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Abstract: Analyzing the surface and bedrock locations in radar imagery enables the computation
of ice sheet thickness, which is important for the study of ice sheets, their volume and how they
may contribute to global climate change. However, the traditional handcrafted methods cannot
quickly provide quantitative, objective and reliable extraction of information from radargrams. Most
traditional handcrafted methods, designed to detect ice-surface and ice-bed layers from ice sheet
radargrams, require complex human involvement and are difficult to apply to large datasets, while
deep learning methods can obtain better results in a generalized way. In this study, an end-to-end
multi-scale attention network (MsANet) is proposed to realize the estimation and reconstruction
of layers in sequences of ice sheet radar tomographic images. First, we use an improved 3D con-
volutional network, C3D-M, whose first full connection layer is replaced by a convolution unit to
better maintain the spatial relativity of ice layer features, as the backbone. Then, an adjustable multi-
scale module uses different scale filters to learn scale information to enhance the feature extraction
capabilities of the network. Finally, an attention module extended to 3D space removes a redundant
bottleneck unit to better fuse and refine ice layer features. Radar sequential images collected by the
Center of Remote Sensing of Ice Sheets in 2014 are used as training and testing data. Compared
with state-of-the-art deep learning methods, the MsANet shows a 10% reduction (2.14 pixels) on
the measurement of average mean absolute column-wise error for detecting the ice-surface and
ice-bottom layers, runs faster and uses approximately 12 million fewer parameters.

Keywords: attention; multi-scale; extraction of ice sheet layers; radar tomographic sequences

1. Introduction
1.1. Background

Ice sheets in extremely cold regions are shrinking increasingly quickly and potential
dangers such as rising sea levels caused by the melting of glaciers have become a concern [1,2].
To monitor the change of ice sheet mass, ice mass loss can be estimated by the change
of under-ice structures [3–8]. Glaciologists, at first, could only drill ice cores [9–11] to
determine the structure of sub-surface ice, while researchers now use ground-penetrating
radar (GPR) [12,13] flying over ice sheets to collect under-ice structural data over a large
range [14–16].

Although GPR can collect large-scale ice sheet echograms efficiently, GPR is easily
influenced by noise, making the boundaries of ice layers in the echograms fuzzy and
difficult to identify. Therefore, it is a great challenge to extract useful information from
echograms accurately and efficiently. The manual labeled method, which is commonly used
to mark important ice layer information [14–18], is a highly time-consuming and tedious
task. Thus, researchers began to explore semi-automatic and automatic methods to quickly
and accurately extract ice layer locations [18–26]. The semi-automatic and automatic
methods based on manual feature engineering [18–23] are first to be considered, such as
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the edge-based method [19] and methods based on probabilistic graphical models [20–23].
Now, the automatic extraction method based on the probabilistic graphical model [23]
has achieved state-of-the-art results. However, the complex feature engineering methods
need to design a lot of features manually, such as manually adjusting a large range of
parameters and threshold, which is not suitable for large datasets. Then, owing to the excellent
performance of deep learning (DL) methods in many fields [24–35], DL methods are used to
make a preliminary attempt to detect ice layers from ice sheet echo maps [36–38]. Although DL
methods have not surpassed the state-of-the-art traditional feature engineering methods,
they can avoid the problem of manually designing a large number of features, so DL
methods have great development potential on extracting layers from 3D ice sheet radar
topological images and need to be further studied.

1.2. Motivation

To extract ice layer information, features of ice layers adjacent regions and the relation-
ships between ice layers are usually considered in manual feature engineering, while the
existing deep learning method [38] has failed to do so. Therefore, to make up for the prob-
lems, the following two aspects are considered in our study. In order to further improve
the representation of the features of ice layers adjacent regions, multi-scale features [25–29]
can be used to extract more abundant scale features of ice layers. In addition, an attention
mechanism can also be used to capture long-term relationships between ice layers and fuse
the context information of radar images by paying attention to the features of the ice sheet
radar images at different levels [30–34].

Inspired by the dual attention mechanism [39] and multi-scale features, an end-to-end
multi-scale attention network (MsANet) is proposed to accurately estimate the ice layer
position in the ice sheet radar images. The network consists of two branches, to learn the
unique characteristics of ice-surface layers and ice-bottom layers, respectively. The experi-
mental results show that the MsANet is superior to the existing DL method [38], which
combines a 3D convolution network and recurrent neural network, on the measurement of
the mean absolute column-wise error of ice-surface layers and ice-bottom layers.

