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Abstract: Accurate object detection is important in computer vision. However, detecting small
objects in low-resolution images remains a challenging and elusive problem, primarily because these
objects are constructed of less visual information and cannot be easily distinguished from similar
background regions. To resolve this problem, we propose a Hierarchical Small Object Detection
Network in low-resolution remote sensing images, named HSOD-Net. We develop a point-to-region
detection paradigm by first performing a key-point prediction to obtain position hypotheses, then
only later super-resolving the image and detecting the objects around those candidate positions. By
postponing the object prediction to after increasing its resolution, the obtained key-points are more
stable than their traditional counterparts based on early object detection with less visual information.
This hierarchical approach, HSOD-Net, saves significant run-time, which makes it more suitable for
practical applications such as search and rescue, and drone navigation. In comparison with the state-
of-art models, HSOD-Net achieves remarkable precision in detecting small objects in low-resolution
remote sensing images.

Keywords: small object detection; key-point prediction; image enhancement; low resolution

1. Introduction

Object detection plays a crucial role in image interpretation for a wide scope of appli-
cations, including intelligent monitoring, urban planning, precision agriculture, and ge-
ographic information system (GIS) updating [1]. The goal of the object detection is to
identify the precise bounding box of each object in the image. In recent years, many object
detection models have been proposed with high accuracy using various datasets such
as COCO [2] and Pascal VOC [3]. In fact, these datasets have objects with high quality
visual information since the images are in high-resolution format. Besides this, a major-
ity of proposed solutions on different tasks are designed based on very high-resolution
(VHR) data, for example: building extraction [4], tree species classification [5], and opera-
tional soil moisture mapping [6]. However, in real-world settings, it is difficult to collect
high-resolution images for the objects of interest. Especially for practical remote sensing
applications, aerial images can be highly resolved in terms of pixels comparing to satellite
images; however, drones have a higher cost of collecting data in terms of time and energy
compared to satellites. In such situations, it is very crucial to find a solution to detect small
objects in low-resolution images. Small objects, defined in MS COCO [2,7], are objects that
have length and width less than 32 pixels. Inspired by the above definition, considering
the long slim rectangle objects in the DOTA dataset, we define small objects that have less
than 900 pixels in the object bounding boxes in this paper

Many deep learning-based methods (specifically CNN based) [1] have been proposed
for object detection. However, the performance of those methods on small size or low
resolution is far from satisfactory (as shown in Table 1). We argue that two obvious reasons
account for this problem. Firstly, resizing the input image is insufficient to distinguish the
small size objects from a background (or similar categories) or achieve good localization [8].
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The second reason is that the resizing operations between the layers of CNN-based methods
effectively discards almost all the visual details of small sized objects, which hinders
training classifiers with high accuracy. Therefore, based on these two reasons, even the state-
of-the-art object detection models that have achieved impressive results on large/medium
sized objects still have a poor performance on small objects in low-resolution remote
sensing images (as shown in Table 1).

Table 1. Performance comparison of state-of-the-art object detectors on original and low-resolution
remote sensing images. The detection performance decreases dramatically for small sized objects in
low-resolution setting.

Models Original-Resolution AP Low-Resolution AP Decreased Value
CenterNet 37 32 5
R3detection 51 39 12
Retinanet 26 23.5 2.5
CenterNet2 43.1 28.7 14.4

To deal with the small object detection problem in low-resolution remote sensing
images, we propose a general small object detection framework, which can be used by any
existing object detector. In contrast to other object detection models that directly detect
images, we detect a center-point as the key-point of each object which will be used, in a later
stage, to pinpoint the objects. Then, we use a multi-task generative adversarial network
to enhance the resolution of the image (e.g., super resolution), then detect objects (e.g.,
classification and bounding box regression) around the candidate positions. Our main
contributions in this work are:

1. A Hierarchical Small Object Detection Network (HSOD-Net) via The Novel Point-to-
region Detection Strategy: The proposed HSOD-Net is a general small object detection
framework, which can be incorporated into existing object detectors. Specifically,
for low-resolution remote sensing images, we apply our key-point detector to dis-
tinguish the small sized objects from the background and get a rough estimate of
the object positions; then, super-resolution is introduced to up-sample the estimated
objects to a larger scale. The output from HSOD-Net can then be used as an input to
existing object detectors.

