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Abstract: Deep learning has been widely used in various computer vision tasks. As a result, re-
searchers have begun to explore the application of deep learning for pansharpening and have
achieved remarkable results. However, most current pansharpening methods focus only on the
mapping relationship between images and the lack overall structure enhancement, and do not fully
and completely research optimization goals and fusion rules. Therefore, for these problems, we
propose a pansharpening generative adversarial network with multilevel structure enhancement and
a multistream fusion architecture. This method first uses multilevel gradient operators to obtain the
structural information of the high-resolution panchromatic image. Then, it combines the spectral
features with multilevel gradient information and inputs them into two subnetworks of the generator
for fusion training. We design a comprehensive optimization goal for the generator, which not only
minimizes the gap between the fused image and the real image but also considers the adversarial
loss between the generator and the discriminator and the multilevel structure loss between the fused
image and the panchromatic image. It is worth mentioning that we comprehensively consider the
spectral information and the multilevel structure as the input of the discriminator, which makes it
easier for the discriminator to distinguish real and fake images. Experiments show that our proposed
method is superior to state-of-the-art methods in both the subjective visual and objective assessments
of fused images, especially in road and building areas.

Keywords: pansharpening; multilevel structure enhancement; multistream fusion architecture;
generative adversarial network

1. Introduction

Due to the limitation of technology, a single sensor cannot simultaneously obtain
remote sensing images with high resolution in both the spectral and spatial domains.
Currently, high-resolution panchromatic (PAN) components and low-resolution spectral
components are usually used instead [1]. However, a single information component cannot
match the effect of remote sensing images with high-resolution spectral domains and
spatial domains in many fields. Therefore, in practical applications, it is better to combine
the spectral and spatial components [2], that is, to obtain high-resolution spectrograms by
fusing low-resolution spectrograms and high-resolution PAN images [3].

A classic and simple pansharpening method is to perform component replacement [4].
It is mainly divided into two categories. The first category is to transform the multispec-
tral (MS) image in the appropriate domain and use the high-resolution PAN image to
replace the components in the domain (e.g., principal component analysis (PCA) [5], the
intensity-hue-saturation (IHS) transform [6], and the band-dependent spatial-detail (BDSD)
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algorithm [7]). This type of method usually has the characteristics of high spectral dis-
tortion because the PAN image and the MS image overlap only in a part of the spectral
range. The second category extracts the spatial details of the PAN image and injects the
extracted information into the upsampled MS image (e.g., the “a’-Trous” wavelet transform
(ATWT) [8], Laplacian pyramid (LP) [9] and MTF-Generalized LP (MTF-GLP) [10]). The
second type of component replacement method retains the spectral information better than
the first type but still has the problem of insufficient spatial information extraction.

To solve the problem that the MS image spectral information and PAN spatial in-
formation cannot be fully utilized, more related methods have been proposed (e.g., a
hybrid algorithm that combines the IHS transform and curvelet transform algorithms [11],
a variational model solved using a convex optimization difference solution framework [12],
and a method based on compressed sensing with sparse prior information [13]). However,
these methods still have some problems. The combined algorithm does not significantly
improve the overall quality of the fusion image, the model solution hyperparameters are
difficult to set [14], and the sparse expression brings about the problem of increased costs
due to dictionary construction.

Deep learning has been widely used in various computer vision tasks. As a result,
researchers have begun to explore the application of deep learning in pansharpening and
achieved remarkable results. These methods are implemented based on a convolutional
neural network (CNN), which is used to extract the spectral features from low-resolution
MS (LRMS) images and spatial features from PAN images and uses these features to
reconstruct high-resolution MS (HRMS) images. For example, the pansharpening by
CNNs (PCNN) method, which is the first algorithm to use a CNN for pansharpening [15]).
The PCNN is modified from the three-layer architecture of the super-resolution CNN
(SRCNN) [16]; it is unable to learn the complex mapping relationship, and the obtained
fusion effect is not good. For this, PanNet [17] introduced a residual neural network
(ResNet) [18], combined with domain knowledge, to improve the output effect of pan-
sharpening. A high-pass-filtered PAN image and an upsampled LRMS image are input
into the network, and a long connection is used for the corresponding spectral information.
Compared with PCNNs, PanNet has made some progress in both the spectral and spatial
domain performance. However, PanNet’s learning in the low-pass domain is still insuffi-
cient. The generative adversarial network (GAN) for remote sensing image pansharpening
(PSGAN) generative adversarial network for remote sensing image pansharpening [19]
is the first algorithm to use a GAN in pansharpening [20]. It designs a dual-stream CNN
architecture for shallow feature extraction. The L1 loss (Mean Absolute Error) of the image
pixels and the loss of the GAN are combined to optimize the image. It effectively avoids
partial blur and improves the overall quality of the image. However, the PSGAN has the
problems of insufficient retention of PAN structural information and insufficient spectral
compensation. Moreover, it lacks a well-designed optimization target and integration rules
for overall structure maintenance. We have tried to improve the problems of the PSGAN,
combining a GAN and a variational model to propose a pansharpening method [21]. This
method improves some of the problems of the PSGAN to a certain extent, but it still fails to
achieve the ideal fusion effect.

Therefore, to solve the problems of the PSGAN, this paper proposes a pansharpening
GAN with multilevel structure enhancement and a multistream fusion architecture. The
main contributions of this paper are as follows.

