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Abstract: This study aims to evaluate risk and discover the distribution law for landslides, so as to
enrich landslide prevention theory and method. It first selected Fengjie County in the Three Gorges
Reservoir Area as the study area. The work involved developing a landslide risk map using hazard
and vulnerability maps utilizing landslide dataset from 2001 to 2016. The landslide dataset was
built from historical records, satellite images and extensive field surveys. Firstly, under four primary
conditioning factors (i.e., topographic factors, geological factors, meteorological and hydrological
factors and vegetation factors), 19 dominant factors were selected from 25 secondary conditioning
factors based on the GeoDetector to form an evaluation factor library for the LSM. Subsequently,
the random forest model (RF) was used to analyze landslide susceptibility. Then, the landslide
hazard map was generated based on the landslide susceptibility mapping (LSM) for the study region.
Thereafter, landslide vulnerability assessment was conducted using key elements (economic, material,
community) and the weights were provided based on expert judgment. Finally, when risk equals
vulnerability multiplied by hazard, the region was categorized as very low, low, medium, high and
very high risk level. The results showed that most landslides distribute on both sides of the reservoir
bank and the primary and secondary tributaries in the study area, which showed a spatial distribution
pattern of more north than south. Elevation, lithology and groundwater type are the main factors
affecting landslides. Fengjie County landslide risk level is mostly low (accounting for 73.71% of the
study area), but a small part is high and very high risk level (accounting for 2.5%). The overall risk
level shows the spatial distribution characteristics of high risk in the central and eastern urban areas
and low risk in the southern and northern high-altitude areas. Secondly, it is necessary to strictly
control the key risk areas, and carry out prevention and control zoning management according to
local conditions. The study is conducted for a specific region but can be extended to other areas
around the investigated area. The developed landslide risk map can be considered by relevant
government officials for the smooth implementation of management at the regional scale.

Keywords: landslide; susceptibility assessment; random forest; GeoDetector; risk assessment

1. Introduction

Landslides are one of the most severe and common geological hazards in the world,
being significantly widespread, catastrophic and destructive, prone to chain disasters,
and mainly occurring in mountainous areas [1,2]. The periodic water level rise and fall

Remote Sens. 2021, 13, 2625. https://doi.org/10.3390/rs13132625 https://www.mdpi.com/journal/remotesensing

https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://orcid.org/0000-0002-2045-729X
https://orcid.org/0000-0002-9263-7599
https://doi.org/10.3390/rs13132625
https://doi.org/10.3390/rs13132625
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/rs13132625
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/article/10.3390/rs13132625?type=check_update&version=1


Remote Sens. 2021, 13, 2625 2 of 34

in the Three Gorges Reservoir Area makes an unstable state in the slope on both sides of
the reservoir, which aggravates the existing landslide recurrence or potential landslide
instability, so there are countless hazards. Landslides can directly result in a threat to
life, livelihood, casualties, agricultural livestock and forest growth throughout the world,
ranging from minor social disruption to serious economic losses [3,4]. Landslide research
has attracted worldwide attention, mainly due to the continuous improvement in peo-
ple’s awareness of the socio-economic impact of landslide, and the increasing pressure
of urbanization on mountain environments [5]. During the periods between 2004–2010,
2620 landslide events were recorded worldwide, causing a total of 32,322 fatalities [6].
Only in China, more than 25,000 people have died from landslides over the past 60 years,
and up to $50 million a year of economic losses were caused by landslides [7]. This grim
situation makes measures to prevent and forecast landslide disasters extremely urgent.
To minimize losses and damages, studies need to be strengthened, starting from landslide
data collection for landslide risk assessment.

In 1984, Varnes [8] first proposed the concept of landslide risk, which refers to the
possible loss of population and economic activity caused by landslide disasters over
a certain period of time. Moreover, landslide risk assessment refers to the interaction
between the disaster-causing body and the disaster-bearing body in order to evaluate and
estimate the number of casualties or property losses that may be caused by landslides [9].
The disaster-causing body can cause danger but does not consider the hazard object,
reflecting a natural attribute of landslides. The disaster-bearing body has the disaster-
bearing function, which refers to the personnel, property, etc., which suffer the landslide
disaster, manifesting its social consequences. Therefore, landslide risk assessment results
can intuitively show landslide risk distribution in the study area, and guide disaster
prevention and mitigation work according to local conditions.

