot be
linearly separated. By evaluating the distance between training samples (for example,
Euclidean distance, Manhattan distance), It can be classified by the KNN algorithm.

The traditional KNN method improves the clustering accuracy by selecting the K value.
The values of the K parameters are chosen by trial. In the case of binary classifications (two
data classes), it is better to use an odd integer K to prevent similarity in the dominance
of the two data classes, which can cause ambiguity of the classification results. Figure 9
visualizes the process of KNN classification, In the example depicted in Figure 9, the query
point is represented by a circle. Depending on whether the K value is 1, 5, or 10, the query
point can be classified as a rectangle (a), a diamond (b), or a triangle (c), respectively. In
this article, we use Radial Bounded Nearest Neighbor Graph (RBNN) to cluster laser data.
Unlike traditional KNN, it connects each node to its K nearest neighbor, regardless of
distance. Each node is connected to all neighbors located in a predefined radius r. The set
of edges in the RBNN graph is:

ERBNN = {{xi, yi, dxi,yi|dxi,yi ≤ r} (12)
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Figure 10 shows the difference between KNN and RBNN in terms of segmentation
capabilities. We set a basic 2D data set with two clusters and a noisy point. Given the correct
r as a parameter, the RBNN method separates the two clusters and outliers from each other
well. However, 1-NN produced 6 clusters (include six kinds of color in subfigures (b)),
2-NN produced only one cluster (only has one color in subfigures (c)). The NN algorithm
with numbers as parameters not only did not separate the two clusters but also did not
identify noisy points. The main advantage of using the RBNN method is that we do not
need to perform the nearest neighbor query for each node, and it does not involve graph
cutting and graph structure rearrangement.
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Figure 10. The difference between KNN and RBNN in cluster ability. Subfigure (a) shows the data
set with 2 clusters and 1 outlier, (b) shows 1-NN graph yielding 6 clusters, (c) shows 2-NN graph
yielding 1 cluster and subfigure (d) displays RBNN graph yielding 2 clusters and 1 outlier.

The RBNN algorithm is an effective method of removing some pseudo boundary
points through clustering. By clustering the extracted boundary points, it is possible to
detect pseudo boundary points belonging to cars, green belts, fences, etc. Additionally, it is
useful for extracting street curbs in an urban area because it should be possible to assemble
the remaining clusters into straight lines. Thus, pseudo boundary points belonging to
objects such as cars and humans can be detected and removed.

4. Data Acquisition

In this paper, the instrument that was used to obtain accurate data for curb extraction
is named ROBIN.

The ROBIN measurement system includes a high-accuracy laser scanner. The laser
pulse repetition rate (PRR) is up to 550 kHz, the wavelength is 1064 nm, the intensity
recording is 16 bit, and maximum vertical field of view is 360 degrees, maximum measure-
ment rate is 1000 kHz. The accuracy and precision of the instruments are 8 mm and 5 mm,
respectively.

The data for this project were collected on 23 November 2018, in Shanghai where is
around the Zhangjiang region and close to the Guanglan Road subway station. The 3D
digital urban map obtained using Google Earth is displayed in Figure 11. The length of the
total data set is 1693.41 m. The storage size of point cloud data is 1.63 G, with a total of
35 million points.
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This article mainly extracts the curbs of complex three-dimensional urban scenes. The
three complex scenes include vegetation covering the curbs, curved curbs, and occlusion
curbs (see Figure 12). The study sites used in this project included streets, curbs, grass,
trees, buildings, and road markings. It should provide a concise and precise description of
the experimental results, their interpretation, as well as the experimental conclusions that
can be drawn.
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5.1. Visual Examples of the Obtained Results in Classification Process

The multiscale dimension criterion classification algorithm is applied to this experi-
mental scenario, and the results of multi-scale dimensionality criterion classification are
displayed in Figure 13.

Remote Sens. 2021, 13, x FOR PEER REVIEW 14 of 22 
 

 

 
Figure 12. A visual example of study sites in three complex scenes. 

5. Analysis and Discussion 
5.1. Visual Examples of the Obtained Results in Classification Process 

The multiscale dimension criterion classification algorithm is applied to this experi-
mental scenario, and the results of multi-scale dimensionality criterion classification are 
displayed in Figure 13. 

 
Figure 13. The visual results of multiscale dimensionality criterion classification: (a) Front-view 
images before classification; (b) Front-view images after classification; (c) Oblique view images 
before classification; (d) Oblique view images after classification; (e) Enlarged display of the classi-
fication results in (a); (f) Enlarged display of the classification results in (b); (g) Enlarged display of 
the classification results in (c); (h) Enlarged display of the classification results in (d); 

In this experiment, from qualitative evaluation, most of the vegetation information 
was identified from the classification results of the two places shown in the figure above. 
Through quantitative calculation, the accuracy of vegetation extraction is 92.11%, and the 
Fisher’s discriminant ratio is 4.1925. 