1.3. Contribution

Our contributions can be summarized as follows:

(1) An efficient MsANet is proposed, with approximately 12 million (M) fewer parameters
than the state-of-the-art DL method, using an improved 3D convolution network as
the backbone, to realize end-to-end estimation of ice layers in radar tomographic
sequences without manually extracting complex features and which is easily migrated
to other types of datasets.

(2) A multi-scale module, which can supplement the modeling ability of networks,
is introduced to the deep network to capture and express a wider range of sequence
information of radar tomographic slices, to use more useful information and better
match the ground truth.

(3) An improved 3D attention module is introduced in the proposed network, which is
first used in radar tomographic sequences. It is combined with a multi-scale module
to form an attention multi-scale module that can adaptively distribute weights to key
boundary locations with global context and learn critical features, so that prediction
results are more consistent with the ground truth, without the need for other networks
for further feature extraction and reasoning.

The remainder of this paper is organized as follows. The next section outlines the
technologies for layer-finding in radar sequences and explains our inspiration. Section 3
elaborates on the proposed MsANet network. Section 4 reports on experiments with the
MsANet. Finally, the paper concludes with a summary in Section 5.
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2. Related Work

The slow speed of the human-labeled method does not suit the processing of exten-
sive ice sheet radar data; hence, researchers have sought more convenient layer-finding
methods [18–23,36–38], such as traditional handcrafted feature methods and DL methods.
Traditional methods to extract layers from radar sequences rely mainly on the Markov
model [21,23]. Xu et al. [21] used a Markov random field to define the reasoning problem
of radar images with sequential tree-reweighted message passing to track the bedrock
layer. Berger et al. [23] improved the hidden Markov model [21] and fused more evidence
about the ice sheet in the cost function. Traditional manual methods are complex and
slow, which is not suitable for large datasets. DL, which performs well in many fields, has
been explored for the extraction of layers from radar topological sequences. Xu et al. [38]
proposed a multi-task spatiotemporal neural network that combines a 3D convolution
network (C3D) [39] and a recurrent neural network (RNN) [35] to realize the estimation
of layers. Their network uses an additional structure for further feature extraction and
reasoning, it can quickly and simultaneously detect multiple layers and the extracted layers
are smoother than when human-marked.

DL has great development potential and using DL to extract 3D ice sheet terrain based
on radar topological images is just the beginning. The method uses a single 3D small
neighborhood to extract features and learns the correlation between data sequences to
represent the 3D features of radar topological sequences. However, it has some problems.
First, using a single-scale filter and focusing on the correlation of adjacent sequences could
not fully express the 3D features of sequences. Second, the method could not fit well the
ice position and the results conflicted with prior position relationships between ice layers.
Hence, there is room for improvement.

To solve the above problems, multi-scale modules and attention modules were intro-
duced to identify the positions of two layers of radar topological images. Their effect has
been confirmed in other fields [25–35,39], such as object detection, anomaly detection and
so on. Multi-scale modules [25–29] use different scale branches to collect complementary
and different levels of ice sheet radar image features and merge them into multi-scale fea-
tures to remedy the problem of poor feature extraction ability with a single-scale method.
The attention modules [30–34] assign weights to different types of features from the global
perspective to suppress noise, refine important ice boundary features and fit boundaries in
radar topology sequences. A multi-scale module is incorporated in the backbone network
to fully express local information and a cascaded attention module in the deeper structure
is used to highlight the important features of the subterranean layers by global context
information of radar sequential slices. The backbone network, multi-scale modules and
attention modules formed the MsANet.

3. Materials and Methods
3.1. Data and Data Collection Process

GPR collects terrain data under the ice through the pulse electromagnetic wave emitted
by the antenna. In the course of the propagation of the electromagnetic wave in the
underground medium, the electromagnetic wave will be reflected and received by the
antenna of the GPR when encountering underground targets with different dielectric
properties (for example, interfaces and caves). Then, the spatial position of the underground
target can be determined according to the structure, intensity and the round-trip time of
received radar waveform. At present, the radar echograms have been widely used to
map the structure of the bedrock underlying the ice sheet to obtain information on the
ice sheet [3–8] and then estimate the ice flow and the cumulative rate of ice and snow to
predict their contribution to sea level rise [14–16].