2. A Multi-task Generative Adversarial Network for Image Enhancement and Object
Detection (MGAN-Det) in The HSOD-Net: There are two sub-networks in the pro-
posed MGAN-Det, a generator network and a discriminator network. In the generator
network, a super-resolution network (SRN) is provided to up-sample small blurred
images into fine-scale ones and recover detailed information for more accurate de-
tection, compared to directly re-sizing the image with bi-linear interpolation which
produces less accurate images. The discriminator network tasks are: Identifying each
input image patch with a real/fake score, drawing a bounding box around objects,
and categorizing each detected object.

3. The Small Object Detection Model with High Precision in Low-Resolution Remote
Sensing Images: We validate the proposed HSOD-Net within a small object detection
pipeline on a challenging benchmark, where our model achieves higher performance
than several previous state-of-the-art models.

2. Related Work

In this section, we provide an overview of the most relevant work to our proposed
framework HSOD-Net, including multi-scale object detection, generative adversarial
network-based image super-resolution, and object detection benchmarks.
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2.1. Multi-Scale Object Detection

In recent years, a large number of methods have been proposed for object detection,
and there are two main categories of object detection: Anchor-based methods and anchor-
free methods. Anchor-based methods regard the object detection problem as a regression
and classification around the object area, whereas anchor-free methods do not depend on
the anchor area.

There are two strategies for anchor-based methods: One-stage and two-stage detec-
tion [8]. Two-stages detection methods first generate region proposals of different objects,
and then perform the regression on the bounding box and classification on the object cate-
gory. Typically, two-stage object detection models consist of R-CNN [9] or fast R-CNN [10].
One stage detection methods, on the other hand, use the CNN network to predict the
bounding box and object category directly, such as in Yolo [11], and SSD [12]. While
two-stage detection methods normally provide more accurate detection results than that of
one stage models, due to the complexity of network, they are generally slower. In contrast,
anchor-free methods (e.g., CornerNet [13] and CenterNet [14]) detect key points of objects
and extend to bounding box from key points, which can avoid tuning anchor related
parameters. Moreover, these kind of methods avoid calculating the IoU (Intersection over
Union) between ground truth bounding boxes and anchor boxes, which greatly saves time
and memory resources during training.

Despite the fact that different object detection methods have achieved high quality
results with different considerations and requirements, small objects detection (SOD) has
always been a challenging task in multi-scale object detection [8]. Most of the above
methods show unsatisfactory performance on small sized objects, since they do not have
any explicit strategy to deal with such small objects. In these methods, the average
precision (AP) is lower in small objects compared to large/medium sized objects. Several
strategies have been developed to enhance the performance of small sized object detection.
The first common strategy is multi-scaling. A typical illustration is the last layer of the SSD
network [12], which combines the previously generated feature maps to form multi-scale
feature maps due to a different stride, and the lower layer is normally used to detect
small sized objects. However, these lower layers are limited and usually bring missing
detection. Another common strategy is FPN (Feature Pyramid Network) [15]. Starting
from the top layer, each lower layer is generated by up-sampling the previous layer so
that the model can have feature maps in different scales. However, simply using linear
interpolation to up-scale a feature map does not guarantee the effective information will
be delivered. Furthermore, there is no guarantee that a particular number of layers in the
pyramid is enough for a particular task, especially for small sized object detection. Thus,
in this paper, we present a hierarchical small object detection network (HSOD-Net) via the
novel point-to-region detection strategy.

2.2. Generative Adversarial Network Based Image Super-Resolution

Image super-resolution (SR), without any prior information, is an ill-conditioned
problem. With enough training data, CNN-based methods have recently achieved great
progress in this problem. For instance, SPSR [16] encodes a sparse representation prior
into their feed-forward network architecture based on the learned iterative shrinkage and
thresholding algorithm. DRCN [17] uses a recursive structure to decrease the number
of network parameters. In these solutions, the optimization goal is often to minimize
the mean squared error (MSE) between the recovered high-resolution (HR) image and
the ground truth image. Minimizing MSE also maximizes the peak signal-to-noise ratio
(PSNR), which is another common measure used to evaluate and compare SR algorithms.
However, the ability of MSE and PSNR to capture perceptually relevant differences is very
limited, as they are defined based on pixel-wise image differences. As a result, very high
PSNR does not necessarily reflect perceptually a good SR result.