(1) We use multi-level differential operators to extract the spatial features of the
panchromatic image, and fully integrate the spatial features of different levels with the
spectral features. So that the spatial information of the fusion image can be fully expressed.
Specifically, we used two types of gradient operators in the paper, the first-level gradient
operator and the second-level gradient operator.

(2) In order to better combine the spatial information extracted by the multi-level
gradient operator, we use the multi-stream fusion CNN architecture as the GAN genera-
tor. The multi-stream fusion architecture consists of three inputs and two sub-networks.
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Different types of structural information are input into specific subnets to better maintain
structural and spectral information.

(3) We designed a comprehensive loss function. The loss function comprehensively
considers the spectral loss, multi-level structure loss and adversarial loss. Among them,
the multi-level structure loss combines two types of gradient operators to better give the
optimization direction of network training, so that the extraction of structure information
is more sufficient.

(4) To make it easier for the discriminator to distinguish real and fake images, we
provide as much spectral and structural information as possible.

The remainder of the paper is organized as follows. Section 2 introduces the related
work. Section 3 describes the method proposed in this paper. Section 4 presents the
experiment and discussion. Section 5 is the conclusions.

2. Related Work

As pan-sharpening has attracted much attention, deep learning methods have been
widely used in it. Researchers have proposed a lot of pan-sharpening methods based on
deep learning according to different strategy modes, which have shown excellent nonlinear
expression ability. Some methods choose simple shallow convolutional network as the
architecture of training network, and extract the features from the input data using different
techniques and strategies. For example, PCNN uses a simple three-layer convolutional
network, and manually extracts important features such as the normalized water index
(NDWI) as the input of the network [15]. Some methods choose to introduce excellent
modules or architectures that are widely used in other fields of deep learning. For ex-
ample, PANNET introduces residual network and uses high-pass filtering to extract the
features of high-pass filtering domain from the input images, so that the network only
needs to recover high-frequency information and can migrate between satellites with dif-
ferent numerical imaging ranges [17]. In [22], the author introduced Densely connected
convolutional networks [23], which improved the ability to express spectral and spatial
characteristics. In [24], the author proposed a multi-scale channel attention mechanism for
panchromatic sharpening based on the channel attention mechanism originally applied to
image classification work. This method considers the interdependence between channels
and uses the attention mechanism to recalibrate, so as to perform feature representation
more accurately. In both PSGAN and Pan-GAN [25], the author introduces generative
confrontation network as the main architecture. PSGAN proposes to use dual-stream
input to allow image feature-level fusion instead of pixel-level fusion. Pan-GAN adopts
a method of establishing confrontational games between the generator and the spectral
discriminator and the spatial discriminator, so as to retain the rich spectral information
of the multi-spectral image and the spatial information of the panchromatic image. Some
other methods use strategies to improve the loss function to optimize the training direction
of the network. For example, in [26], the author proposed a perceptual loss function and
further optimized the model based on advanced features in the near-infrared space. In
general, the purpose of panchromatic sharpening is to obtain high-resolution multispectral
images through fusion, and to preserve the spectral information of the multispectral images
and the spatial information of the panchromatic images to the greatest extent. The methods
mentioned above focus on the improvement of a certain aspect, or the simple application of
a certain technology. These methods lack comprehensive leverage of image preprocessing,
feature extraction, attention module, and loss function improvement. It is critical that how
to use more than two technologies in one pansharpening method reasonably. This idea
inspired our work.

3. Method
3.1. Pansharpening Based on a Variational Model and a GAN

The purpose of pansharpening is to fuse LRMS images and high-resolution PAN
images. P ∈ RH×W represents the PAN image, M = (M1, M2, . . . , MB) ∈ R(H/r)×(W/r)×B
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represents the LRMS image, M ↑= (M1 ↑, M2 ↑, . . . , MB ↑) ∈ RH×W×B represents the
LRMS image after upsampling, X = (X1, X2, . . . , XB) ∈ RH×W×B represents the image
obtained by fusion, Y = (Y1, Y2, . . . , YB) ∈ RH×W×B represents the real HRMS image,
where b = 1, 2, . . . , B represents the number of channels of the image. r is 4 in this paper;
that is, the resolution ratio of the PAN image to the MS image is 4:1.

Some pansharpening methods base on variational model have transformed the pan-
sharpening process into an optimization problem solution process with reasonable hy-
potheses to achieve a good balance between spectral preservation and spatial restoration
in fused images. The variational approaches usually assumes that the spatial information
associated with each band of a fused image is consistent with that in a PAN image and the
spectral information after the downsampling of the fused image is consistent with that in
an LRMS image. For instance, Chen et al. [27] and Zeng et al. [12] use first-order finite
difference operator to extract the sparse spatial structure information from the PAN image.
Wang et al. [28] use second-order finite difference operator to extract spatial positions
from the PAN image, such as corners, strongly textured regions, and edges. Inspired
by these methods, we use two kinds of finite difference operators to extract the sparse
spatial structure information from the PAN image. The first operator is the first-order finite
difference operator. For the sake of simplicity, we call it as first-level gradient operator.
The second operator is the second-level gradient operator. In fact, second-level gradient
operator is also first-order finite difference operator. The main difference between the two
operators is whether there is an interval of one pixel for the differential operation. The two
operators are shown in Figure 1.

(a) (b)

Figure 1. Two kinds of finite difference operators. (a) first-level gradient operator, (b) second-level
gradient operator.