The data used in this paper are collected by the airborne Multichannel Radar Depth
Sounder (MCoRDS), a kind of GPR designed by the Center for Remote Sensing of Ice Sheets
(CReSIS) [27]. The approximate positions and the paths for collecting the dataset used in
this paper are shown in Figure 1. There are 102 segments (a total of 5 profiles) containing
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basal terrain data of the Canadian Arctic Archipelago (CAA) (66◦N–83◦N, 61◦W–97◦W),
each of which is about 50 km of 3D topological sequence [28] and can be used to reconstruct
the 3D under-ice terrain of the target area. Three antenna subarrays, each of which contains
5 parallel antenna elements, are installed on the left wing, right wing and bottom of the
fuselage. Moreover, the 7 antennas near and in the central subarray (under the bottom of
the fuselage) are used in application. The MCoRDS vertical resolution is approximately
2 m and its system parameters are shown in Table 1. The data collection process of the
MCoRDS is shown in Figure 2, where the aircraft flying height is 1000 m and the total beam
scanning width is 3000 m. The MCoRDS uses three transmitting beams (left θ1 = −30◦,
nadir and right θ2 = 30◦) for time-division multiplexing to collect the echo data of subglacial
structure. Pulse compression, synthetic aperture radar processing and array processing are
applied to the echo to generate radargrams. Please note that, when using only the antenna
in nadir, 2D flight profile echograms are collected, while when using the beam in three
directions, the MCoRDS collects the continuous topological sequence of the ice sheet in the
cross-track direction. For details of the MCoRDS parameters and processing, please refer
to reference [24] and [40].
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Figure 1. The sites of data acquisition. The Arctic Archipelago is a group of islands along the
Canadian Arctic Ocean; the glacial channels in the Arctic Archipelago are usually narrower than
3000 m.

Table 1. MCoRDS system parameters.

Parameter Value

Radar carrier-frequency 195 MHz
Signal bandwidth 30 MHz

Transmit pulse duration 3 µs
TX antennas 7 Dipoles
RX antennas 15 Dipoles

Pulse repetition frequency (PRF) 12 kHz
Effective storage PRF 3 beams multiplexed, 13 stacked pulses 307 Hz
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Figure 2. Illustration of the imaging process of the MCoRDS. The topology slices are collected by
three beams emitted by the MCoRDS. The flight direction of the aircraft is the along-track direction
(range line), the cross-track direction (elevation angle bin) is perpendicular to the along-track direction and
the fast-time axis (range bin) is perpendicular to both the along-rack direction and the cross-track direction.

The radar topology sequence [41] collected by the MCoRDS is shown in Figures 3 and 4.
Figure 3 shows a frame in a segment of 3D topology terrain sequence data. The horizontal
axis represents the cross-track elevation angles discretized into direction-of-arrival bins
(that is, the radar scanning width) and the vertical axis represents the fast time dimension,
i.e., range bin. The most important structure in each radar topology slice is the ice-surface
layer, which is the interface between air and ice, and the ice-bottom layer, which represents
the boundary between ice bottom and bedrock. It can be found, from Figure 3, that the
ice layer in the echo map is a fuzzy area, accounting for a small part of the total image
area, and it is not easy to distinguish the specific location of ice layers from the echogram.
A segment of the 3D topology sequence consists of a series of continuous ice sheet radar
topology slices, which can reconstruct a complete target terrain, as shown in Figure 4.
On the left, a segment of slices is presented and a 3D terrain reconstructed from these slices
is shown on the right.
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3.2. Network Framework

As shown in Figure 5, the MsANet is divided into three stages: low-level feature
extraction, discriminatory high-level feature extraction and classification. Low-level feature
extraction is used to learn the common features of the ice-surface and ice-bottom layers;
high-level feature extraction is applied to learn features of the ice-surface and ice-bottom
layers; in classification, the estimation of the ice layer locations according to learned features
from the first two stages are output. To better learn the unique characteristics of the ice-
surface and ice-bottom layers, a two-branch architecture [38] is used and an improved
C3D network, C3D-M, ensures the spatial relativity of learned features. To further enhance
the feature extraction capability and avoid the pre-mature fusion of relationships between
radar sequences, adjustable multi-scale modules (Msks) are introduced in all blocks, except
block 1, in the feature extraction stage. To refine the features of layers, improved 3D
attention modules, which can collect global semantic correlations, are introduced in high-
level feature extraction, in which two branches specialize in learning ice-surface and
ice-bottom features, respectively. Moreover, the attention and multi-scale modules are
fused to form an attention multi-scale module and further learn multi-scale layer features
of topology sequences.

