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Abstract: Remote sensing has been applied to map the extent and biophysical properties of man-
groves. However, the impact of several critical factors, such as the fractional cover and leaf-to-total
area ratio of mangroves, on their canopy reflectance have rarely been reported. In this study, a sys-
tematic global sensitivity analysis was performed for mangroves based on a one-dimensional canopy
reflectance model. Different scenarios such as sparse or dense canopies were set up to evaluate the
impact of various biophysical and environmental factors, together with their ranges and probability
distributions, on simulated canopy reflectance spectra and selected Sentinel-2A vegetation indices of
mangroves. A variance-based method and a density-based method were adopted to compare the
computed sensitivity indices. Our results showed that the fractional cover and leaf-to-total area ratio
of mangrove crowns were among the most influential factors for all examined scenarios. As for other
factors, plant area index and water depth were influential for sparse canopies while leaf biochemical
properties and inclination angles were more influential for dense canopies. Therefore, these influ-
ential factors may need attention when mapping the biophysical properties of mangroves such as
leaf area index. Moreover, a tailored sensitivity analysis is recommended for a specific mapping
application as the computed sensitivity indices may be different if a specific input configuration and
sensitivity analysis method are adopted.

Keywords: global sensitivity analysis; PAWN; canopy reflectance model; vegetation index (VI); mangroves

1. Introduction

The extent and biophysical properties of mangroves have been mapped from multi-
spectral remote sensing (RS) images [1–4]. However, several factors such as the woody
material and tidal height could affect the canopy reflectance [5,6], which was often ignored.
The scientific community has been aware of these, but quantitative assessments are still
needed to identify essential factors that have a major impact on the spectral responses
of mangroves.

Sensitivity analysis (SA) is the study of how to attribute the variation or uncertainty
in the output of a model to variations in the model inputs [7,8]. It can be employed to
rank the input factors based on their contributions to the variations of the model output,
to identify factors that have an insignificant impact on output variations and to find out
regions in the input space that produce particular output values [7,8]. SA can be divided
into global SA (GSA) or local SA according to whether input values are allowed to vary
across the entire input space or around a reference point in the input space [8].

SA has been broadly employed in RS to recognise the input factors that had a major
impact on vegetation canopy reflectance using various canopy reflectance models (CRMs).
The PROSPECT model [9], the SAIL family including SAILH, 4SAIL2 and soil–leaf–canopy
(SLC) [10–12] and the PROSAIL (PROSPECT + SAIL) model [13] were among the CRMs
that had been extensively explored. Variance-based SA (VBSA) methods have attracted a
great deal of attention. Its fundamental concept is to decompose the direct contribution
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of a factor to output variance and its overall contribution when interaction effects with
other factors are considered [8,14,15]. Corresponding metrics are usually termed as first-
and total-order sensitivity indices. Liu et al. [16] applied the extended Fourier amplitude
sensitivity test (EFAST) [17] to calculate the first order indices and interaction effects for
analysing the sensitivities of vegetation indices (VIs) to the leaf area index (LAI) and other
interference factors, such as leaf chlorophyll content (Cab) and average leaf inclination
angle (θl), and evaluating the uncertainties caused by these factors. This study found that
leaf parameters such as Cab and leaf dry matter content (Cm) had an increasing impact
on the uncertainty of estimated LAI towards higher LAI and θl was the most critical
factor for LAI estimation if an ellipsoidal distribution [18] was used. Xiao et al. [19] also
adopted EFAST and model simulations to investigate the sensitivities of reflectance and
VIs to biophysical and biochemical parameters at the leaf, canopy and regional levels.
The importance of leaf parameters reduced at the canopy level, especially for a LAI value
of 0–3, where LAI dominated except for the absorption bands of Cab and leaf water
content (Cw). Although the contributions of LAI and soil were still evident for a sparse
canopy, the fractional cover of vegetation (fCv) dominated at the regional level. The
importance of LAI and soil dropped significantly for LAI > 3 at both the canopy and
regional levels. Mousivand et al. [20] proposed an improved design and sampling for SA
to identify influential and non-influential factors on canopy reflectance based on the SLC
model [12], in which soil moisture (SM) and fCv were explicitly considered. fCv, LAI, θl
and SM were recognised as the most influential factors for a LAI range of 0–6.

The studies mentioned above mainly focused on terrestrial vegetation, while only
limited SA studies were carried out for aquatic vegetation. Villa et al. [21] introduced two
new VIs specifically for aquatic vegetation: the normalised difference aquatic vegetation
index (NDAVI) and the water adjusted vegetation index (WASI) and performed VBSA
to evaluate their sensitivities to LAI, Cab and θl. Both radiative transfer simulations and
linear spectral mixture simulations based on real endmembers were applied. The new VIs
were found to have a higher sensitivity to LAI and θl and better capacity in separating
aquatic and terrestrial vegetation compared with previous VIs for terrestrial vegetation
such as NDVI. Unfortunately, the fCv in 4SAIL2 was fixed to 1, and thus its impact was not
discussed. Zhou et al. [22] conducted EFAST for emergent and submerged vegetation based
on a CRM model for aquatic vegetation [23]. Four scenarios were adopted according to the
combinations of shallow or deep water and sparse or dense canopies. Canopy reflectance
spectra and four VIs, including NDAVI and WAVI for Sentinel-2A (S2A) images, were
simulated. The most influential factors were found to be different for two vegetation types,
with leaf and canopy parameters being dominant for emergent vegetation while water
components accounted for most variability in canopy reflectance of submerged vegetation.
For emergent vegetation, the total order sensitivity indices of all four VIs to LAI were high
for a sparse canopy but dropped notably for a dense canopy. NDAVI outperformed the
other three VIs for a dense emergent canopy in terms of their sensitivities to LAI.

Although extensively applied, VBSA was based on an implicit assumption that vari-
ance was sufficient to represent output variability [24]. This assumption was not appropri-
ate if the output was highly skewed or had multiple modals [25]. Moreover, the probability
distribution of an input factor also mattered, and the total order indices could not be
computed if there were correlated inputs [24]. However, input probability distributions
were usually assumed to be uniform, e.g., [20,22]; the potential correlations between input
factors and the output distributions were rarely examined in many VBSA studies.