We use ∇ and ∇∇ to represent the first-level gradient operator and second-level
gradient operator, respectively. ∇hP and ∇vP represents the gradient information in two
directions obtained by the first-level gradient operator. Among them, the subscript h
represents the horizontal direction, and the subscript v represents the vertical direction.
∇∇hP and ∇∇vP represents the gradient information in two directions obtained by the
second-level gradient operator. Through experiments, we found that the structural infor-
mation fo the PAN image extracted by the second-level gradient operator is still rich, so we
try to use the new structure to enhance the pansharpening performance. The two types of
spatial structure inforamtion are shown in Figure 2.
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(a) PAN (b) ∇hP (c) ∇vP

(d) ∇∇hP (e) ∇∇vP

Figure 2. Comparison of structural information. (a) PAN image, (b) horizontal structural information
with first-level gradient operator, (c) vertical structural information with first-level gradient operator,
(d) horizontal structural information with second-level gradient operator, (e) vertical structural
information with second-level gradient operator.

The general form of the objective function in the fusion process is:

X = f (M,∇hP,∇vP,∇∇hP,∇∇vP; Θ) (1)

f (•) can be regarded as a mapping function of X obtained from (M,∇hP,∇vP,
∇∇hP,∇∇vP), which means taking M,∇hP,∇vP,∇∇hP,∇∇vP as the input; after a se-
ries of feature extractions, it is reformed into a full-sharpening model of HRMS image X. Θ
represents the parameter set in the model. Therefore, we can reformulate pansharpening as
an image generation problem that can be processed with a GAN. We first use a generator to
map the joint distribution pd(M,∇hP,∇vP,∇∇hP,∇∇vP) to the target distribution pr(Y).
Then, a corresponding discriminator is designed to estimate the probability that the sample
comes from the training data and the generation model G so that the generator performs
adversarial training to obtain a pansharpened image X that is closer to the target image Y.
To make the presentation more convenient, we use Hh and Hv to represent all the gradient
information in different directions (detailed expressions presented only when needed).
Therefore, it can be expressed by the min-max problem of Equation (2):

min
ΘG

max
ΘD

E(M,HhP,HvP)∼pd(M,HhP,HvP),X∼pr(X)

[
log DΘD (H, Z)

]
+E(M,HhP,HvP)∼pd(M,HhP,HvP)

[
log
(
1− DΘD (H, F)

)] (2)

where
H = [M ↑;HhP;HvP]

Z =

[
Y;Hh

B

∑
b=1

ωbYb;Hv

B

∑
b=1

ωbYb

]

F =

[
GΘG (M,HhP,HvP);Hh

B

∑
b=1

ωbGΘG (M,HhP,HvP)b;Hv

B

∑
b=1

ωbGΘG (M,HhP,HvP)b

]
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[•; •] represents the concatenation operation, which is used to superimpose two or
more tensors in the channel dimension. ωb represents the relative weight coefficients of
different satellite sensors obtained by the modulation transfer function (MTF) [10]. In
addition, we improve the constraints of the generator based on the assumption of prior
information and define the loss function of the generator as follows.

L(G) = Ladv + λLc (3)

Ladv represents the adversarial loss between the generator G and the discriminator D.
We define Ladv as follows.

Ladv =
1
N

N

∑
n=1

[
− log DΘD (H, F)

]
(4)

Lc is used to minimize the gap between the fused image and the real image, which is
measured in terms of the spectra and structure.The reason for this design mainly comes
from the inspiration of the variational model: First, the use of structural information;
second, the use of its energy function to design the loss function. The first term is the
spectral fidelity term. The second and third terms are the structure fidelity terms, which
calculate the multilevel structure loss between the fused image and the PAN image. λ is a
hyperparameter used to balance Ladv, and Lc. µ1 and µ2 are used to weigh the Lc weight
of the information loss of two sparse structures. The details are as follows:

Lc =
1
N

N

∑
n=1

[∥∥Y− GΘG (M,HhP,HvP)
∥∥

1 + µ1Lss1 + µ2Lss2

]
(5)

Lss1 =

(∥∥∥∥∥∇hP−∇h

B

∑
b=1

ωbGΘG (M,∇hP,∇vP)b

∥∥∥∥∥
1

+

∥∥∥∥∥∇vP−∇v

B

∑
b=1

ωbGΘG (M,∇hP, VvP)b

∥∥∥∥∥
1

)
(6)

Lss2 =

(∥∥∥∥∥∇∇hP−∇∇h

B

∑
b=1

ωbGΘG (M,∇∇hP,∇∇vP)b

∥∥∥∥∥
1

+

∥∥∥∥∥∇∇vP−∇∇v

B

∑
b=1

ωbGΘG (M,∇∇hP,∇∇vP)b

∥∥∥∥∥
1

)
(7)

where N represents the number of training samples. We derive the discriminator loss
function based on the GAN principle:

L(D) =
1
N

N

∑
n=1

[
log
(
1− DΘD (H, F)

)]
+

1
N

N

∑
n=1

[
log DΘD (H, Z)

]
(8)

In summary, we proposed the use of multi-level gradient operators to extract different
levels of spatial features, and designed the corresponding loss function. Among them, the
loss function considers spectral loss and adversarial loss, and also combines two types of
gradient operators to design a multi-level structure loss, which better gives the optimization
direction of network training.