SRGAN [18], Pix2Pix [19] and Pix2PixHD [20] tackle the super-resolution problem
by employing a generative adversarial network (GAN). GAN [21] was first proposed
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by Goodfellow in 2014, which is a model containing two networks, a generator and a
discriminator. The generator generates images based on the learned features, and the
discriminator identifies whether the generated image is real or generated by the generator.
The purpose is to improve the performance of both generator and discriminator through
their adversarial relationship. As a state-of-the-art GAN-based super-resolution method,
SRGAN [18] provides a powerful framework for generating plausible-looking natural
images with high perceptual quality. SRGAN encourages the reconstructions to move
towards regions of the search space with a high probability of containing photo-realistic
images and thus closer to the natural image manifold. Building on SRGAN's architecture
and to deal with the small object detection problem in low-resolution remote sensing
images, we propose a multi-task generative adversarial network for image enhancement
and object detection (MGAN-Det).

2.3. Object Detection Benchmarks

Recently, a large number of datasets have been built for object detection which can be
separated into two types. The first type contains datasets of natural scene images, such
as the PASCAL VOC dataset [3] and the COCO object detection dataset [2]. Images in
these datasets are typically of high quality with the objects of interest shown in relatively
large scale. The second type of dataset for object detection has datasets representative of
optical remote sensing images, such as DOTA [22], DIOR [1], and RSOD [23]. In contrast to
the first dataset type, these datasets contain images with objects at relatively low spatial
resolutions, which is characteristic of remote sensing imagery.

Detecting small objects (objects that have a relatively small size in an image) in
low-resolution image is challenging because small objects usually lack sufficient detailed
appearance information, which can distinguish them from the background or similar
objects. To solve this problem, we propose a general small object detection framework
in low-resolution remote sensing images, which can be easily incorporated into existing
object detectors (e.g. CenterNet [8], CenterNet2 [24], Retinanet [25] or R3detection [26]).
Moreover, we experimentally validate our proposed framework on two public detection
benchmarks for small objects, DOTA [22] and COCO [2].

In this paper, we argue that these state-of-art object detection models (e.g., Center-
Net [8], CenterNet2 [24], Retinanet [25] and R3detection [26]) work well on the remote
sensing benchmarks in their original resolution, but the detection performance, especially
for small sized objects in low resolution (e.g., four times down sampled image as the
low-resolution representation), would decrease dramatically by a large margin, as shown
in Table 1.

3. Methodology

In this section, we introduce our small object detection framework, HSOD-Net, which
can be easily embedded into existing object detectors. There are two main stages via a
hierarchical point-to-region detection strategy. In the first stage, a key-point detector
and an embedded data processor are used to distinguish the small sized objects from the
background. In this stage, we take the low-resolution image as input, and extract key-point
guided rough object positions. This technique is more robust than the direct object detection
which requires more visual details. In the second stage, the regions surrounding the
candidate positions are fed into a multi-task generative adversarial network (MGAN-Det)
to enhance images (e.g., super resolution) and then detect objects (e.g., classification and
bounding box regression) from the resolved image. The overall architecture of our proposed
HSOD-Net is shown in Figure 1 and each stage is explained in the following subsections.
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Figure 1. The architecture of HSOD-Net. It has two stages for our hierarchical point-to-region detection strategy, including

key-point guided rough object position extraction and multi-task GAN.

Hourglass
Network

128 x 128 x 1x1x128x 80 3x3x256

3.1. Key-Points Guided Rough Object Positions Extraction

Due to the excessive down-sampling operations in CNN-based methods, the learned
feature maps are insufficient for detecting the small sized objects and training a high-quality
classification network. To overcome this problem, we propose a key-points guided rough
object positions extraction module, motivated by the idea that identifying the center-point
as the key-point of each small sized object is more robust than creating bounding boxes
around the objects. This module consists of two parts: The key-point detector and the
embedded data processor.