  

Figure 13. The visual results of multiscale dimensionality criterion classification: (a) Front-view
images before classification; (b) Front-view images after classification; (c) Oblique view images before
classification; (d) Oblique view images after classification; (e) Enlarged display of the classification
results in (a); (f) Enlarged display of the classification results in (b); (g) Enlarged display of the
classification results in (c); (h) Enlarged display of the classification results in (d).

In this experiment, from qualitative evaluation, most of the vegetation information
was identified from the classification results of the two places shown in the figure above.
Through quantitative calculation, the accuracy of vegetation extraction is 92.11%, and the
Fisher’s discriminant ratio is 4.1925.

5.2. Visual Examples of the Obtained Results of Curb Extraction

In order to visually analyze the results obtained in the test area, the detected curbs
have been superimposed on the point cloud in the study area. The test site corresponds
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to the street section of Shanghai, China. This is a typical urban area, with roads that have
structured boundaries in the form of crosswalks and curbs and ramps in garages. Most
of the curb on this street is covered with vegetation, which creates shadows in the point
cloud and obscures the curb, making the detection of curbstones challenging. The number
of points in the clouds is 37 million.

The results of the curb edge segmentation method are fully shown in the following
three sections: Figures 14–16. Figure 14 represents the curb extraction result on curbs
covered by vegetation, Figure 15 is the curb extraction result of the curved part of the
street, and Figure 16 is concentrated on the street with intermittent curbs. For each detail,
three images are displayed: the street view, the original point cloud of the detail, and the
segmentation result.
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Figure 15. Extraction results of curved curbs. (a,b) Two detail views of study sites; (c–e) Point cloud
of the studied area overlapped by segmented curbs; (f) The result of curb extraction by proposed
method.

The curbs of the streets at several study sites are displayed in Figures 14–16. We
can clearly see the curbs, which are marked with red points. The extracted road curbs
were superimposed on the MLS point clouds for visual inspection. Different parts of the
test data sets were enlarged for detailed examination. This paper mainly presents the
results of extracting, vegetation covering above curbs, straight curbs, and curved curbs
at intersections in an urban road environment. By considering the extracted edge point
cloud in combination with the real 3D map of the study sites, our analysis shows that the
proposed method can effectively detect curb points even at positions where the vegetation
covering the curb. At an intersection, the proposed algorithm not only clearly distinguishes
between the motorway and sidewalk but also achieves strong closure of the whole curb
on a curved surface. In areas where a laser point cloud can be obtained (excluding the
inaccessible laser points on the backs of features due to the data acquisition route), the
curb information that can be seen in the real 3D scene map can be successfully identified
and extracted.
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Following the entire processing method, we can observe that the proposed algorithm
can be widely used in urban areas because the study sites chosen in this study are typical of
such environments. The study sites include buildings, trees, grass, asphalt roads, concrete
roads, road markings, and so on. Moreover, the results for the study sites prove that in
areas without curb information, no data will be extracted and identified as curbs. Therefore,
the proposed method is suitable for the extraction of street curbs in urban areas.

5.3. Quantitative Evaluation

We conduct a quantitative analysis by comparing the automatic extraction line and the
manual extraction line. In order to evaluate the accuracy of curb detection, we manually
extracted the road boundary from the original point cloud. We analyze these extracted
curbs, and the length of reference is the total length of the edge in the experimental area.
Table 3 lists the parameters after overlaying the manually extracted curbs and the curbs
extracted by the algorithm proposed in this paper. It includes the minimum distance, the
maximum distance, the average, the median, and the average horizontal and vertical root
mean square error (RMSE) between the edge extracted by the algorithm and the manually
extracted edge.

Table 3. Parameters after overlaying the manually extracted.

Left Edges Right Edges

Length of reference (Manual extraction according to
field survey) 1691.2 1623.7

Minimum (m) 0 0
Maximum (m) 0.179 0.112

Mean (m) 0.023 0.011
Median (m) 0.015 0.009

Horizontal RMSE (m) 0.142 0.060
Vertical RMSE (m) 0.071 0.014
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Based on the visual information and geometric information, we successfully extract
the left and right edges of the test area. The results of road edge extraction show high
accuracy, which is attributable to the use of uniform and dense point cloud data along the
road. The maximum distance between the extracted left and right edges and the actual
edge is approximately 0.1 m, and the average and median distance between the right edge
and the actual edge is less than 0.01 m. Guan et al. [37] reported mean horizontal and
vertical root mean square error (RMSE) values of 0.08 m and 0.02 m, respectively, for curbs
extracted from MLS data. In this paper, the horizontal and vertical RMSE values of the
extracted right edge of the road segment are 0.060 m and 0.014 m, respectively. There is a
large gap in the effectiveness of the method proposed in this paper between left and right
edge extraction. The main reason for this gap is that the laser scanner only travels in one
direction when obtaining data on the road. Due to the occlusion of the street by trees in the
middle of the road, some data are lost, and the accuracy of the left edge is lower than that of
the right edge. When the Otsu threshold is used to classify the intensity information, we can
use a more intelligent algorithm and propose more reasonable parameter settings, which
increases the effectiveness of distinguishing the road surface from its edge and improves
the accuracy of road edge extraction. However, the proposed street curb extraction method
needs to be further tested on long road areas to verify its effectiveness compared with
existing methods.