The MsANet contains five types of blocks. After sequential slices are fed into the
MsANet, the general low-level features of two layers are learned in shallow block 1 and
the convolution unit, cascaded with an Msk in block 2, is used to further learn multi-scale
information of low-level features. Discriminatory features of the ice-surface and ice-bottom
layers are separately extracted by blocks 3 and 4, respectively, in the parallel branches.
After the features pass through multiple convolution units in blocks 3 and 4, they are sent
to the attention multi-scale module, in which features are first processed by the attention
module to select key features, and the Msk is then used to learn the scale information of
key features. Finally, in the classification part (block 5) of the two branches, estimations
of the ice-surface and ice-bottom layers are performed according to the learned advanced
features. Each branch outputs the estimated result of ice layers and the combination of
these results is the final estimation of the ice layers.
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3.3. Architecture of C3D-M

Since 3D convolution could simultaneously learn 3D features, a 3D convolution
network [39] with compact feature extraction ability is selected as the backbone. A dual-
branch structure [38] is adopted and improved to form the C3D-M network, which has
two modifications. First, to retain more distinguishing features, mixed pooling (Mp) units
are introduced into each feature extraction block, using the element summations of 3D
maximum pooling and 3D average pooling. Second, the first full connection layer (Fc)
in block 5 is replaced by a convolution unit (Conv), to ensure the spatial relativity of
the collected features, and a full connection layer directly estimates the position of each
ice layer.

As shown in Figure 6, the improved C3D-M structure consists of five blocks. The first
two blocks learned common low-level features in ice sheet radar images. From the third
block, C3D-M is divided into two branches to learn discriminatory features of air-surface
and ice-bottom layers. Classification with block 5 was performed to output the estimation
of ice layers. In the feature extraction stage, the convolution unit is 3 × 5 × 3 and the Mp
unit is 1 × 2 × 2. The numbers of the convolution filters in blocks 1–5 are 16, 32, 64, 128
and 128, respectively.
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3.4. Multi-Scale Module

The Msk uses multiple branches with different scale convolution to learn features
in different deep directions (the deep direction is the same as the sequence direction).
As shown in Figure 7, the Msk is composed of the K branch 3D convolution units with
different depths to collect more scale information, a bottleneck unit for channel transfor-
mation and an Mp unit. The K branch could be adjusted according to the input to obtain
different sequence information. The convolution filter sizes of K branches are 1 × 1 × 1,
3 × 3 × 3, . . . , Dmax × 3 × 3, where Dmax is an odd number and the maximum of Dmax is
the number of input data frames.

3.5. 3D Attention Module

To refine important features of ice layers, inspired by the position attention module
(PAM) and channel attention module (CAM) of Fu et al. [34], a 3D attention module is
proposed, which extends PAM and CAM to PAM3D and CAM3D, respectively, in 3D space,
to learn 3D attention features. Unlike the attention module with C1, C2, C6, C7 and C8
bottleneck units [34], PAM3D and CAM3D are used with C1, C2, C6 and C7 bottleneck
units; a C8 unit is not included because it easily confuses the useful features and reduces
the distinctive features of the two layers. Equal numbers of channels in bottleneck units,
whose filter size is the same as that of Fu et al. [34] and which is extended to 3D, were used
in the improved 3D attention module to learn more features.
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As shown in Figure 8, the proposed 3D attention module is divided into two parallel
branches. The extracted features are sent to parallel bottleneck units (C1, C2) for feature
transformation and features are fed to PAM3D and CAM3D in parallel to learn information
from different aspects. PAM3D uses three 1 × 1 × 1 convolution units (C3, C4 and C5)
to learn features, K, Q and V, and assigns a location weight E [34], in which data are
extended to 3D. In CAM3D, 3D features are processed, such as reshaping, transposing
and other operations [34], to generate channel weights E′. After flowing through PAM3D
and CAM3D, a convolution unit (C6, C7) is used and element summation is performed to
generate final attention features.
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Figure 8. Illustration of the 3D attention module structure. The 3D attention module structure is
made up of two branches, the upper branch is the 3D position attention module and the lower one
is the 3D channel attention module. E′ and E are the feature maps with attention weights. In our
attention module, the C8 unit, whose original placement position is indicated by the light-blue
dashed box, used in [34] is deleted.
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4. Experiment and Discussion