3.2. Multi-Stream Structure Generator and Discriminator

According to the overall design of the algorithm in Section 3.1, this paper proposes
a generator combining a multistream structure, as shown in Figure 3. Different from
traditional deep learning algorithms, the proposed method introduces the constraint of
gradient information. That is, the first-level gradient operator and second-level gradient
operator are used to extract the structure of the PAN image. We upsample the MS image to
the resolution of the PAN image to obtain the MS↑ image. The MS↑ image, two gradient
constraints and the original MS image are taken together as the input of the generator.
Unlike the basic CNN, which directly stitches multiple images that need to be fused as
input, we use subnetworks at the bottom of the network to extract hierarchical features
for the MS↑ image and two types of structural information. The spectral and spatial
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information are extracted to obtain rich primary features. Then, the two types of structural
information are combined with the spectral feature concatenation results after a series of
feature extractions and supplementations. Finally, the joint features of the two results are
mapped, and the required fusion image is reconstructed through transposed convolution
decoding. A convolution kernel with a size of 2× 2, stride = 2, and padding = SAME
is used to replace the downsampling operation, which better retains the perfect features.
We used the leaky rectified linear unit (Leaky ReLU) activation function proposed in [29].
Inspired by U-Net [30], we adjust the network structure through skip connections. That is,
the features of the lower layer are added to the higher layer by skipping the connection
operation. The detailed architecture and convolution parameters are shown in Figure 3.
The blue box represents the convolutional layer without downsampling. The yellow
box represents the convolutional layer with downsampling. The red box represents the
deconvolutional layer with upsampling.

Figure 3. Detailed architectures of the Generator.

In order to play zero sum game in the process of generating fused image, this paper
designs a discriminator with neural network architecture. The discriminator is a simple
five-layer convolutional neural network, which is used for distinguish whether each sample
is a real HRMS image or a fused MS image. The detail architectures are shown in Figure 4.
The yellow box represents the convolutional layer with downsampling. The blue box
represents the convolutional layer without downsampling. Because of the particularity of
sigmoid function in our network, we draw it after the final convolutional layer. The purple
box represents the sigmoid function. The spectral information contains the upsampled
MS image, the fused image X or the real image Y. The structural information contains the
two-level horizontal and vertical gradient information of the PAN image, the fused image
or the real image. For the Gaofen-2 dataset, the input data has 14 channels. We present
the specific architecture in Figure 4. We use a simple CNN as the backbone structure of
the discriminator. From the first layer to the fourth layer, a convolution kernel with a size
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of 3× 3, a step size of 2, is used for feature extraction. To reduce the effects of noise, all
of our convolutional filters do not use padding operation. The last layer uses a sigmoid
function to calculate the probability of the pixels in an image belong to a real image. The
remaining convolutional layers are all activated by the Leaky ReLU activation function.
In the implementation of the algorithm, we will input twice and pass the discriminator
network twice. The main difference between the two inputs is the fused image X and the
real image Y. We will calculate the log difference expectation for the two results. The final
result is defined as the loss of the discriminator.

Figure 4. Detailed architectures of the Discriminator.

4. Experiments
4.1. Experimental Setup

We use the Gaofen-2 and WorldView-2 datasets to verify the effectiveness of the
proposed method. The PAN images of the Gaofen-2 and WorldView-2 datasets have only
one band, and the image resolutions are 0.81 m and 0.5 m, respectively. The MS image
of the Gaofen-2 dataset has four bands, namely, red, green, blue, and near-infrared (NIR)
bands, and the image resolution is 3.24 m. The MS image of the WorldView-2 dataset
has 8 bands, namely, blue, green, red, coastal zone, yellow, red-edge and two sets of NIR
spectra bands, and the image resolution is 1.8 m. Our experiment consists of three parts:
Reduced resolution experiment, ablation experiment and full resolution experiment [31].
The comparative experiments select some algorithms introduced in the first section of this
article. Specifically, for the multiresolution analysis ATWT algorithm, MTF-Generalized LP
(MTF-GLP) [10], component replacement BDSD algorithm, and variational approach using
spectral consistency and dynamic gradient sparsity (DGSF) [27]. Inspired by the deep
learning-based methods and variational approaches, we have proposed a generative adver-
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sarial network with structural enhancement and spectral supplement for pan-sharpening
(represented by “self-comparison” in our comparative experiment) [21]. For the parameters
of each method, the settings recommended by the authors of the corresponding references
are selected to make each method achieve the best results.

All the experiments of the deep learning-based methods in this paper involve training
with an NVIDIA Tesla V100 SXM2 16 GB GPU and an Intel Xeon Gold 6148 at 2.40 GHz
CPU. We use the pytorch framework to implement the deep learning-based methods and
compare the computational times of each network. We use Adam [32] algorithm as the
optimizer. For training our proposed network, the batch size is set to 16, the learning rate
is set to 0.0002, the parameters of the Adam optimizer are set to 0.5 and 0.99, and a total of
20 epochs training are executed. According to the results of many experiments, the weight
hyperparameters λ, µ1 and µ2 are set to 90, 80 and 40, respectively. The hyperparameters
of other models are consistent with those in the original paper. The trained network can be
reused for a long period of time from the same source of data for inference. The inference
time required for our test set is usually within 1–2 s, which is at the same level as traditional
component replacement algorithms. We list the time cost, parameter amount, and FLOPs
for network training of reduced-resolution experiment on the WorldView-2 dataset, as
shown in Table 1.