3.1.1. Key-Point Detector for Small-Sized Objects

Inspired by [14], we develop a general network architecture for center-point detection
as shown in Figure 2. Let I € R"*H*3 represent the input low-resolution image with three
channels in color space, and set W = H = 512 as the size of each image. The Hourglass
network [13,27] is deployed to extract a feature map of 128 x 128 x 256 from the input
image. Then, two parallel processes are executed to calculate the key point of objects and
the center offset. The center-point is regarded as the only key-point of the the final output,
which is a heatmap represented as H € [0,1] % *¥*C, where R is a default output stride
and C is the number of categories. The key point detector will predict all possible vital
points, with a probability greater than or equal to a threshold value. (The threshold value is
set to be 0.15 for all experiments empirically). For example, the key point detector predicts
five vital points in stage one of Figure 1.

3x3x256 128 x 128 x15 15x 128 x 128

M
Conv Conv Conv ax
Pooling

" 2x 128 x 128 Heatmap
Feature Map 1x1x256%x2 X X
mEm
3x3x256 128 x 128 X 2

Figure 2. The network architecture for the key-point detector.

The key-point detection network uses two loss functions: Key-point loss and offset
loss. The key-point loss denoted as Lj reflects whether the model can pinpoint the key-
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point to the center of the object, which is a pixel-wise logistic regression with focal loss
defined as follows [25]:

L -1 { ((1- nyz)“log(?xyx) if nyz =1 O
TN e ((1— l?xyz)ﬁ(nyZ)“log(l —Yxyz)  otherwise
where « and B are defined as hyper-parameters of the focal loss; we seta =2 and g = 4
in our experiments. For each ground truth key point p € R?, a low-resolution (i.e.,
down-sampled) equivalent p = | £ | is presented. Every single key point is squeezed into a
_ (X—ﬁx)2+(y—ﬁy)2)
262p ’
where §), is an object size-adaptive standard deviation, and N is the number of key-points
in the image, which is used to normalize all positive focal loss instances to 1.
The offset loss L, s reflects the shift in all pixels during the downsampling process

separate heatmap Y € [0,1] "<, using a Gaussian kernel Yy, = exp(

caused by the output stride R. A local offset O € R * %2 is defined for each center point
as follow:

1 A 2N
Loffzﬁgloﬁ%ﬁ—p)l @
The total detection loss, denoted Ly, is defined:

Ley = Lk + AogrLofs ®3)

where A, ¥ is set to be 1 in our experiments, so the effects of these two loss functions
are equivalent.

3.1.2. Embedded Data Processor for Estimating Object Regions

After the heatmap based key-points are extracted from the key point detector, the data
processor is deployed to predict the regions around the existing key-points. In this paper,
we use the K-means algorithm to fit k key-point predictions into #n regions based on the
Euclidean distance. The data processing includes the following steps:

1.  Randomly select n key-points among all detected key-points as the clustering centers
of the initial regions.

2. For the other detected key points, calculate the Euclidean distance to these given

clustering centers, and mark the closeted key-points as parts of one region.

Readjust the current region center when a new key-point is added into that region.

4. If all the region centers do not move, then the algorithm converges. Otherwise, we
repeat step 2.

®

By using this simple and effective technique, we cluster the detected k key points into
n regions. Figure 3 shows an example of how regions are formed from key points. The red
boxes are the ground truth bounding box annotations, shown in Figure 3a to reveal the
ground truth objects. The green dots presented in sub-image Figure 3a are the detected key
points generated from our key-point detector, and the yellow boxes presented in Figure 3b
are the round regions extracted by our data processor based on the predicted key-points
location in Figure 3a. Figure 3c displays the extracted regions by the data processor, which
will be used in later stage of HSOD-Net.
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Figure 3. Typical example of key-point guided rough object position extraction. The red boxes are the ground truth
bounding box annotations, while the green dots are the detected key points generated from our key-point detector, and the

yellow boxes are the round regions extracted by our data processor.