We describe the basic settings of the experiments in Section 4.1. Ablation experiments
for each module are described in Section 4.2. The results of the MsANet are compared
to those of other layer-finding methods in Section 4.3. The results of the MsANet are
visualized in Section 4.4. In order to further verify the effectiveness of the MsANet, more
experiments are shown in Section 4.5.

4.1. Datasets and Settings

Dataset and data preprocessing. A total of 8 segments of 2014 CAA data obtained
by CReSIS [41], each containing 3332 topological slices, is used for training and testing.
Each slice corresponds to a true label image. The total number of used slices or true label
images is 8 × 3332 = 26,656. Each slice is resized from 824 × 64 to 64 × 64 by bicubic
interpolation to reduce the number of parameters and the running time. Five consecutive
frames are randomly selected from topological sequences as input. The input size is
1 × 5 × 64 × 64, i.e., one input channel and five slices of size 64 × 64.

Before the data are fed to the network, they are preprocessed with the same method
of [38]. The data in each slice are normalized to [−1, 1] and subtract the data mean value
computed from the training images. The ground truth of each frame, that is, the absolute co-
ordinates labels of the ice layer position in every single column of each frame, is normalized
as in Equation (1):

N
(

gm, s
i

)
= 2

(
gm, s

i − H/2
)

/ H, (1)

where gm, s
i represents the ground truth of the i-th column of the “s” frame in the “m”

segment, s ∈ [1, 3332] and i ∈ [1, W] and H signifies the height of each image before resize.
Implementation. All experiments were performed on a GTX 2080Ti, with 60% of the

8 segments of data randomly chosen for training and the remainder for testing. The basic
learning rate was 0.0001, attenuating by half every five epochs, with an L1 loss function
and Adam optimizer to update parameters, with a batch size of 64.

Metric. The average mean absolute column-wise error (average mean error) is calcu-
lated as:

average mean error =
∑n

n=1 ∑d
d=1 ∑W

i=1 |ŷi − gi|
n·d , (2)

where gi is the ground-truth value of the i-th column of each frame (note, the number
of segment and slice are omitted, which is the same as gm, s

i in Equation (1)), ŷi is the
estimation result of the corresponding column using the MsANet, W is the column width
of each input image, d is the number of input frames and n = 3 is the number of times of
training from scratch.

4.2. Ablation Experiments

We verify the effect of the backbone C3D-M and describe the experiments on the
performance of branches in the Msk. We discuss the effectiveness of different positions of
the improved 3D attention module and verify the influence of the C8 unit in the improved
3D attention module.

4.2.1. Choice of the Backbone Network

Table 2 shows the effects of backbone networks, which use different structures in
the classification stage. The effects of the C3D network using two full connection layers
are shown in columns 1–3, using the results of the experiments with 512 channels [38]
in column 1 as a baseline. Columns 4–6 show the performance of the improved C3D-M
networks, which combine a convolution unit with different channels and a full connection
layer in the classification stage. “Air” is the average mean error of the ice-surface layer
extracted by networks, “bed” is the average mean error on the ice-bottom layer and “sum”
is the sum of “air” and “bed”. Using the same evaluation as Xu et al. [38], we also used
the comprehensive results for comparison. The improved C3D-M network, which uses a
convolution unit and a full connection layer with 256 channels, is the best, with 1.71 fewer
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pixels than the baseline. Experiments show that combining a convolution unit and a full
connection layer is more effective than two full connection layers with the same channels.
From the experiments, the combination of a convolution unit and a full connection layer is
seen to be important. The C3D-M network with 256 channels is selected as the backbone of
the MsANet.

Table 2. Experiments on different classification structures.