In addition, to quantitatively assess the street curb extraction, we calculate the fol-
lowing two accuracy metrics, which are widely used for the evaluation of road extraction
algorithms [38]: Completeness = TP/Lr and Correctness = TP/Le, where Lr is the total
length of the reference road and Le is the total length of the extracted road. Completeness
is defined as the length of the extracted line in the buffer divided by the length of the
reference line. Correctness is defined as the length of the extracted lines in the buffer
divided by the length of all extracted lines. TP = min(Lme, Lmr), where Lme is the total
length of the extracted road that matches the reference road and Lmr is the total length of
the reference road that matches the extracted road. A buffer is established on both sides
of the reference road, and each point of the extraction results is marked as lying inside or
outside of the buffer.

The completeness and correctness values obtained for the study sites considered in
this paper are given in Table 4.

Table 4. Completeness and correctness at two study sites.

Buffer Width (m)
Completeness (%) Correctness (%)

Left Edges Right Edges Left Edges Right Edges

0.1 88.3 88.5 87.9 90.6
0.2 93.7 94.2 94.9 96.4
0.3 98.5 98.7 98.8 98.6
0.5 99.2 99.8 99.6 99.7

The completeness and correctness values from the study sites are shown for buffer
widths of 0.1 m, 0.2 m, 0.3 m, and 0.5 m. Buffer width probably gives an idea of the level
of accuracy of the extracted data, which seems to be probably around half a meter. When
the buffer width is 0.5 m, the correctness value for the left edges and right edges are 99.6%
and 99.7% respectively. Among them, because the distance between parked cars or other
elements above the curb is very short, the length of the curb that is not detected on the left
and right sides of the road by the proposed method accounts for 0.8% and 0.2% of the total
length of the curb. Due to the false extraction caused by elements with geometric shapes
similar to the curbs (such as the underside of the car and the stairs), the left and right edges
also have a false extraction rate of 0.4% and 0.3%, respectively.
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5.4. Comparison with Other Methods

All experiments were performed on a 3.70 GHz Intel Core i7-8700K processor with
16 GB RAM. The calculation time of the whole algorithm in this paper is about 45 min. In
order to prove the effectiveness of the proposed method, the following latest technologies
are used for comparison, we set the buffer width to 0.5 m. The results are shown in Table 5.

Table 5. Compared with the results of other methods.

Kumar (2013) Yang
(2013)

Sun
(2019)

Zhang
(2018) Proposed Method

Left Edges Right Edges Left Edges Right Edges

Completeness
(%) 96.5 65.4 95.13 95.1 93 99.2 99.8

Correctness
(%) 100 63.8 98.09 95 92.5 99.6 99.7

In 2013, Yang [19] and Kumar [39] described the most advanced method for street curb
extraction. Zhang [8] and Sun [40] subsequently proposed superior street curb extraction
methods by using the geometric or spatial information of urban area edges. The evaluation
and comparison results are listed in Table 5. It is clear from the results in the table that the
proposed method achieves the best performance.

As shown in Table 5, the completeness of the proposed method is 99.2% at the left
edge and 99.8% at the right edge, and the correctness is 99.6% and 99.7%, respectively,
which is better than other methods. In addition, between left and right edges, there is only
a small difference in the accuracy of the proposed road boundary detection, which reflects
the robustness of the proposed algorithm.

Kumar et al. [39] used a new combination of the gradient vector flow (GVF) method
and a balloon parameter active contour model to extract road edges from the ground
moving LiDAR data. However, the internal and external energy parameters used in the
algorithm are selected based on experience, and its robustness must be determined through
experimental analysis. For edges extracted from MLS data, the average integrity and
accuracy of the Kumar method are 96.5% and 100%, respectively. For edges with a buffer
width of 0.5 m, the average integrity and accuracy are 65.4% and 63.8% respectively.

In Yang’s [19] method, MLS point cloud data are regarded as continuous scan lines,
non-circular points are filtered by a sliding window operator, and curb points are detected
based on a curb pattern. However, it is difficult for Yang’s method to distinguish between
asphalt and soil, asphalt and vegetation, and asphalt and grass embankments. In addition,
the length of the sliding window used to filter the non-circular points also affects the
detection of the road area. If the length of the window is less than the width of the
curb, points near the curb may be incorrectly marked as curb points. By comparison, the
proposed algorithm has better robustness and good extraction accuracy and correctness for
straight roads, curved roads, and intersections.