These limitations of VBSA could be avoided by adopting moment-independent sen-
sitivity indices that relied on the entire output distribution rather than a particular mo-
ment [26]. These were also referred to as density-based SA (DBSA) as they employed the
probability density function (PDF) or cumulative distribution function (CDF) of the output
to characterise its uncertainty [8,27]. The basic idea was to evaluate the sensitivity by
calculating the divergence between unconditional output PDF and conditional output PDF,
where “unconditional” represented varying all input factors while “conditional” meant
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that the corresponding input factor was fixed [8]. Despite its advantages, DBSA was not
widely applied, partly due to the challenges in obtaining conditional PDFs. Thus, using
CDF instead of PDF could reduce the computational costs and make it relatively easy to
implement [25].

In summary, current studies on SA of canopy reflectance of terrestrial vegetation
and their conclusions might not be applied to mangroves directly, partly because the
adopted CRMs ignored essential factors for mangroves such as fCv, water body and woody
material. Additionally, a few recently proposed VIs for aquatic vegetation, e.g., [21], would
possibly be effective for the RS of mangroves, but quantitative assessments were required.
In addition, the impact of potential correlations between input factors, e.g., plant area
index (PAI) and fCv [28], input probability distributions and the adopted SA methods on
the produced sensitivity indices also needed more evaluations. Therefore, the objective
of this study is to perform a systematic GSA for mangroves to quantitatively assess the
impact of various biophysical and environmental factors on their canopy reflectance and
selected VIs, and to identify the most influential factors under different scenarios, e.g.,
sparse or dense canopies. The findings may help to improve our understanding of the
spectral characteristics of mangroves and recognise the factors that may be mapped from
multispectral satellite images.

2. Methodology
2.1. Overview

In this study, 16 factors were selected based on a priori knowledge, similar studies
such as [19,20,22] and trial tests. As only images captured by nadir or near-nadir viewing
satellites, e.g., Sentinel-2, would be applied at this stage, the observation zenith angle
was set as 0◦, and the solar zenith angle was fixed as 30◦ to avoid distraction. Then
various mangrove scenarios such as sparse or dense canopies were set up according to
one or more properties such as the crown PAI and fCv. This corresponded to different
mangrove formations such as open or closed forests. Samples of the 16 input factors were
generated using VBSA or DBSA and following uniform or normal probability distributions.
The canopy reflectance spectra from 400 to 2500 nm with a 1 nm interval were then
simulated using a CRM of mangrove [28]. Additionally, values of corresponding S2A
bands (Bands 2–8, 8a, 11 and 12) were simulated by convolving the simulated reflectance
spectra with the spectral response functions of S2A. Then twelve VIs were calculated.
Finally, both VBSA and DBSA were performed and the computed sensitivity indices were
examined and compared. The GSA flowchart is shown in Figure 1.

2.2. Canopy Reflectance Model of Mangroves

The adopted CRM of mangroves was a one-dimensional multiple-layer radiative
transfer model [28]. It considered essential biophysical and biochemical properties of
mangroves such as Cab, PAI, fCv, L2T ratio, inclination distributions of leaves and woody
material and environmental factors such as the water body. It could be regarded as an
extension of a previous CRM for aquatic vegetation [23], which was a revision of the
PROSAIL model. Mangroves were divided into three layers as in [28]: the understory (L1),
the stem (L2) and the crown (L3) layers (Figure 2). The layer index would be added to the
variable names in the following to distinguish them from each other, e.g., PAI(3) for the
PAI of the crown layer. The height of the understory was assumed to be the same as water
depth (Hw), and water was not allowed to immerse the crown as that could change canopy
reflectance significantly [29]. Stems were assumed to be covered by the crowns and hence
only had a minor contribution to canopy reflectance. Thus, the stem layer was assigned a
low PAI value of 0.5 and a low fCv value of 0.15, according to [28]. Similarly, most factors
with regard to the optically active components in the water body and other environmental
factors such as bottom reflectance were also fixed as their impact on canopy reflectance was
minor when covered by the canopy. For example, the contribution of suspended particles
in the background water on canopy reflectance was around 10% or lower and mainly in
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the visible region [22,28]. Therefore, more attention was paid to the crown, the understory
and Hw, and other factors were beyond the scope of this study. Hw corresponded to the
changing tidal height. PAI(1) and fCv(1) were employed to explore if there were any
potential contributions from the understory to the observed canopy reflectance, especially
for a sparse canopy.
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Figure 2. Illustrations of the understory (L1), stem (L2) and crown (L3) layers for mangroves. Hw is
the water depth and is assumed to be the same as the height of the understory for simplicity (The
symbols are courtesy of the Integration and Application Network, University of Maryland Center for
Environmental Science (ian.umces.edu/symbols/, accessed on 14 June 2018)).

2.3. Mangrove Scenarios

If not specified, the input factors were independent, as they were treated in other SA
studies [19,20,22]. All samples discussed in Section 2.3.1 were generated using the Latin
hypercube sampling (LHS) [30] following a uniform or normal probability distribution.
Although independent input samples were widely adopted in SA studies, there might be
an issue with some biophysical properties. For example, it was possible to obtain a high
PAI(3) value together with a low fCv(3) value or vice versa if they were assumed to be

ian.umces.edu/symbols/
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independent (Figure 3a). However, this was not reasonable in nature and the field data
in [28] revealed a positive correlation with a coefficient of determination of 0.73 between
the PAI and fCv of mangroves. Therefore, another input dataset with correlated PAI(3) and
fCv(3) was also designed in Section 2.3.2.
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fractional cover (fCv(3)) are assumed to be independent (using Latin hypercube sampling) (a) or
linearly correlated (b).