Average Mean
Error (Pixels)

Fc
128-512

Fc 512-64

Fc
128-256

Fc 256-64

Fc
128-128

Fc 128-64

Conv
1 × 4 × 4
Fc 512-64

Conv
1 × 4 × 4
Fc 256-64

Conv
1 × 4 × 4
Fc 128-64

Air 6.51 7.04 6.95 5.78 6.15 6.6
Bed 16.16 16.85 17.51 15.21 14.81 16.59
Sum 22.67 23.89 24.46 20.99 20.96 23.19

4.2.2. Multi-Scale Module

To evaluate the effect of the Msk, C3D-M is used as the backbone and combinations of
different scale filters are tested, with results as shown in Table 3. The baseline is the result of
the C3D-M backbone. To make comparisons under the same conditions, the same 5-frame
input is used as a baseline, so the number of branches in the Msk is K = 3. Experiments
show that, for radar topology slices, combinations of filters with different sequence ranges
have different effects and more scale filters bring better results. A 3-branch Msk has the
most obvious extraction effect, whose result is 0.47 pixel lower than the baseline.

Table 3. Ablation study of filter sizes in branches in Msks. The symbol of ”
√

” in the form means
which method is used.

Method 1 × 1 × 1 3 × 3 × 3 5 × 3 × 3
Average Mean Error (Pixels)

Air Bed Sum

Baseline 6.15 14.81 20.96

Multi-scale

√ √
6.3 14.71 21.01√ √

5.96 14.69 20.65√ √
6.22 14.69 20.91√ √ √
6.04 14.45 20.49

To verify the performance of more branches in the Msk, the results of 3- and 4-branch
Msks with seven frames of input are tested, with results as shown in Table 4. The first row is
the baseline generated by the C3D-M network, followed by the effects of different numbers
of branches in the Msk. It can be seen that the 4-branch multi-scale module performed best,
whose result is 0.62 pixel less than the baseline and 0.06 pixel less than that of the 3-branch.
Although the 4-branch Msk performs best, it requires more parameters than the 3-branch,
with small improvement. Considering the extraction result and parameters, the Msk with
K = 3 branches is adopted.

Table 4. Results of different branches in Msks with 7-frame input data.

Method
Average Mean Error (Pixels)

Air Bed Sum

Baseline 5.53 14.46 20.15
3-branch Msk 5.59 14.00 19.59
4-branch Msk 5.64 13.89 19.53

4.2.3. 3D Attention Module

Table 5 shows the effects of PAM3D and CAM3D in different positions of the backbone.
The first line is the baseline generated by the backbone C3D-M network with a 3-branch
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Msk inserted. Considering that the attention module shows better performance on higher-
level features, we first experimented with PAM3D and CAM3D in block 4 to verify their
effect. The results of experiments in lines 2–4 show that using PAM3D or CAM3D alone
in the network is effective and their combination performed better than networks using a
single attention module. The position effect of the combination of PAM3D and CAM3D
is shown in lines 4–6. These experiments indicate that combinations in various positions
show different improvements and, when the combination of PAM3D and CAM3D is placed
in blocks 3 and 4, they show mutual promotion, with results 0.83 pixel less than the baseline.
In the improved 3D attention module, PAM3D and CAM3D are simultaneously used in
blocks 3 and 4.

Table 5. Performance of attention modules in different positions. The symbol of “
√

” in the form
means which method is used.

Method Average Mean Error (Pixels)

PAM3D CAM3D Block 3 Block 4 Air Bed Sum

6.04 14.45 20.49√ √
5.84 14.12 19.96√ √
5.97 14.29 20.26√ √ √
5.63 14.31 19.94√ √ √
5.62 14.11 19.73√ √ √ √
5.43 14.23 19.66

Table 6 shows the results of experiments on the necessity of C8 units in the 3D attention
module. The first row is the baseline generated by the C3D-M network with Msks and 3D
attention modules without bottleneck units. Row 2 shows the results with bottleneck units,
except C8, and row 3 shows the effects of experiments with bottleneck units, including
the C8 unit. It can be found that the results with bottleneck units except C8 are best, with
a reduction of 0.74 pixels compared to the baseline. Results in rows 1 and 3 show that
bottleneck units could improve the effect of 3D attention modules, but the results in rows 2
and 3 show that the C8 bottleneck does not make sense. Based on our experiments, the C8
unit is not used.

Table 6. Experiments with and without C8 unit in attention module. The symbol of ”
√

” in the form
means which method is used.