Zhang’s [8] method is similar to Sun’s [40] method. It uses the nearest neighbor on
the same laser line to calculate the smoothness and continuity of the midpoint in the local
area and then searches for the boundary points with road boundary features on each laser
line. His method can achieve good results on flat roads and slopes with small curvature.
However, Zhang used the boundary point search method. When the direction of the car
is different from that of the road boundary or the curvature of the road is large, Zhang’s
method can only search the boundary points closer to the vehicle. Sun’s method is an
improvement of Zhang’s method. For situations in which there are obstacles on the road
and the shape of the road boundary is irregular, the algorithm still has high accuracy in
extracting road boundaries. However, Zhang’s method does not make use of the intensity
information of the point cloud and is vulnerable to interference from roadside grass. In
addition, the robustness of the algorithm is low, and incorrect extraction occurs easily in
areas without road edges.
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We tested their four techniques on our data sites, and the extraction results are shown
in Figure 17. In the straight street scene, due to the simplicity of the road, the results of all
methods are similar. In the curve scene, we can see that the point cloud extracted by Kumar
based on the gradient vector flow (GVF) method at the edge of the curve is too sparse
(Figure 17c). In Yang’s method, the short curbs cannot be recognized in our experimental
scenes. This is mainly because Yang’s algorithm relies on the choice of the length of the
sliding window (see Figure 17b). In Zhang’s method, the street curbs are far from being
extracted when the road curvature is too large, so the extraction result in Figure 17d is not
outstanding. Sun’s method is an improvement to Zhang’s method and has higher accuracy
on curved roads. However, Sun’s algorithm is easily affected by grass on the roadside.
Because there is grass cover above the curb, the completeness of curb extraction is not
high in Figure 17f. In contrast, the curb point extraction method proposed in this paper
performs better.
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The excellent performance of the proposed method is mainly because of three capabili-
ties: (1) by considering the existence of obstacles on the road and using the spatial attributes
of the road boundary, it can adapt to different heights and different road boundary struc-
tures; (2) it uses both spatial information and geometric information and thus exploits the
different advantages of spatial information and geometric information in edge extraction to
reduce the robustness of street curb extraction; (3) the RBNN clustering algorithm used to
fit the road boundary has better adaptability to different road boundary shapes, especially
large changes in the curvature of the road boundary.

6. Conclusions

In this paper, a new method of extracting street curbs is introduced. First, multiscale
dimensionality classification is performed to classify and extract street point cloud data.
Subsequently, the characteristics of elevation, echo intensity, and slope change are used to
detect the street curbs from the accurate LiDAR point cloud. Then, the quadratic Bézier
curve spline is to refine the curb edges. As the last step, the RBNN clustering algorithm
is used to cluster the extracted boundary points and remove some pseudo boundary
points. In three complex urban scenarios (vegetation covering the curbs, curved curbs, and
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occlusion curbs), this article verifies the reliability and robustness of its algorithm in the
experimental part.

Although street curbs are extracted with a high level of correctness using the proposed
algorithm, there are two limitations of this study that need to be mentioned. On the one
hand, at the study sites considered here, there were some weaknesses in the intensity
filtering results. In attempts to identify the problem in the intensity filtering process at
the study sites, it was found that the intensity values recorded from asphalt roads, grass,
buildings, and road markings are all highly similar, whereas vegetation objects such as trees
and grass do not produce quite such high values, as noted in a previously cited reference.
Therefore, the filtering results are not entirely clear. The Otsu threshold [27] method can be
used to calculate a general value for distinguishing between buildings and road markings,
but it does not work well across all possible situations. This is one of the limitations of the
method presented in this paper, and overcoming this limitation is a topic for future work.

On the other hand, the second limitation is related to the settings for slope filtering.
This method will not work well in high-slope areas. If the slopes at all study sites were
approximately 1 m, the slope threshold would be set to approximately 0.2–1.2 m. In this
way, we could easily remove buildings and streetlamps from the high-elevation parts of
high-slope study sites, but all information would be preserved in low-elevation areas with
elevation values below 1.2 m. Notably, there seems to be a considerable amount of noise in
low-elevation areas, including the information recorded from cars operating in the middle
of the street and people walking in the street.

To summarize the two limitations detailed above, this algorithm can be successfully
applied in flat areas and under conditions in which the intensity values of buildings and
street markings can be readily discriminated. However, further consideration will be
needed in the future to develop an algorithm that can be applied in arbitrary areas with
diverse terrain conditions. Furthermore, as the equipment has integrated imagery, we will
involve the fusion of sensors in the future.
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