2.3.1. Factors, Their Ranges and Distributions

GSA was performed for three different mangrove scenarios defined by the ranges of
PAI(3) and fCv(3): general canopy (GEN), sparse canopy (SPS) and dense canopy (DEN)
(Table 1), as previous studies demonstrated that different ranges of inputs could result
in different sensitivity values [19,22]. PAI(3) ranges were set as 0–6 for GEN, 0–3 for SPS
and 3–6 for DEN according to the literature [19,31]. Correspondingly, fCv(3) ranges were
0–1, 0–0.7 and 0.5–1. The overlap between the fCv(3) ranges for SPS and DEN was to
reflect the variability in mangrove forests. The SPS and DEN scenarios corresponded to
open and closed mangrove forests, while the GEN scenario included both situations and
implied a significant variation of mangrove formations. Ranges of other factors such as
leaf parameters were not changed across these scenarios.

Table 1. Considered input factors and configurations for mangrove scenarios.

Factors Unit Definitions
General Uniform Sparse Uniform Sparse Normal Dense Uniform Dense Normal

Min Max Min Max Mean STD Min Max Mean STD

Leaf

N - Leaf structural properties 1 4 1 4 3 0.3 1 4 3 0.3
Cab µg·cm−2 Leaf chlorophyll content 0 100 0 100 35 3.5 0 100 35 3.5
Cw µg·cm−2 Leaf water content 0 0.2 0 0.2 0.07 0.007 0 0.2 0.07 0.007
Cm g·cm−2 Leaf dry matter content 0 0.05 0 0.05 0.01 0.001 0 0.05 0.01 0.001

Canopy

PAI(1) - Plant area index (PAI) of
Layer 1 (L1, understory) 0 3 0 3 1 0.1 0 3 1 0.1

PAI(3) - PAI of Layer 3 (L3, crown) 0 6 0 3 2 0.2 3 6 4.5 0.45
L2T(1) - Leaf-to-total area ratio of L1 0 1 0 1 0.5 0.05 0 1 0.5 0.05
L2T(3) - Leaf-to-total area ratio of L3 0 1 0 1 0.75 0.075 0 1 0.75 0.075
fCv(1) - Fractional cover of L1 0 1 0 1 0.5 0.05 0 1 0.5 0.05
fCv(3) - Fractional cover of L3 0 1 0 0.7 0.3 0.03 0.5 1 0.8 0.08

LIDFa(3) - Leaf inclination distribution
function parameter a of L3 a −1 1 −1 1 −0.2 0.1 −1 1 −0.2 0.1

WIDFa(3) - Wood inclination distribution
function parameter a of L3 −1 1 −1 1 −0.2 0.1 −1 1 −0.2 0.1

HSl(3) - Hot spot size parameter of L3 0 0.1 0 0.1 0.05 0.005 0 0.1 0.05 0.005
zeta(3) - Tree shape factor of L3 0 2 0 2 1 0.1 0 2 1 0.1

Other

Hw m Water depth 0 2 0 2 0.4 0.04 0 2 0.4 0.04

Raw_so - Bidirectional reflectance of
water surface 0 0.03 0 0.03 0.02 0.002 0 0.03 0.02 0.002

Note: Uniform or normal is the probability distribution of input factors, with Min and Max for minimum and maximum values and Mean
and STD for mean value and standard deviation. a Equivalent to average inclination angle (AIA) by a = (45 − AIA)∗π2/360 [11].
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In addition to the GSA methods and ranges of inputs, the probability distributions of
inputs might also impact the sensitivity values [32]. The uniform (UNI) and normal (NRM)
probability distributions were both adopted for the input factors under SPS and DEN.
The mean values for NRM were selected according to [28], and corresponding standard
deviation values were set as 10% of the mean values, except for LIDFa(3) and WIDFa(3).
NRM indicated that a priori information on the mangrove forest was available and the
variability in canopy structure was small, while UNI indicated a larger variation in canopy
structure. Under GEN, only a uniform distribution was applied as it might not be suitable
to use a nominal value to represent such a wide range of PAI(3).

2.3.2. Correlated PAI(3) and fCv(3)

In this case, the linear relationship between PAI and fCv of mangroves from [28] was
applied to generate samples for correlated PAI(3) and fCv(3). First, the ranges of PAI(3)
and fCv(3) were set as 1–5 and 0.1–0.9. Hence, their values were within 0–6 and 0–1 after
adding random variations. Then random samples of all 16 factors were generated as in
the GEN case. Second, PAI(3) or fCv(3) was modified to make them correlated. For VBSA,
fCv(3) values were recalculated according to PAI(3) values and the linear relationship, and
subsequently, random variations within ±0.1 were added (Figure 3b). In the case of PAWN,
the same methodology was used to compute unconditional CDF and conditional CDFs
for most factors except fCv(3). When fCv(3) was fixed for computing the corresponding
conditional CDFs, PAI(3) was recalculated based on fCv(3), and then a random variation
within ±0.8 was given. Finally, sensitivity indices for these two sample datasets were
computed using VBSA and PAWN, respectively. Correlated inputs were only applied to
GEN as a demonstration because the relationship between PAI and fCv could be different
for various sites and species.

2.4. Vegetation Indices

VIs have been broadly applied for mapping the biophysical properties of man-
groves such as LAI [2,3,31], but the impact of woody material, fCv and background
water was rarely reported. Although a large number of VIs were available [33]
(https://www.indexdatabase.de/, accessed on 9 December 2019), this study did
not intend to investigate all possible choices. Instead, the VIs in Table 2 were simulated
based on the spectral response function of the S2A multispectral instrument to assess
their sensitivities to the input factors such as PAI, fCv, L2T ratio and Hw. These indices
were either widely applied for terrestrial vegetation such as NDVI [34] and EVI [35] or
in particular, proposed for aquatic vegetation such as NDAVI [36]. Some of the VIs for
aquatic vegetation included shortwave infrared (SWIR) bands to address the existence of
background water, e.g., RGVI [37] and WFI [38].

Table 2. Definitions and sources of the adopted vegetation indices in this study.