C1C2C6C7 C8
Average Mean Error (Pixels)

Air Bed Sum

5.85 13.95 19.8√
5.66 13.4 19.06√ √
5.43 14.23 19.66

4.3. Comparison and Discussion with Other Methods

To better evaluate the effect of MsANet, which consists of a C3D-M with inserted Msks
and 3D attention modules, it is compared to other methods on the average mean absolute
column-wise error, numbers of parameters and speed, as shown in Table 7. Lee et al. [20]
and Xu et al. [21] used traditional methods, with a Markov random field to realize layer-
finding through different reasoning methods. However, Lee et al. [20] used technology
originally designed for layer inference of 2D images, which did not consider the relationship
between topological slices, and Xu et al. [21] decided to extract the ice-bottom layer from the
radar topological sequence and introduced additional evidence from other sources of data,
e. g., the “ice mask.” Xu et al. [38] used C3D and RNN networks to extract ice-surface layer
and ice-bottom layer from radar tomographic sequences. For a fair comparison, the ice
mask information is removed from Xu et al. [21] and this is marked with an asterisk (“*”).
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Table 7. Results compared with other methods using 8 segments of data to train and test. The method
marked with “*” is the method of Xu et al. [21] which removes the ice mask information.

Methods Air Bed Sum Time (s) Parameters (M)

Lee [20] - 35.6 35.6 - -
* Xu [21] - 30.7 30.7 - -

Xu et al. [38] 8.1 13.1 21.2 4128 25.3
MsANet 5.66 13.4 19.06 (↓2.14) 263.65 12.82 (↓12.48)

As shown in Table 7, the MsANet has the lowest average mean error summed across
the two layers, the fastest running time and the minimum number of parameters. The tra-
ditional methods [20,21] are inferior on the “bed” of average mean error under the same
conditions, while DL methods ([38] and the MsANet) perform better in less time. The result
of the MsANet is 2.14 pixels less than that of Xu et al. [38] on the sum of the two layers,
the MsANet uses 12.48 M fewer parameters and the MsANet runs faster. Evaluated on the
two ice layers alone, the MsANet has the best results of the ice-surface layer and is second
on the ice-bottom layer. Although the result of bedrock identification by the MsANet is
slightly inferior to that of Xu et al. [38], our method uses less computational time for a
better comprehensive effect.

4.4. Visualization of Results

The results of the MsANet are visualized for direct observation. The three sets of extracted
topological slices with the estimated position of the ice layers are shown in Figure 9. The
red line represents the position of the estimated ice-surface layer and the green line is the
position of the ice-bottom layer boundary. The first row shows the human-labeled ground
truth of radar topology images, the second and third rows visualize the results extracted
by Xu et al. [38] and the MsANet, respectively. The results of the MsANet are better than
those of Xu et al. [38]; for example, the MsANet can learn the prior constraint relationships
between ice layers, whose identified ice-bottom layer does not exceed the ice-surface layer,
as shown in Figure 9b. In most part of 3D topology slices, the MsANet can effectively
identify the smooth boundaries of the layers, while in weak echo parts of 3D topology
slices, the layers extracted by the MsANet are not precise enough, as shown in the right of
Figure 9c.

The comparison of the ice layer details extracted by Xu et al. [38] and the MsANet is
shown in Figure 10. The first column on the left is the extracted results of Xu et al. [38],
while the fifth column is the extracted results of the MsANet and the middle three columns
are respectively zoomed portions of the results extracted by Xu et al. [38], human-labeled
and the MsANet for finer resolution analyses and comparisons. It can be seen that the
layers extracted by the MsANet are closer to the ground truth than Xu et al. [38] in most
part of the 3D ice sheet radar topology slices, such as the zoomed portion of (a) and (b)
and the left part of the zoomed portion of (c). However, in parts of the 3D ice sheet radar
topology slices, especially in strongly noisy parts, such as the right part of the zoomed
portion in (c), both methods of Xu et al. [38] and the MsANet cannot correctly identify the
ice position. Parts of the reconstructed ice-surface layer and ice-bottom layer structures are
shown in Figure 11a,b.
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Figure 9. Visualization of radar topology slices. (a–c): Three set of comparison of extracted ice-surface layer positions and 
ice-bottom layer positions obtained by human labeled, method of Xu et al. [38], and method of MsANet. For better viewing, 
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Figure 9. Visualization of radar topology slices. (a–c): Three set of comparison of extracted ice-surface layer positions and
ice-bottom layer positions obtained by human labeled, method of Xu et al. [38], and method of MsANet. For better viewing,
images are converted to gray-scale. The red line indicates the ice-surface layer and the green one is the ice-bottom layer.
The width direction represents the elevation angle bins and the height direction represents the range bins, which is the same
as the fast-time axis.
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Figure 10. Visualization of comparisons of zoomed portions of the extraction results of Xu et al. [38] and the MsANet. (a–c):
Three set of comparison of extracted zoomed ice-surface layer positions and ice-bottom layer positions obtained by human
labeled, method of Xu et al. [38], and method of MsANet.