The usage of this method significantly improves the efficiency of our model. In
Figure 3, this typical image from the DOTA dataset has the resolution of 4654 x 4697.
Traditional slider based methods create batch images to train and test super-resolution
models. For instance, using a slider of size 1000 x 1000 would extract 9 x 9 = 81 images.
Through our proposed approach, only five regions will be extracted from each image and
fed into the next stage. Therefore, efficiency is dramatically improved.
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3.2. Multi-Task Generative Adversarial Network for Image Enhancement and Object Detection

Inspired by [18,28] and, we introduce our multi-task Generative Adversarial Network
(MGAN:-Det) to super resolve a given low-resolution image, and detect up-sampling objects
in this section. There are two sub-networks in the proposed MGAN-Det, a generator network
and a discriminator network; their network architectures are shown in Figures 4 and 5.

Residual Block

Identical
k3n64s1 Structure k3n64s1 k3n256s1 k9n3sl

‘l“ || "" || "" || T d Output
[ i ] 1

Figure 4. Generator Model Structure: K stands for kernel size, n stands for number of feature map, and s stands for strides.

Conv
| BN |
| Prelu |

I
—
|
I
[ Conv_|
BN
Elementwise
Sum
Conv
Pixel
Shuffler
X2
PreLu
|
Conv

—

Conv
BN
| || Elementwise
Sum

w
LI
=

o
N
w

2]

SR ?
sPE
>|
Input k3n64s1 k3n64s2 k3n128s1 k3n256s1 k3n512s1 g HR ?
SR o =
2 e > 2 5 2
- g —:é % 8 % % i — > | ! —> — 8 K B
m CEECHEE -
HR 3 1]
k3n128s2 k3n64s3 k3n256s2 =l
IR S IR Bounding
T Box

Figure 5. Discriminator Model Structure: For example, k3n64s1 stands for a conv layer with kernel size of 3, 64 feature map,
and a stride of 1.

For the super-resolution generator network, a low-resolution image 'R is generated
by down-sampling a high-resolution image I"'R with a scale factor r. Let the size of 'R
be W x H x C, our goal is to estimate its high-resolution equivalent by producing a
super resolved image I°R with size of rfW x rH x C. Then, the output of the generator
network (super-resolved images) is used by the discriminator to classify as a fake generated
super-resolved (SR) image or an original high-resolution (HR) image and to perform object
detection (object classification and bounding-box regression), respectively.

For the proposed multi-task problem, our MGAN-Det model adopts the content loss
and adversarial loss for super-resolution, while the object classification and bounding box
regression use the softmax and smooth L1 loss functions after each full connected layer.
To compute the content loss function, the SR image and the HR image are fed into VGG19
network [29] to extract their features. The content loss is calculated by the Mean Square
Error (MSE) of these two extracted feature maps as follows:

1

5 @) = ¢(Go(1F)))? )

M=

loss; =

1

where ¢ is the feature map. The content loss represents the Euclidean distance between the
reconstructed feature map Gg(I'®) and the ground truth feature map IR, The adversarial
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loss is set to fool the discriminator network into classifying the generated SR images as HR
images, which is defined as follows:

z

lossy =) —logDy, (G (IFR)) )
i=1

where D,,(Gg(I'R)) is simply the probability that the reconstructed image Ggg (I'R) is the
ground truth HR image.

To classify the object category, we use a classification loss function. We denote I}
and IR to be the LR image representation and the ground truth HR image presentation;
i ranges from 1 to N, which covers all objects. Denote u; as the corresponding category,
and u; should be in the range of 1 to k, where k is the number of the categories of objects.
Ds(Gw (IFR)) is the probability that the generated SR image belongs to the true category
u;, and log(Ds(I'R)) is the probability that the ground truth HR image belongs to the true
category. The classification loss is defined as follows:

N

fosss = ; 3 ~(1og(Da(Gu (1)) + (tog (Da(1/1™))) (©)
i=1

Furthermore, a regression loss is used to localize the final bounding boxes around the
objects, which is defined as follows:

1N
lossy(t,v) = N Z 2 ui(smoothu(tf]«R —u;;) + srnoot‘hu(if;f’j]R —0;j)) 7)
i=liex,y,wh

smoothy(x) =

{0.5x2, iflx| <1 ®

|x| — 0.5, otherwise

where u; represents an indicator, v; denotes the tuple of the bounding box regression target
(x, ¥, w, h), and t; denotes the predicted regression tuple in the same format. t//k and #}
are the i-th bounding box tuple of the ground truth HR image, and the generated SR image.