Indices Descriptions References

NDVI = ρNIR−ρR
ρNIR+ρR

Normalised Difference Vegetation Index [34]

SAVI = (1 + L) ρNIR−ρR
ρNIR+ρR+L Soil Adjusted Vegetation Index (L: 0–1) [39]

EVI = G ρNIR−ρR
ρNIR+C1ρR−C2ρB+L Enhanced Vegetation Index (G = 2.5, L = 1, C1 = 6, C2 = 7.5) [35]

NDWI = ρG−ρNIR
ρG+ρNIR

Normalised Difference Water Index [40]

MNDWI = ρG−ρSWIR1
ρG+ρSWIR1

Modified Normalised Difference Water Index [41]

NDAVI = ρNIR−ρB
ρNIR+ρB

Normalised Difference Aquatic Vegetation Index [36]

WAVI = (1 + L) ρNIR−ρB
ρNIR+ρB+L Water Adjusted Vegetation Index (L: 0–1) [21]

WFI = ρNIR−ρR
ρSWIR2

Wetland Forest Index [38]

MDI1 = ρNIR−ρSWIR1
ρSWIR1

MDI2 = ρNIR−ρSWIR2
ρSWIR2

Mangrove Discrimination Index using SWIR 1 or SWIR2 [38]

LSWI = ρNIR−ρSWIR1
ρNIR+ρSWIR1

Land Surface Water Index [42]

RGVI = 1− ρB+ρR
ρNIR+ρSWIR1+ρSWIR2

Rice Growth Vegetation Index [37]

https://www.indexdatabase.de/
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2.5. Sensitivity Analysis Methods
2.5.1. Variance-Based Sensitivity Analysis

VBSA employed variance to represent sensitivity and attributed the variance of the
model output to the variances of input factors. For a model with k independent input factors
and a scalar output Y: Y = f (X1, X2, . . . , Xk), the variance (V(·)) of Y can be decomposed
as [14,15]:

V(Y) = ∑i Vi + ∑i ∑j>i Vij + . . . + V12...k (1)

The first order indices Si could be represented by the expected reduction in output
variance if Xi could be fixed [15]:

Si =
Vi

V(Y)
=

VXi (EX∼i (Y
∣∣Xi))

V(Y)
(2)

where E(·) was the expectation operator and subscripts Xi or X~i indicated that the operation
(E(·) or V(·)) was taken over Xi or all factors but Xi. The total order indices ST

i could be
written as [15]:

ST
i =

EX∼i (VXi (Y
∣∣X∼i))

V(Y)
= 1−

VX∼i (EXi (Y
∣∣X∼i))

V(Y)
(3)

Likewise, VX∼i (EXi (Y
∣∣X∼i)) was the expected reduction in output variance if all input

factors but Xi could be fixed. Other partial variances in Equation (1) corresponded to the
interactions among input factors, and more details could be found in [15]. Both first and
total order indices were broadly used, but this study only focused on total order indices.
Due to numerical errors, this approach might produce negative sensitivity indices, usually
corresponding to noninfluential factors [7]. Hence, negative values were reset to zero.

Open-source software was available for VBSA, such as SimLab [43] and the SAFE
toolbox [44] (https://www.safetoolbox.info/info-and-documentation/, accessed on 7 May
2019). The SAFE toolbox for MATLAB® was employed in this study as it also provided
a DBSA method. Trial tests showed that the computed sensitivity indices in VBSA could
be affected by the number of samples, especially for NRM. Multiple sample sizes from
16,000 (1000 × 16) to 128,000 (8000 × 16) with an increment of 16,000 were tested for
SPS_NRM and DEN_NRM. Finally, 112,000 samples were generated for each VBSA case as
the computed sensitivity indices of reflectance spectra were consistent and stable.

2.5.2. Density-Based Sensitivity Analysis

The PAWN method [25] in the SAFE toolbox was adopted for DBSA in this study.
It employed output CDFs instead of PDFs to reduce computational costs and to avoid
tuning parameters, e.g., the bin width for calculating PDF [25]. The distance between
unconditional and conditional output CDFs was taken as a measure of sensitivity. First,
Nu samples were randomly generated for a model of k input factors Y = f (X1, X2, . . . Xk),
to evaluate the empirical unconditional CDF of output FY(Y). Second, n samples were
generated for each input factor Xi and acted as conditional points. At each conditional
point, Nc random samples were generated over X~i to obtain the empirical conditional
CDF of output FY|Xi

(Y). The Kolmogorov–Smirnov (KS) statistic was applied as a measure
of the distance between unconditional and conditional CDFs (as cited in [25]):

KS(Xi) = max
Y

∣∣∣FY(Y)− FY|Xi
(Y)

∣∣∣ (4)

In other words, it was the maximum divergence between conditional and uncondi-
tional CDFs for a conditional point of Xi. Considering all the conditional points of an
input factor Xi, another statistic, e.g., the maximum or the median, was computed over all
conditional points of Xi to obtain the PAWN sensitivity index PT

i [25]:

PT
i = statistic

Xi
[KS(Xi)] (5)

https://www.safetoolbox.info/info-and-documentation/
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By its definition, PT
i would be between 0 and 1, and higher values suggested a greater

influence on the output [25]. Taking a result for S2A NDVI as an example, the unconditional
and conditional CDFs and the KS statistics for all conditioning points of fCv(3) are in
Figure 4. As the KS curves had various patterns, derived PT

i values using the maximum
or the median statistic could be different and thus lead to divergent conclusions. The
maximum statistic was adopted because it could detect factors that had influences on
the output for at least one conditioning point [32]. The number of samples in a PAWN
case was 66,000 in this study, with 2000 samples used to calculate the unconditional CDF,
and 20 conditioning points for each of the 16 input factors and 200 samples used per
conditioning point. More conditioning points or samples did not change the computed
sensitivity indices remarkably.
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Figure 4. Unconditional (red) and conditional (grey) cumulative distribution functions (a) and corresponding Kolmogorov–
Smirnov (KS) statistics (b) of the normalised difference vegetation index with regard to the fractional cover of the mangrove
crown (fCv(3)). The PAWN index can be different if the maximum (blue) or the median (green) metric is adopted (b).