Figure 12a,b display, respectively, the elevation difference between the layers recon-
structed by ground truth and reconstructed layers by the MsANet on the ice-surface layer
and on the ice-bottom layer, that is, the elevation of reconstructed layers by ground truth
minus the elevation of reconstructed layers by the MsANet, respectively, on the ice-surface
layer and the ice-bottom layer. The reconstructed layers by the MsANet have similar
appearances to the ground truth and the elevation difference of reconstructed ice layers
between human-labeled and the MsANet are close to zero in most places. Only in the edge
parts of the elevation difference images between the ground truth and reconstructed layers
by the MsANet, there are some differences. As shown in Figure 12b, there are relatively
higher elevation differences in the yellow area between the two dashed lines of the second
elevation difference image. When the corresponding topological slices are analyzed, it is
found that they are so blurred on their right part that it is difficult to clearly determine the
ice-bedrock layer positions.
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Figure 11. Reconstructions of terrain from results extracted by the MsANet without any interpolation method. Unit: meter.
(a) Ice-surface layer. (b) Ice-bottom layer. The x-axis in each image means the flight path and the y-axis is the scanning width
of the MCoRDS, while the color indicates the elevation of layers, which is the depth from the radar. For better observation,
red boxes are used to mark the part where the MsANet extracted results are close to the ground truth and black boxes are
applied to highlight the part where the MsANet extracted results are not similar to the ground truth.
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4.5. Extended Experiments

To further verify the effectiveness of the MsANet, more data, 97 segments of Canadian
Arctic Archipelago (CAA) basal terrain topological slice data (other five segments with
different numbers of slices are not considered), are used for training and testing with
different divisions of training sets and test sets, respectively: (1) 60% of 97 segments
for training, the remaining 40% for testing; (2) about 75% of 97 segments for training,
the remaining 25% for testing. The parameters and settings of the MsANet are the same as
those in Section 4.1.

It can be found, from Table 8, that with the increase in training data, the extraction
results of the two networks are constantly improved and the performance of the MsANet
is better than that of Xu et al. [38]. The numbers in brackets indicate the improvement on
the evaluation of “sum” of the networks (Xu et al. [26] and the MsANet) using different
proportions of training sets. After making the same change to the training data, the
improvement of the MsANet results (10.5%) is higher than that of Xu et al. [38] (7.5%)
on the evaluation of “sum”. In general, our MsANet is also better than the method of
Xu et al. [38] in the expanded dataset.

Table 8. Experimental results with different divisions of 97 segments data.

Data Partition Method Air Bed Sum

60% segments to train C3D + RNN [38] 6.54 12.7 19.24

40% segments to test MsANet 6.38 12.63 19.01

75% segments to train C3D + RNN [38] 6.43 11.36 17.79 (↓7.5%)

25% segments to test MsANet 6.2 10.82 17.02 (↓10.5%)
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5. Conclusions

We propose the MsANet framework to extract and reconstruct ice layers from radar
topological sequences at less cost. The MsANet combines multi-scale and attention mod-
ules, using an improved 3D convolution network as the backbone, to better learn the scale
information of key features extracted from the ice-surface and ice-bottom layers to estimate
them. Experiments showed that, compared to state-of-the-art DL methods, the MsANet
can better learn the constraints between ice layers and it has better performance in the
extraction of clear boundaries, its estimation of ice layers on the edges of images is closer
to the ground truth and it can identify parts of ambiguous ice layer structures. However,
the extraction ability of bedrock is poor, perhaps due to the lack of a learning relationship
of wide-range topological sequences. Our future work will further consider the integration
of wide-range topological sequence relationships to optimize the extraction of the location
of the ice-bedrock layer and take into account the convolution long short-term memory
network to gain better performance.
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