Finally, we combine the above loss functions to train the generator and discrimina-
tor networks together, and optimize the parameters of generator G while keeping the
parameters of discriminator D fixed, and vice versa. Therefore, the two networks are
iteratively optimized.

3.3. Embedding HSOD-Net with Existing Detectors for Small-Sized Object Detection

HSOD-Net, as a multi-task model, also allow incorporation of other baseline detectors.
In order to incorporate our proposed framework HSOD-Net into existing object detec-
tors, we construct it into three parts, including key-point detector, super-resolution image
generator, and an existing object detector, which is connected last. We select four state-of-
the-art object detectors: CenterNet [8], CenterNet2 [24], Retinanet [25] and R3detection [26].
Retinanet and two versions of CenterNet are known for their innovative model struc-
ture, and they have excellent performance on COCO datasets and Pascal VOC datasets.
R3detection is a newly proposed model that mainly focuses on DOTA datasets. These de-
tectors can be attached to our HSOD-Net, making full use of its generated super-resolution
images. According to Table 2, each of these baseline models performs poorly on low-
resolution DOTA datasets. The lack of resolution leads to a lack of information to detect
ground truth objects. However, our HSOD-Net improves the detection results, and different
baseline models have different degrees of improvement.
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Table 2. Baseline Model Performance and Our Model Embedded Performance for Small Object Detection in Low-Resolution

Remote Sensing Images.

Baseline Models HR AP LR AP Decreased Value Our Model Embedded LR AP Improved Value
CenterNet [8] 37 32 5 36.7 4.7

R3detection [26] 51 39 12 49.0 10
Retinanet [25] 26 23.5 2.5 25 1.5

CenterNet2 [24] 43.1 28.7 14.4 39.5 10.8

4. Experiments

In this section, we present our detailed experiments. First, we use the DOTA dataset to
provide: A quantitative analysis of different detection methods for small object in remote
sensing images, an ablation study for HSOD-Net, and visual comparisons of different
detection methods. Second, the evaluation on COCO dataset is presented to prove the
robustness of HSOD-Net for small object detection in nature scene images. Finally, the time
complexity of the proposed HSOD-Net is studied to prove the advantage of our HSOD-
Net efficiency.

4.1. Evaluation on DOTA Dataset for Small Object Detection in Remote Sensing Images

In this paper, we use DOTA [22] dataset which has 2806 remote sensing images to
evaluate the performance of our proposed HSOD-Net. Each image in the DOTA dataset has
a size ranging from 800-5000 pixels in width and height. For images larger than 2000 pixels,
directly using the existing state-of-the-art object detection methods is not feasible since they
require the size of the input image to be either 300, 512, or 608. Without pre-processing for
the large images, those detection methods will resize the images automatically, which will
lead to poor training and testing. Therefore, we clean the dataset using a slider so large
images are cut to 1024 x 1024 with a step of size 512 to satisfy the size requirement while
preserving sufficient information in the images.

4.1.1. Quantitative Comparison with Low-Resolution Remote Sensing Images

The state-of-the-art object detection models (e.g., CenterNet [8], CenterNet2 [24], Reti-
nanet [25], and R3detection [26]) achieve high performance on images with high resolutions.
Here, we study the performance of those methods on detecting small sized objects in low
resolution (e.g., four times down sampled image as the low-resolution representation).
In Table 3, we provide the average precision (AP) performance comparison for detecting ob-
jects in low-resolution inputs, and our HSOD-Net has achieved a remarkable performance.
It is worth noting that R3detection works slightly better than our method, that is because
we only take the VGG19 network as our backbone, which is simple and effective. Moreover,
as stated in Section 3.3, our proposed HSOD-Net can be incorporated into these existing
object detectors to improve the detection results, and while different baseline models have
different degrees of improvement, R3detection achieves the best performance(as Table 2
shows).

Table 3. Model performance on low-resolution DOTA dataset.