3. Results

The normalised sensitivity indices (NSIs) for reflectance spectra and sensitivity indices
(SIs) for S2A bands and VIs from VBSA and PAWN were presented as stacked bar plots
(Figures 5 and 6). As VIs had various scales, they were not normalised to avoid confusion,
especially for VBSA indices that sometimes only one or two factors achieved positive
sensitivity values, e.g., MDI2 in Figure 6c.
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corresponds to a wavelength. The NSI value is represented by the height of a bar and marked in the y-axis. Each colour
corresponds to a factor defined in Table 1.
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3.1. General Scenario

For GEN, two large areas in blue and yellow in Figure 5a could be easily recognised,
indicating that L2T(3) and fCv(3) had significant influences on canopy reflectance across
nearly the whole visible to SWIR regions in VBSA. Exceptions were the boundaries of
chlorophyll absorption bands around 600 nm and 710 nm where the impact of Cab rose
and fell abruptly and the NIR bands where the influence of L2T(3) dropped. WIDFa(3)
was the next most influential factor, especially in the SWIR, followed by PAI(3) across NIR
and SWIR bands. Comparatively, PAWN NSIs were slightly different from VBSA NSIs in
that PAI(3) had higher NSI values while the NSI values of L2T(3) and fCv(3) were lower,
especially in SWIR (Figure 5f). It is worth noting that Hw had higher NSI values in visible
bands compared with its NSI values in other regions.

Since PAWN SIs were always between 0 and 1 while VBSA SIs could have various
scales and negative values were reset to zero, the NSI patterns of VIs in the two methods
could appear distinct. The stacked PAWN SIs were around 3.5 while stacked VBSA SIs
varied from lower than 1 to higher than 6. The scale of the y-axis in Figure 6 was limited to
0–3.8 to maintain sufficient details. Once they were normalised, the length of each bar could
be stretched or compressed. Thus, the relative length of the bar for a specific factor might
look different in stacked bar plots of SIs and NSIs. In PAWN, multiple VIs had similarly
high SI values of fCv(3) such as S2A-B11, MNDWI and RGVI (Figure 6f). A challenge with
the PAWN indices was that all factors obtained a SI value between 0 and 1. Hence, the
influential factors might look less outstanding than they did in VBSA, even if its SI value
was high, e.g., the NSI of fCv(3) for MNDWI was 0.21, but its SI value was 0.68.

The output PDFs in VBSA were shown in Figure 7. Those outputs that had high NSI
or SI values to fCv(3) in VBSA, such as S2A-B8a, MNDWI, NDAVI and RGVI, exhibited
various PDFs. Their SIs with confidence intervals were obtained via bootstrapping and
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further examined. Although the PDF of RGVI was remarkably skewed, all factors had
narrow confidence intervals (around 0.1 or lower) and the most influential factor fCv(3)
was outstanding (not shown). The confidence intervals were also narrow for MNDWI and
NDAVI but were relatively large for S2A-B8a (around 0.25 or higher, Figure 8a). In the
case of PAWN, the KS plots for MNDWI with regard to input factors in Figure 8b could
provide more insights. KS values of fCv(3) would increase if fCv(3) was approaching 0
or 1 from 0.4 and for the latter case, KS values would become stable after fCv(3) reached
about 0.9. When L2T(3) moved towards the two ends 0 or 1, its KS values slightly increased
but were not obvious. As for PAI(3) and Hw, their KS values only grew noticeably if their
values decreased to zero, e.g., lower than 1 for PAI(3). This implied that PAI(3) was more
influential when its value was low.
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Figure 8. Mean sensitivity indices and confidence intervals estimated via bootstrapping for S2A-B8a in
VBSA (a). Kolmogorov–Smirnov (KS) statistics for MNDWI with regard to input factors in PAWN (b).

3.2. Sparse Mangroves—Uniform Input Probability Distributions

The NSIs of reflectance spectra for SPS_UNI had many similarities with those for
GEN_UNI, but there was an increased impact of Hw in visible bands (Figure 5b,g). In
the NIR region, the NSI values of PAI(1) and fCv(1) slightly increased in PAWN, but only
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the NSI values of fCv(1) increased in VBSA. This implied that the understory and water
background had a larger impact on SPS, which was intuitive. Therefore, more attention
was paid to Hw in this section.

S2A-B3 achieved the highest SI value of 0.87 to Hw, but all factors had large confidence
intervals (around 0.4 or higher, Figure 9a). Although Hw could still be distinguished,
its bounds were already overlapped with those of other factors. This was somewhat
unexpected as the S2A-B3 values were quite normally distributed and far from skewed
(Figure 7c). Moreover, a larger sample size of up to 128,000 did not significantly reduce
the confidence intervals. For RGVI and NDAVI, Hw, fCv(3) and PAI(3) were all identified
as influential, but their SI values slightly varied and their confidence intervals might
overlap. For NDWI, the SI of fCv(3) was slightly higher than that of Hw, i.e., 0.360 vs. 0.348.
Their confidence intervals were narrow (lower than 0.1) but still overlapping. Ranking
them further might not be reliable because of the overlapping confidence intervals [8,45].
Therefore, a high SI itself in VBSA might not guarantee a solid link between the output and
an input factor. It was better to check the output distributions and confidence intervals as
well, as suggested by [32].
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By comparison, S2A-B3 had similar SI patterns in PAWN, with the SI of Hw higher
than 0.6 and those of other factors lower than 0.3, but the confidence intervals of all factors
were much narrower (around 0.1 or lower). For NDWI, Hw, fCv(3) and PAI(3) had SI values
of 0.685, 0.414 and 0.404, separately. All factors had narrow confidence intervals (lower than
0.1) in PAWN, and there was no overlapping between them and other factors. As for the KS
plot Figure 9b, PAI(3) and fCv(3) presented similar patterns with those in Figure 8b, except
that the KS values of fCv(3) continued rising with increasing fCv(3) since its maximum
value was 0.7 rather than 1 in GEN. Hw had a two-way impact on NDWI and S2A-B3. This
might be attributed to the different contributions of absorption and scattering by the water
body and its components, both of which could vary with water depth. In contrast, only
low Hw values could make a difference for VIs based on SWIR bands, e.g., MNDWI in
Figure 8b, as the absorption of water in SWIR was strong.