Table 1. Comparison of the computational times of the compared network.

Method Time (min) Parameters FLOPs

PCNN 104± 10 96.280 K 1.577 G
PANNET 65± 10 78.920 K 1.293 G
PSGAN 169± 10 2.441 M 33.787 G

Proposed 214± 10 6.702 M 25.884 G

4.2. Reduced-Resolution Experiment

We conducted a reduced-resolution experiment according to the Wald protocol [33],
in which we used the original LRMS images as a reference. Before downsampling LRMS
and PAN images, we smooth all original images using a filter that matches the MTF of
the sensor [10,15,31]. Before smoothing, we trim the orignal LRMS images into patches
with size of 128× 128, called as HRMS images, which should be used for reference, and
the orignal PAN images into patches with size of 512× 512. Then we smooth them using
Gaussian kernels with MTF, and downsample them to images with size of 32× 32 and
size of 128× 128, respectively. Finally, we construct the corresponding data set for training
and testing, in which one MS image with size of 32× 32, one PAN image with size of
32× 32 and one HRMS image with size of 128× 128 form a sample pair. We expect to
get the fused images with size of 128× 128, which should be as identical as possible to
the HRMS images. In our reduced-resolution experiment, we upsample the MS images in
training set using the interpolation kernel proposed in [9] as input. In the samples obtained
from the Gaofen-2 dataset, we selected 12,800 sample pairs as the training samples and
256 sample pairs as the testing samples. Since WorldView-2 has more data than Gaofen-2,
we selected 12,800 sample pairs as training samples and 576 sample pairs as testing set.
In terms of the results evaluation, we mainly use the spectral angle mapper (SAM) [31],
relative dimensionless integrated global error in synthesis (ERGAS) [33], generalized image
quality index (UIQI) to n-band extension (Qn) [34], and the spatial correlation coefficient
(SCC) [35] indexes for quality assessment. In the experimental results obtained in the
testing set, we sampled ten small images of size 256 × 256 and measured the quality
indexes of these ten locations separately, calculated the average across all the results and
compared the algorithms. For special objects, such as land, vegetation areas, buildings, and
roads, in the fusion image, we conduct local-area experiments. Our process of conducting
reduced-resolution experiment is shown in Figure 5.

It can be seen from Figure 5 that the setting conditions are slightly different based on
the traditional method and the method based on deep learning. The traditional method
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is to use the image before cropping for fusion operation. There are two main reasons for
this design.The first reason is that traditional methods, such as BDSD and DGSF, need to
set hyperparameters to generate reasonable pan-sharpened images. However, taking the
Gaofen-2 dataset as an example, our testing image size is 2048× 2048, which can be split into
256 patches of size 128× 128. It’s hard to adjust the model hyperparameters for each patch.
The second reason is that the methods based on deep learning takes into account factors
such as memory and time complexity, and usually cuts testing images into small image
patches for processing. In addition, the operation of sharpening image patches and then
splicing them into testing images has higher requirements for the pan-sharpening algorithm.
Because the image patches does not have the gradient information around the edge, the
fused image is prone to grid effect. Therefore, compared to sharpening image patches,
the index of the deep learning methods will generally improve when directly sharpening
testing image. Compared with sharpening testing image, the index of traditional learning
methods are generally lower when directly sharpening image patches. Moreover, in
our experiments, images generated by deep learning methods are generally better than
those generated by traditional methods. Therefore, we only respectively guarantee the
experimental conditions consistency of deep learning methods and traditional methods.

Figure 5. Flow chart of reduced-resolution exmperiment.

Figures 6 and 7 show examples of the testing set fusion results of the Gaofen-2 and
WorldView-2 datasets. To better judge the advantages and disadvantages of the fusion
effect, we spliced the fused images with a size of 128× 128 into the size of the testing set.
Then select an area with a resolution of 512× 512 for display, and zoom in on some details. It
can be seen from the effect display diagram, especially Figure 6, that the four deep learning
methods have better spectral and spatial structure information preservation than other
methods. Traditional methods perform significantly poorly in areas such as vegetation
and soil. The result of DGSF image fusion has obvious spots. ATWT and MTF-GLP have
over-sharpening in some areas and distortion of texture details. The BDSD spectrum
performs well, but there is obvious spatial detail distortion, showing a large area of blur.
While methods based on deep learning outperform the traditional methods, the PCNN and
PanNet still result in insufficient feature extraction and structure preservation. It can be
observed from the effect display diagram, especially the Gaofen-2 display diagram, that the
PCNN and PanNet perform poorly with respect to the image details. In the hyperspectral
region, we can observe that the PSGAN removes some high-frequency details as noise, and
there is excessive denoising. The proposed method can observe subtle differences in the
enlarged detail area of the image. In general, the proposed algorithm achieves the best
fusion effect in terms of the performance of the hyperspectral region and the reduction
in the overall spectral and spatial information. The details are also shown in the residual
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diagrams shown in Figure 8 (Gaofen-2) and Figure 9 (WorldView-2). The residual image is
obtained by subtracting the fusion result from the original LRMS image. In theory, the less
texture the MS image contains, the better the fusion result is.

More detailed comparisons are shown in Table 2 (Gaofen-2) and Table 3 (WorldView-2).
We mark the best indicator in bold in each subsequent table. From these tables, we can see
that the traditional algorithms perform poorly in terms of the various quality indexes. The
indexes of the neural network methods are significantly improved compared with those of
the traditional algorithms. Considering the overall effectiveness of the image fusion step,
the proposed method outperforms all the methods considered.