Performance and Our

Methods HSOD-Net CenterNet CenterNet2 Retinanet R3detection

Low-Resolution

AP 37.6 32 28.7 23.5 39

To evaluate the super-resolution task of HSOD-Net, Figure 6 shows the visual compar-
ison of the original image, the super-resolved image using HSOD-Net, the down-sampled
image by scale of four, and the bi-linear interpolation based up-sampling image. Both our
visual image quality and quantitative PSNR are better than that of bi-linear interpolation
for a random sample from the DOTA validation dataset.
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Figure 6. Visual comparison of two up-sampling methods (our HSOD-Net and bi-linear interpolation) for two random

images in DOTA validation set.

4.1.2. Ablation Experiments on Key-Point Detection

In HSOD-Net, we use the key-point detection model to generate a heat map represent-
ing the distribution of probabilities for potential objects of an image. As in all heat maps,
the inner part of the object has higher probability than its edges and the local maximum
probability stands for the center point of the object. The predicted center points are often
correlated with the higher probabilities which allows us to estimate the rough locations of
the objects. With this key-point detection structure, the model predicts the top K probabili-
ties as potential objects. In order to determine the ideal p (p is the threshold that among
all top K potential objects, only those that have probability greater than p are kept), we
develop an evaluation method called hit-accuracy H. The idea of the term “hit” means the
accuracy of the predicted center point located in the ground truth object bounding box area.
The key-point detection model gives a certain number of predictions with probabilities
greater than p. Among these predictions, M is the number of hit objects. N is the number of
ground truth objects. Therefore, we define hit-accuracy as H = M/ N. In our experiment,
we empirically set p = 0.15 to train with low-resolution DOTA dataset.

In this section, we perform an ablation study to pinpoint which parts of our proposed
framework contribute the most to the overall performance. We consider the key-point
detection model and the super resolution via MGAV-Det model during testing as the
comparison metrics. To measure the effectiveness of the key-point detection, we perform
two tests; the first one is done by applying the super resolution on the entire images, then
the baseline object detection model (CenterNet [8]) is used to detect the objects on the
super-resolved images because it is a state-of-art detection model, and the other object
detector will give similar results. The second one is done by using our proposed method of
applying the key-point detection model to generate regions around the extracted points.
Those regions are then super-resolved individually before applying the object detection
model. The AP scores of both tests are compared to illustrate the effectiveness of the
key-point detection method (Table 4). The hit accuracy is also compared to measure the
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degree of the missed objects by the detector. Furthermore, the inference time is compared
to illustrate the efficient of our key-point guided strategy.

Table 4. Ablation Experiments on Key-point Detection.

Method Low-Resolution AP Hit Accuracy Inference Time
Key point detection embedded
(CenterNet as baseline) 367 0.757 0.27 s/ task
No key point detection 354 0.74 0.77 s/ task

(CenterNet as baseline)

As illustrated in Table 4, key-point guided strategy indeed improves the detection
accuracy (e.g., AP score) for low-resolution images. While it is very common to miss
detecting small objects on low-resolution images, the hit accuracy with a key point detector
is slightly improved over the other test. Moreover, the embedded key point detection
improves the inference time per task by 0.5 seconds. By using a key point detection, the
regions of the potential object are proposed, and we only need to super resolve those
regions and detect those regions, which makes our approach more efficient.

4.1.3. Ablation Experiments on Super-Resolution

Similar to the previous ablation study, two tests are set up to examine the impact of
the super resolution. The first test consists of a key-point detector to propose a set of rough
regions, and CenterNet, as the object detection model, is used to detect objects on those
potential regions. The second test is our proposed method with the super resolution via
MGAV-Det model and using the same object detection model. The AP score is compared to
illustrate the effects of the super-resolution stage in detecting low-resolution data. Table 5
shows a significant performance improvement with a super-resolution embedded model.

Table 5. Ablation Experiments on Super Resolution.