3.3. Sparse Mangroves—Normal Input Probability Distributions

This case corresponded to small variations in the biophysical and biochemical prop-
erties of mangrove plots and the environmental factors. As shown in Figure 5b,c, there
was a dramatic change in the NSI patterns of reflectance spectra in VBSA. fCv(3) and
LIDFa(3) became dominant in NIR, while the most influential factor was L2T(3) in SWIR.
Additionally, the impact of other factors was minor in these regions. Consequently, only
a limited number of factors obtained positive SIs for multiple VIs such as the EVI and
NDVI (Figure 6c). In contrast, the NSI patterns in PAWN also changed but more smoothly
(Figure 5h). fCv(3) and L2T(3) were also the most influential factors in NIR and SWIR,
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separately. In addition, the influences of fCv(1) and LIDFa(3) increased in NIR and the
impact of tree shape factor zeta(3) also increased.

As shown in Figure 7, the output PDFs in VBSA for SPS_NRM were remarkably
different from those for GEN_UNI and SPS_UNI. This indicated that input distributions
could affect the output distributions. However, the normal-like output PDFs did not
guarantee that the confidence intervals of SIs were narrow. Taking MNDWI as an example,
the confidence intervals were around 0.3, and there was overlapping between influential
factors fCv(3) and L2T(3) and other factors (Figure 10a). Comparatively, the confidence
intervals for MNDWI (Figure 10b), MDI1 and LSWI in PAWN were basically within 0.1.
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3.4. Dense Mangroves—Uniform Input Probability Distributions

When the canopy became dense, the impact of PAI(3) dropped quickly, and the impact
of fCv(3) also declined noticeably, as shown by their shrunken areas in Figure 5d,i. Hw
barely made a difference in this case. In the meanwhile, the influences of LIDFa(3) increased
in NIR and Cw in SWIR. Moreover, the impact of L2T(3) and WIDFa(3) grew significantly,
especially in SWIR. L2T(3) had the highest SI values over other factors for multiple VIs
such as MDI2, LSWI, NDAVI and WFI (Figure 6d,i). This might be attributed to the distinct
spectral responses of leaves and woody material, and the adopted reflectance values of
woody material were higher than the reflectance of leaves in SWIR.

It was interesting to find that Cab also had outstanding PAWN SI values for multiple
VIs such as NDVI, EVI and S2A-B4 (Figure 6i). Comparatively, this was less significant for
NDVI and EVI in VBSA (Figure 6d). The KS plots for NDVI in PAWN were presented in
Figure 11b. L2T(3) had a two-way impact while the KS values of Cab increased dramatically
only when its values were lower than 20 µg·cm−2. This was because low Cab values close to
zero could remarkably increase the canopy reflectance in chlorophyll absorption bands [46].
The SI values of Cab and L2T(3) for NDVI in PAWN were 0.879 and 0.771, respectively, with
SI values of other factors lower than 0.4. The confidence intervals of all factors were within
0.1 in PAWN. In contrast, L2T(3) was the most influential factor (SI = 0.544) for NDVI in
VBSA, followed by Cab (SI = 0.207, Figure 11a). However, the confidence intervals were
wide (around 0.3 or higher) and overlapping.
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3.5. Dense Mangroves—Normal Input Probability Distributions

Compared with the DEN_UNI case (Figure 5d,i), L2T(3) together with fCv(3) still had
a dominant impact in NIR and SWIR for DEN_NRM, but L2T(3) was less influential in
some NIR bands in VBSA (Figure 5e,j). In addition, LIDFa(3) also had noticeable influences
in NIR. WIDFa(3) became less influential compared with that for DEN_UNI. Similar to
SPS_NRM, only a limited number of factors had positive SI values in VBSA for multiple
VIs such as EVI, MNDWI and WFI (Figure 6e) and the confidence intervals were generally
wide (0.25 or higher) in VBSA.

LIDFa(3) was investigated in this section as other influential factors such as fCv(3) and
PAI(3) had been covered in previous sections. As shown in Figure 6e,j, NIR bands were the
most sensitive to LIDFa(3). Therefore, the KS statistics and confidence intervals for S2A-B8
in PAWN were presented in Figure 12. fCv(3), L2T(3) and LIDFa(3) had high SI values
and were distinct from other factors. The KS plots of fCv(3) and L2T(3) in Figure 12b were
similar to those in Figures 8b and 9b, indicating that the output CDF diverged from the
unconditional CDF when the fCv(3) and L2T(3) values increased or decreased. The KS
plot of LIDFa(3) presented a similar pattern to that of fCv(3). Moreover, the KS values
were higher when LIDFa(3) moved towards −0.6 (θl = 67◦) than they were when LIDFa(3)
was close to 0 (θl = 45◦), which implied that canopy reflectance in NIR changed more
significantly if leaves were vertically distributed.
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3.6. General Scenario with Correlated PAI(3) and fCv(3)

If PAI(3) and fCv(3) were correlated for a general scenario, both were recognised as
influential factors in PAWN. Besides, similar NSIs of canopy reflectance could be obtained
with the GEN_UNI with random PAI(3) and fCv(3) values (Figures 5f and 13b). In contrast,
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VBSA only identified PAI(3) as being influential in NIR and SWIR while fCv(3) had virtually
no impact (Figures 5a and 13a). The computed NSIs in VBSA in Figure 13a might be
meaningless because there were correlated inputs. Thus, no further interpretation was
given. This plot demonstrated that the correlated biophysical properties of mangroves
changed the calculated sensitivity indices in VBSA.

Remote Sens. 2021, 13, 2617 15 of 20 
 

 

3.6. General Scenario with Correlated PAI(3) and fCv(3) 
If PAI(3) and fCv(3) were correlated for a general scenario, both were recognised as 

influential factors in PAWN. Besides, similar NSIs of canopy reflectance could be obtained 
with the GEN_UNI with random PAI(3) and fCv(3) values (Figures 5f and 13b). In con-
trast, VBSA only identified PAI(3) as being influential in NIR and SWIR while fCv(3) had 
virtually no impact (Figures 5a and 13a). The computed NSIs in VBSA in Figure 13a might 
be meaningless because there were correlated inputs. Thus, no further interpretation was 
given. This plot demonstrated that the correlated biophysical properties of mangroves 
changed the calculated sensitivity indices in VBSA. 