Table 2. Indexes of fusion results for the reduced-resolution exmperiment on the Gaofen-2 dataset.

Method SAM ERGAS Qn SCC

ATWT 1.7525 2.1664 0.5545 0.5016
DGSF 2.0878 2.0419 0.5626 0.5308
MTF-GLP 1.8830 2.1133 0.6056 0.5330
BDSD 2.1964 1.8314 0.6620 0.6013
PCNN 1.3925 1.2026 0.8081 0.7897
PANNET 1.2200 1.0498 0.8406 0.8342
PSGAN 0.9567 0.8445 0.9098 0.9167
Self_comparison 0.9126 0.7946 0.9147 0.9231
Proposed 0.8671 0.7604 0.9294 0.9348

Reference 0 0 1 1

Table 3. Indexes of the fusion results for the reduced-resolution exmperiment on the WorldView-
2 dataset.

Method SAM ERGAS Qn SCC

ATWT 6.5497 3.0596 0.7602 0.7361
DGSF 6.9088 4.0796 0.6969 0.7237
MTF-GLP 6.5415 4.4157 0.7514 0.7360
BDSD 8.3306 3.4183 0.7365 0.7062
PCNN 5.4269 3.4702 0.8424 0.8929
PANNET 4.6383 2.9386 0.8538 0.9141
PSGAN 3.7764 2.4885 0.8780 0.9495
Self_comparison 3.6108 2.3521 0.8810 0.9523
Proposed 3.5641 2.3519 0.8868 0.9578

Reference 0 0 1 1

4.3. Ablation Experiment

For the ablation experiment, we extracted the main functional modules. We use only
the first-level gradient operator to extract the structural information, and we remove the
loss of the sparse structural information, extracted by the second-level gradient operator, in
Lc (represented by “Only_spatial1” in the experimental part) to verify the function of the
proposed new structural information extraction operator. In addition, we input two kinds
of sparse structural information together with the spectral information into the generator
with only one subnet to verify the function of the multistream structure compensation
generator (represented by “One_subnet” in the experimental part).

We used Gaofen-2 and WorldView-2 datasets to conduct ablation experiments to
prove the effectiveness of the module. Specifically, we use backbone to represent the basic
network after removing the relevant modules. We use One_subnet to verify the role of the
multi-stream structure generator, that is, to splice two types of structure information into a
network with only one branch generator. We use Only_spatial1 to verify the effectiveness of
the second-level gradient operator, that is, only use the first-level gradient operator to bring
it into the multi-branch generator, and remove the constraint on the second-level gradient
operator in the loss. In addition, we used the final network model with all modules as
a comparison. The same data set as the simulation experiment was used for testing and
verification. The experimental results show that the proposed final network method has
achieved good results. In addition, when we control the use of related modules, we can
see that some indicators show significant changes. The performance of specific indicators
is shown in Table 4, and the performance of the effect diagram and residual diagram is
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shown in Figures 6–9. The results in Table 4 show that the addition of the second-level
gradient operator has a significant effect on the improvement of SCC indicators, especially
the performance in the WorldView-2 data set. The multi-stream structure generator has
an obvious effect on the overall effect, especially the improvement of the Qn index. In the
details of the renderings and residual images, a conclusion consistent with the performance
of the indicator can be observed.

Table 4. Index performance of ablation experiments on Gaofen-2 and WorldView-2 datasets.

Dataset Backbone Second-Level Multi-Stream Name SAM ERGAS Qn SCC

Gaofen-2
X X One_subnet 0.8813 0.7876 0.9189 0.9312
X X Only_spatial1 0.9047 0.7802 0.9203 0.9306
X X X Proposed 0.8671 0.7604 0.9294 0.9348

WorldView-2
X X One_subnet 3.6845 2.3758 0.8832 0.9543
X X Only_spatial1 3.5872 2.3659 0.8841 0.9509
X X X Proposed 3.5641 2.3519 0.8868 0.9578

Reference 0 0 1 1

(a) LRMS (b) PAN (c) ATWT (d) DGSF (e) MTF-GLP

(f) BDSD (g) PCNN (h) PANNET (i) PSGAN (j) Self_comparison

(k) One_Subnet (l) Only_spatial1 (m) Proposed (n) HRMS

Figure 6. Fusion results from the reduced-resolution experiment on the Gaofen-2 dataset.
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(a) LRMS (b) PAN (c) ATWT (d) DGSF (e) MTF-GLP

(f) BDSD (g) PCNN (h) PANNET (i) PSGAN (j) Self_comparison

(k) One_Subnet (l) Only_spatial1 (m) Proposed (n) HMS

Figure 7. Fusion results from the reduced-resolution experiment on the WorldView-2 dataset.

(a) ATWT (b) DGSF (c) MTF-GLP (d) BDSD (e) PCNN (f) PANNET

(g) PAGAN (h) One_Subnet (i) Only_spatial1 (j) Self_comparison (k) Proposed

Figure 8. Residual images from the reduced-resolution experiment on the Gaofen-2 dataset.
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(a) ATWT (b) DGSF (c) MTF-GLP (d) BDSD (e) PCNN (f) PanNet

(g) PSGAN (h) One_Subnet (i) Only_spatial1 (j) Self_comparison (k) Proposed

Figure 9. Residual images from the reduced-resolution experiment on the WorldView-2 dataset.