Method (CenterNet as No Super-Resolution Super-Resolution Embedded
Baseline) Embedded Model Model
Low-Resolution AP 18.8 36.7

4.1.4. Visual Comparison with Low-Resolution Remote Sensing Images

In this section, we provide a visual comparison of predicted bounding box on ran-
domly selected low-resolution remote sensing images from the DOTA dataset: P2789 as
scene 1 and P0331 as scene 2. In Figure 7a,b, the ground truth bounding boxes are shown
first, followed by the prediction of HSOD-Net, and then the predictions from the different
baseline models. The score of the bounding box is also shown in the figures. We only show
bounding boxes that have scores above 0.8 out of 1. The results show the advantages of our
proposed method in detecting small objects (e.g., small sized cars and boats in the figures)
in low-resolution remote sensing images.

4.2. Evaluation on COCO 2014 Dataset

Though our main problem setting focuses on small object detection in low-resolution
remote sensing, HSOD-net can be also deployed on other natural scene datasets. We
test the robustness of HSOD-net on COCO 2014 datasets. HSOD-Net is trained on the
COCO 2014 train set, and the tested on COCO 2014 val set. CenterNet as a baseline
model is embedded in our framework to validate the improved detection performance on
low-resolution natural images (as Table 6 shown).
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Figure 7. Visual comparison of different detection methods for two randomly selected image from the DOTA validation set.
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Table 6. Quantitative Comparison on COCO 2014 Dataset.

w/o Embedded on Embedded on Improvement
HSOD-Net HSOD-Net proveme
CenterNet as baseline 19.4 28.0 8.6

4.3. Computational Efficiency Analysis and Comparison

As discussed above, efficiency is a very important factor for evaluating deep learning
models. For instance, using the key point detection strategy reduces the time complexity as
shown in Table 4. Deep learning models for super resolution and object detection require
training and testing on large images in patches cut by a slider. The problem with this
approach is that extensive computation repetitions occur since the step is usually half
the size of the slider, and the overlapping areas are calculated several times. Moreover,
the background of a remote sensing image takes up a large proportion of the entire image
which wastes the computation time on areas of no interest. In contrast, our proposed
HSOD-Net eliminates this problem by embedding a key point detector at the beginning.
After the regions pointed by the key point detector are known, other areas are no longer
considered, which drastically reduce the computation time. Table 7 contrasts the improved
inference time between two kinds of methods on different baseline models, which are
traditional super resolution with object detection on whole image, and our proposed
method embedded with different detection models.

Table 7. Inference Time Comparison.

Traditional Method Proposed Method

Detection Models Improved Value

Speed Embedded Speed
CenterNet 0.77 s/task 0.27 s/task 0.5 s/task
R3detection 0.94 s/task 0.59 s/task 0.35 s/task
Retinanet 0.93 s/task 0.57 s/task 0.36 s/task
CenterNet2 0.75 s/task 0.21 s/task 0.54 s/task

5. Conclusions

In this paper, we propose a hierarchical small object detection network (HSOD-Net)
via the novel point-to-region detection strategy. For low-resolution remote sensing images,
the key-point detector is applied to distinguish the small size objects from the background
and estimate the object positions; then, super-resolution is used to up-sample a small
object image into a larger scale required by the existing object detectors. Furthermore, we
provide a multi-task generative adversarial network for image enhancement and object
detection (MGAN-Det) in the HSOD-Net. We validate the proposed framework within the
small object detection pipeline on a challenging benchmark, where our detection model
achieves higher performance than several previous state-of-the-art models. The hierarchical
strategy is also proven to be more efficient in terms of running time, which is suitable for
practical application.

The proposed model can be applied to small object detection in the satellite photog-
raphy area. Images captured from a satellite have relatively lower resolution compared
to images collected by drones or surveillance camera. Furthermore, objects in a satellite
image have relatively smaller size. Traditional object detection models bring misdetection
and inaccurate bounding boxes due to lack of resolution information and small sized
objects in satellite data. However, the proposed method specializes in detection of small
objects in low-resolution images. More specific application could include real-time satellite
monitoring, land-scape exploration via satellite and so on.

In this paper, we mainly focus on small sized object detection on remote sensing
images; there will be no movement of the identified object in the still image. Therefore,
the effectiveness and accuracy of the proposed method are maintained and not influenced
by the dynamic objects of the input image. In the future, the proposed method can be
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expanded to process video inputs. Then, the object detection coherence of serialized images
and the efficiency of multi-frame processing should be further considered, which may be
solved through optical flow estimation for key frames.
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