 
Figure 13. Stacked bar plots for normalised sensitivity indices of reflectance spectra in VBSA (a) and 
PAWN (b) for a general canopy with correlated PAI(3) and fCv(3). Each x value corresponds to an 
output, e.g., reflectance or VI, and each colour represents an input factor. The SI value is represented 
by the height of a bar and marked in the y-axis. 

3.7. A Brief Summary 
The results demonstrated the influences of SA methods and input configurations on 

the calculated SIs for reflectance of mangroves and the importance of examining the con-
fidence intervals of calculated SIs, which might be ignored in previous SA studies on the 
RS of vegetation. The calculated NSI and SI values highlighted that canopy reflectance of 
mangroves was sensitive to fCv(3) and L2T(3) and PAI(3). The influences of Hw for a 
sparse mangrove canopy and inclination distributions of plant material and Cab for a dense 
canopy might also be noteworthy. VIs with SWIR bands such as MNDWI and RGVI also 
had potential for mapping the fCv(3) and PAI(3) of mangroves and traditional VIs like 
EVI. Several VIs such as LSWI, MDI and WFI were sensitive to the L2T(3) of mangroves 
and might be helpful for estimating the LAI of mangroves from multispectral satellite im-
ages. 

4. Discussion 
4.1. Global Sensitivity Analysis Methods and Interpretations of the Results 

The NSIs for canopy reflectance spectra of vegetation, as shown in Figure 5a–e, were 
frequently adopted in VBSA [19,20,22,47]. In addition, NSIs for VIs were also applied to 
evaluate the sensitivities of selected VIs to specific biophysical and biochemical properties 
of vegetation [22,47]. Stacked NSI plots for reflectance spectra were intuitive and straight-
forward for identifying the most influential factors and corresponding wavelength re-
gions. However, SI values of various VIs could have distinct scales and only a limited 
number of factors might have non-negative SI values in VBSA, such as EVI and SAVI in 
Figure 6c. Therefore, a factor could obtain a high and dominant NSI value for a VI, e.g., 
the NSI of fCv(3) was 0.641 for EVI, while its absolute SI value was only 0.181 and not the 
highest compared with other VIs. Hence, the NSI values might mislead us to conclude 
that EVI was the most sensitive to fCv(3) in this case. Moreover, if a VI was only sensitive 

Figure 13. Stacked bar plots for normalised sensitivity indices of reflectance spectra in VBSA (a) and
PAWN (b) for a general canopy with correlated PAI(3) and fCv(3). Each x value corresponds to an
output, e.g., reflectance or VI, and each colour represents an input factor. The SI value is represented
by the height of a bar and marked in the y-axis.

3.7. A Brief Summary

The results demonstrated the influences of SA methods and input configurations
on the calculated SIs for reflectance of mangroves and the importance of examining the
confidence intervals of calculated SIs, which might be ignored in previous SA studies on
the RS of vegetation. The calculated NSI and SI values highlighted that canopy reflectance
of mangroves was sensitive to fCv(3) and L2T(3) and PAI(3). The influences of Hw for a
sparse mangrove canopy and inclination distributions of plant material and Cab for a dense
canopy might also be noteworthy. VIs with SWIR bands such as MNDWI and RGVI also
had potential for mapping the fCv(3) and PAI(3) of mangroves and traditional VIs like EVI.
Several VIs such as LSWI, MDI and WFI were sensitive to the L2T(3) of mangroves and
might be helpful for estimating the LAI of mangroves from multispectral satellite images.

4. Discussion
4.1. Global Sensitivity Analysis Methods and Interpretations of the Results

The NSIs for canopy reflectance spectra of vegetation, as shown in Figure 5a–e, were
frequently adopted in VBSA [19,20,22,47]. In addition, NSIs for VIs were also applied to
evaluate the sensitivities of selected VIs to specific biophysical and biochemical properties
of vegetation [22,47]. Stacked NSI plots for reflectance spectra were intuitive and straight-
forward for identifying the most influential factors and corresponding wavelength regions.
However, SI values of various VIs could have distinct scales and only a limited number
of factors might have non-negative SI values in VBSA, such as EVI and SAVI in Figure 6c.
Therefore, a factor could obtain a high and dominant NSI value for a VI, e.g., the NSI of
fCv(3) was 0.641 for EVI, while its absolute SI value was only 0.181 and not the highest
compared with other VIs. Hence, the NSI values might mislead us to conclude that EVI was
the most sensitive to fCv(3) in this case. Moreover, if a VI was only sensitive to a limited
number of factors, the confidence intervals of these factors might be large and overlapping,
and, thus, the results were not robust.

With regards to the output PDFs in VBSA, the results only showed that input distri-
butions could affect output distributions but did not reveal any promising links between
output PDFs and the confidence intervals of calculated SIs. A highly skewed output PDF
such as RGVI in Figure 7y for SPS_UNI did not necessarily mean the SIs in VBSA had wide
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or overlapping confidence intervals. On the other hand, a normal-like output PDF such
as S2A-B3 in Figure 7c for SPS_UNI did not guarantee robust SIs in VBSA (Figure 9a). In
addition, different numbers of input samples in VBSA did not significantly change the out-
put PDFs as long as they were large enough but could result in divergent SI values in this
study, especially for normally distributed input samples. Comparatively, the confidence
intervals of calculated SIs for S2A band reflectance and VIs were usually narrow in PAWN
with 2000 samples for the unconditional CDF and 200 samples per conditional point by
20 conditional points for conditional CDFs. The KS plots could be used to identify the
value ranges of inputs where conditional output CDFs diverged from the unconditional
CDF, which implied that there were noticeable changes in the output values.