4.4. Full-Resolution Experiment

For full-resolution experiments, we directly use the original LRMS images and PAN
images as input, and bring them into the reduced-resolution model obtained by training.
We still cut the MS image to a size of 32× 32 and the PAN image to a size of 128× 128.
Different from the reduced-resolution experiment, the full-resolution experiment has
no reference image to evaluate the advantages and disadvantages of the fusion effect.
Therefore, we use the quality without reference (QNR) index [36] to evaluate the quality of
the results. The QNR index includes an index Dλ for evaluating the loss of spectral detail
and an index Ds for evaluating the loss of spatial detail.

Figure 10 shows the full-resolution image fusion result of the testing set obtained by
WorldView-2. We still zoomed in on the 100× 100 area. Judging from the index results in
Table 5, the neural network algorithm, especially the algorithm in this paper, is significantly
better than other traditional algorithms. The algorithm in this paper uses the gradient
operator to extract the structural information of the PAN image, which can better preserve
the spatial structure information, and the corresponding spatial structure information loss
index Ds has been greatly improved. Moreover, because the method in this paper designs
a reasonable loss function, the Dλ spectral loss index has achieved better performance than
other neural network algorithms. The overall indicators show that DGSF and MTF-GLP
perform poorly in full-resolution experiments, whether it is the spectral loss indicator Dλ

or the spatial loss indicator Ds. ATWT spectral loss Dλ performance is acceptable, but Ds
has not achieved very good performance. BDSD has achieved good results in traditional
methods, even better than PCNN, but the overall performance is not as good as other neural
network-based methods. A conclusion consistent with the index results can be observed
at the details of the zoomed-in image. As can be seen from Figure 10, the fusion result of
PanNet algorithm has achieved good results in terms of structural information and spectral
information, but it is not good in terms of high-saturation color performance and structural
details. While the PSGAN algorithm has achieved certain advantages in reduced-resolution
experiments, some indicators, but for clearer full-resolution experiments, there is an over-
sharpening phenomenon. Compared with other algorithms, the algorithm proposed in this
paper can reduce the distortion of the spectrum to a greater extent, and it is more sufficient
in the preservation of structural texture information.



Remote Sens. 2021, 13, 2423 15 of 21

Table 5. Indexes of the fusion results for the full-resolution exmperiment on the WorldView-2 dataset.

Fusion Method Dλ Ds QNR

ATWT 0.0728 0.1212 0.8148
DGSF 0.1029 0.1202 0.7893
MTF-GLP 0.0949 0.1438 0.7750
BDSD 0.0426 0.0637 0.8964
PCNN 0.0575 0.0655 0.8808
PANNET 0.0130 0.0312 0.9563
PSGAN 0.0142 0.0410 0.9453
Self_comparison 0.0134 0.0297 0.9573
Proposed 0.0127 0.0239 0.9638

Reference 0 0 1

(a) LRMS (b) ATWT (c) DGSF (d) MTF-GLP

(e) BDSD

(f) PCNN (g) PanNet (h) PSGAN (i) Self_comparison

(j) Proposed

Figure 10. Fusion results from the full-resolution experiment on the WorldView-2 dataset.

4.5. Local Area Experiment

To prove the advantages of the proposed method, we perform more experiments
on local areas in the WorldView-2 images. We take the land, vegetation areas, buildings,
and roads in the fused image as the main objects and test the quality indexes for both
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the reduced-resolution and the full-resolution experiments. In these experiments, we
select ten areas for each main object, which mainly contain the corresponding object,
and then take the average of ten values as the final quality index value. We select three
pansharpening methods based on deep neural network with excellent performance for the
comparative experiments.

For the final experimental results, we selected a certain area of different objects for
display, as shown in Figures 11–18, and displayed the index test results in Tables 6–13.
Among them, it can be seen that the resolution reduction experiment, the method proposed
in this paper is better than the latest method in most quality indicators. In particular, the Qn
index for overall image quality evaluation, and the SCC index for better characterization of
spatial quality. This is due to the design of the multi-level gradient operator, loss function
and generator we proposed. It is worth mentioning that in our proposed method, the
improvement of vegetation and land is minimal for Qn index, vagetation and land. The
road area improvement is the largest, which is about 1.5% higher than the other best
quality indicators. In the resolution reduction image display image, the effect is limited
by the naked eye, but it can still observe a subtle difference.For example, in the red part
of the building area, it can be observed that the color saturation of PCNN and PANNET
is insufficient, and the performance of the architectural details is poor. The color depth
level of PSGAN in the vegetation area is not rich. For full-resolution experiments, we
mainly focus on the results of index evaluation, because there is no image to refer to.
The method we proposed performed best on the road area index, especially the QNR
index rose by about 5%. In the performance of the full-resolution fusion image, PCNN
performs poorly in areas with high color saturation, and there are traces of wire stitching
in local areas. While PANNET is superior to PCNN in terms of spectral information, it is
still insufficient in terms of preserving the details of buildings and road areas. PSGAN
has achieved good visual effects in full-resolution experimental images, but the image
processing is over-smooth. In addition, the retention of spectral information and the level
of detail of structural information are not enough.

(a) LRMS (b) PAN (c) PCNN (d) PANNET (e) PSGAN (f) Proposed

Figure 11. The performance of the land area in the reduced-resolution experiment.