4.2. Differences between Sparse and Dense Mangrove Canopies

The results also demonstrated that input ranges and distributions could affect the
computed SIs, particularly in VBSA. For the GEN_UNI case that PAI varied from 0 to 6,
fCv(3), L2T(3) and PAI(3) were recognised as the most influential factors (Figure 5a,f). This
partly coincided with the results of [20] that fCv and PAI were among the most influential
factors. For the SPS_UNI case, the impact of fCv(3) became slightly less dominant in VBSA
while the impact of PAI(3) increased (Figure 5a,b). The changes in the impact of PAI(3) and
fCv(3) in PAWN were not significant (Figure 5f,g). Additionally, increased influences of Hw
and fCv(1) in visible and NIR bands were identified by both methods. If the inputs were
turned into normal distributions (SPS_NRM), the computed NSIs of reflectance spectra
also changed remarkably. As shown in Figure 5c,h, PAI(3) became less influential while the
impact of fCv(3) and L2T(3) increased in NIR and SWIR, respectively.

If the canopy was dense with uniformly distributed inputs (DEN_UNI), the NSI values
of fCv(3) and PAI(3) decreased, particularly for PAI(3) (Figure 5d,i). Factors regarding the
understory and background such as PAI(1) and Hw had negligible influence now. In the
meanwhile, biophysical properties related to woody material, such as L2T(3) and WIDFa(3),
had a dominant impact in SWIR. The impact of LIDFa(3) also grew remarkably in NIR.
In addition, the influences of leaf parameters, including Cab, Cw and Cm, increased by
various degrees in different spectral regions. For the DEN_NRM case, the NSI patterns
in PAWN (Figure 5j) were similar but slightly different from Figure 5i for DEN_UNI. The
impact of fCv(3), L2T(3) and LIDFa(3) increased while that of WIDFa(3) decreased. In
VBSA, fCv(3) and L2T(3) became the most influential factors, and the influences of LIDFa(3)
and WIDFa(3) both decreased (Figure 5e).

In summary, PAI(3) had a larger impact under the sparse canopy while the influences
of leaf parameters and inclination angles increased under a dense canopy. This agreed with
the results in [19,22]. The new factors fCv(3) and L2T(3) were among the most influential
factors under all examined scenarios except for the correlated case where fCv(3) was not
identified as influential in VBSA. Hw mainly affected the reflectance of sparse canopies,
but it was worth noting that the water body was not allowed to immerse the crown in
this study. Otherwise, the infrared reflectance of submerged mangroves would reduce
dramatically, which had been used to identify them from satellite images [4,48].

4.3. Potential Limitations and Suggestions

The structure of real mangrove forests was more complicated than the model could
simulate. Simplifications in the model might result in overestimated contributions from
fCv(3) because it was applied to weight the reflected radiation from mangroves directly.
Additionally, the woody material was assumed to be randomly distributed and to share the
same fractional cover with leaves in the adopted model [28]. Its reflectance spectra were av-
eraged from field measurements over the lower parts (lower than 2 m) of stems [28], which
might be different from the reflectance of branches and shoots in the crowns. Consequently,
the contributions of L2T(3) and its SIs could also be overestimated.

Although there were potential divergences in the computed SI values of L2T(3), the
impact of woody material on canopy reflectance were demonstrated [5,49]. In addition, cau-
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tion for the inclination distributions of leaves and wood was still needed because they could
be an obstacle when mapping the LAI of mangroves from satellite images. The leaf area
ratio could be measured by classifying the point clouds acquired by laser scanning [50,51].
Average inclination angles could also be calculated from point clouds [52,53] or digital pho-
tos [54]. However, convenient and operational methods were still lacking [55], particularly
when they needed to be measured together with PAI and fCv at many of the plots to be
used as calibration or validation data.

For future studies, it might be a good start to map the fCv of mangroves together with
PAI because field data of fCv were relatively easy to collect, e.g., by taking hemispherical
photos or upward photos [56]. Moreover, the data could be used to assess the potential
correlation between PAI and fCv, and further the impact of fCv and background water on
PAI mapping. According to the GSA results in this study, multiple VIs may be suitable
for mapping PAI and fCv of mangroves from S2A images. Besides traditional VIs such as
EVI and NDVI, other VIs such as MNDWI and RGVI were also sensitive to fCv and PAI.
The new VIs for mangroves or aquatic plants such as MDI, WFI and RGVI had a common
characteristic that SWIR bands were incorporated. This study showed that the SWIR bands
and these VIs could be helpful for mapping mangroves, but the optimal VI for mapping a
biophysical property from a specific dataset might vary.

5. Conclusions

Based on a canopy reflectance model of mangroves, this study demonstrated that GSA
methods (variance-based or density-based), input ranges and probability distributions
(uniform or normal) could affect the computed sensitivity indices under the examined
mangrove scenarios. Briefly, fCv(3) and L2T(3) were among the influential factors for the
infrared reflectance of mangroves under the examined scenarios. PAI(3) was also influential
for a sparse canopy but became less influential for a dense canopy. In contrast, inclination
distributions of plant material and leaf parameters, e.g., leaf water content, could become
more influential in infrared bands for a dense canopy. Moreover, the influence of water
depth was noteworthy for a sparse canopy and maybe other scenarios if the water body
could immerse the crown.

Since the results and conclusions can be different if a specific model, GSA method
and input configuration are adopted, it may be essential to perform a tailored GSA ac-
cording to the study area and available data. Based on the results, it is recommended that
attention should be paid to the L2T and fCv as they may affect estimating the LAI or PAI
of mangroves. A complete field dataset that includes the factor to be mapped such as
LAI and if possible, other influential factors such as fCv, L2T ratio and inclination angles
would be beneficial to further analyses and evaluations of their impact. This, in turn, could
contribute to the development of a protocol on field data collection for mapping mangrove
from remote sensing images. Considering the challenges in field data collection, it may be
a good start to collect and map PAI and fCv of mangroves. For VI based mapping methods,
more choices such as MNDWI and RGVI deserve an attempt if SWIR bands are available,
but tests are still needed to determine the optimal VI for mapping a specific property based
on the available field data and RS images.
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