(a) LRMS (b) PAN (c) PCNN (d) PANNET (e) PSGAN (f) Proposed

Figure 12. The performance of the land area in the full-resolution experiment.
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(a) LRMS (b) PAN (c) PCNN (d) PANNET (e) PSGAN (f) Proposed

Figure 13. The performance of the vegetation area in the reduced-resolution experiment.

(a) LRMS (b) PAN (c) PCNN (d) PANNET (e) PSGAN (f) Proposed

Figure 14. The performance of the vegetation area in the full-resolution experiment.

(a) LRMS (b) PAN (c) PCNN (d) PANNET (e) PSGAN (f) Proposed

Figure 15. The performance of the building area in the reduced-resolution experiment.

(a) LRMS (b) PAN (c) PCNN (d) PANNET (e) PSGAN (f) Proposed

Figure 16. The performance of the building area in the full-resolution experiment.

(a) LRMS (b) PAN (c) PCNN (d) PANNET (e) PSGAN (f) Proposed

Figure 17. The performance of the road area in the reduced-resolution experiment.
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(a) LRMS (b) PAN (c) PCNN (d) PANNET (e) PSGAN (f) Proposed

Figure 18. The performance of the road area in the full-resolution experiment.

Table 6. Land area in the reduced-resolution experiment.

Method SAM ERGAS Qn SCC

PCNN 2.1840 1.4834 0.6787 0.9313
PANNET 1.6128 1.1908 0.6794 0.9426
PSGAN 1.5504 1.0725 0.6662 0.9564
Proposed 1.4739 1.0197 0.6819 0.9610

Reference 0 0 1 1

Table 7. Land area in the full-resolution experiment.

Fusion Method Dλ Ds QNR

PCNN 0.1531 0.1333 0.7358
PANNET 0.0693 0.0679 0.8694
PSGAN 0.0582 0.0860 0.8620
Proposed 0.0469 0.0399 0.9157

Reference 0 0 1

Table 8. Vegetation area in the reduced-resolution experiment.

Method SAM ERGAS Qn SCC

PCNN 4.9805 3.0891 0.8056 0.9106
PANNET 4.3985 2.6672 0.8192 0.9178
PSGAN 3.7217 2.2817 0.8497 0.9524
Proposed 3.5140 2.1630 0.8582 0.9603

Reference 0 0 1 1

Table 9. Vegetation area in the full-resolution experiment.

Fusion Method Dλ Ds QNR

PCNN 0.0926 0.1294 0.7902
PANNET 0.0355 0.0688 0.8982
PSGAN 0.0349 0.0843 0.8838
Proposed 0.0227 0.0457 0.9327

Reference 0 0 1

Table 10. Buildings in the reduced-resolution experiment.

Method SAM ERGAS Qn SCC

PCNN 4.8930 3.0488 0.8580 0.9136
PANNET 4.2288 2.7276 0.8651 0.9281
PSGAN 3.4164 2.2940 0.8910 0.9586
Proposed 3.1903 2.1578 0.9012 0.9667

Reference 0 0 1 1

Table 11. Buildings in the full-resolution experiment.

Fusion Method Dλ Ds QNR

PCNN 0.0419 0.0628 0.8984
PANNET 0.0205 0.0377 0.9428
PSGAN 0.0248 0.0496 0.9272
Proposed 0.0211 0.0270 0.9526

Reference 0 0 1
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Table 12. Roads in the reduced-resolution experiment.

Method SAM ERGAS Qn SCC

PCNN 4.2356 2.8598 0.8164 0.8937
PANNET 3.6831 2.5245 0.8199 0.9083
PSGAN 3.0803 2.2228 0.8453 0.9377
Proposed 2.8836 2.0635 0.8577 0.9495

Reference 0 0 1 1

Table 13. Roads in the full-resolution experiment.

Fusion Method Dλ Ds QNR

PCNN 0.1157 0.1483 0.7534
PANNET 0.0482 0.0896 0.8666
PSGAN 0.0536 0.1109 0.8415
Proposed 0.0517 0.0477 0.9030

Reference 0 0 1

5. Conclusions

This paper proposes a panchromatic sharpening generation confrontation network
with multi-level structure enhancement and multi-stream fusion architecture. Different
from other neural network methods, we use multi-level gradient operators to obtain sparse
structure information when processing panchromatic images. Moreover, we specifically
designed a multi-stream fusion CNN architecture to build a GAN generator to better
maintain structural information. In addition, we no longer use a single minimization
strategy to minimize the gap between the fused image and the reference image. On this
basis, we regard the loss of GAN and the information loss corresponding to the multi-
level structure as the input of the optimization function. The appeal mentioned that our
generator network does not use a simple shallow network, and the fusion result has
more sufficient spectral information than the shallow neural network method. Due to our
reasonable design of the generator and loss function for the multi-level gradient operator,
we have better structural information retention for the corresponding deep neural network
method. In the experimental part, we use the representative remote sensing image data
sets Gaofen-2 and WorldView-2 to verify and analyze the proposed method. Experimental
results show that our method is much better than the state-of-the-art methods, especially
in the fields of construction and roads. The success of our method shows that extracting
as much structural information of the panchromatic image as possible and using a multi-
stream network structure can effectively improve the quality index. Unfortunately, there
are multiple hyperparameter settings in the loss function design of our method, which
brings complexity to the application in different fields. In the future, we will design more
innovative network architectures and reduce the involvement of hyperparameters.
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