Risk assessment methods can be divided into qualitative, quantitative and qualitative-
semi-quantitative methods. Qualitative methods are generally carried out depending
on the experience of expert engineering geologists and geomorphologists, which may
be subjective. Qualitative-semi-quantitative methods are a combination of the above
two methods. Biçer et al. [9] assessed landslide risk by a semi-quantitative approach in a
landslide-prone area located in the Eastern Mediterranean region of Turkey and produced a
landslide risk index map. However, quantitative methods are performed by using statistical
and/or mathematical modelling techniques. Based on the value estimation of the hazard
bearing body at different times and working conditions, Bonachea et al. [10] established the
quantitative analysis model of landslide disaster risk assessment and the results showed
that this quantitative method is feasible. Risk assessment for single landslide has become
relatively mature, while landslide risk assessment at the regional scale has not been a
frequent topic in the literature. Xu et al. [11] took the Ganba landslide in Xuanen County
of Hubei Province in China as a case study of landslide risk assessment. Zhang et al. [12]
researched the risk of a barrier dam induced by the Caijiaba landslide, finding that the
riverway would be blocked by the debris, forming a weir dam. However, the scope of
single landslide risk research is limited, whereas research on a regional scale can grasp the
basic situation of regional landslide risk more macroscopically, so as to provide a theoretical
basis for management departments.

As the basic premises and core work of landslide risk assessment [13], landslide sus-
ceptibility, hazard and vulnerability assessments have been conducted by many scholars
during the recent decades [14–16]. As a foundation for landslide prevention and spatial
planning, landslide susceptibility mapping (LSM) depicts the future possibility of land-
slides in a region [17,18]. The adoption of modeling methodologies plays a key role in
the effectiveness of LSM [19]. There are many methods of landslide susceptibility assess-
ment, and the early stage is mainly statistical analysis. Due to the complex nonlinear
characteristics of landslide development, many problems with landslide susceptibility
assessment research have not been systematically solved. In the context of the rapid devel-
opment of data mining technology, most researchers have begun to use machine learning
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algorithms to study landslide susceptibility, including random forest (RF) [14,19], logistic
regression (LR) [20,21], artificial neural networks (ANN) [15,22], support vector machine
(SVM) [23,24] and other models. Further research shows that, compared with other ma-
chine learning algorithms, the random forest, tree-based ensemble algorithm, can achieve
better results, because of its robust performance and high accuracy. It only needs a small
amount of adjustment before model training [25]. In addition to the different algorithms
used, redundancy and noise factors will also increase the uncertainty of the model and
reduce the prediction ability. Therefore, screening of dominant and effective factors is
conducive to improving the accuracy of risk assessment. Usually, factor selection methods
can be classified into three categories: statistical methods, machine learning methods,
and other methods. The commonly used statistical methods include factor analysis [26],
correlation coefficient and rough set [27]. Machine learning methods including RF [28],
and LR [29] has been employed in the literature. Although these methods can filter out
relatively important influence factors and increase the reliability of LSM to a certain extent,
they do not consider the pattern characteristics of spatial data, and the improvement of
accuracy is limited. However, different to the above methods, GeoDetector [30] takes into
account the spatial pattern characteristics between factors and landslide data, and the
selected factors are more representative, which improves the accuracy of LSM.

In this paper, considering the above concepts, a quantitative assessment of landslide
risk based on susceptibility mapping using random forest and GeoDetector was performed
in Fengjie County in the Three Gorges Reservoir Area. Firstly, based on summarizing
the theoretical methods of landslide risk assessment, taking 1522 historical landslides of
Fengjie County as a sample, the development and distribution characteristics of landslides
were deeply analyzed, and the condition factors optimized by GeoDetector. Then, the LSM
was generated by RF model. Lastly, landslide risk assessment was studied combined with
hazard and vulnerability assessment, and the landslide risk assessment model of Fengjie
County was constructed. The risk assessment levels of different regions were obtained,
and the spatial distribution characteristics of landslide risk were revealed, which provided
a scientific basis for the prevention and control of landslide disasters in Fengjie County.
The highlights of this paper include: (1) GeoDetector was adopted for factor screening;
(2) Machine learning method was applied to LSM; (3) Landslide risk assessment at regional
scale was conducted.

2. Materials and Methods
2.1. Study Area

Fengjie County is located in the east of Chongqing, the center of the Three Gorges
Reservoir Area (109◦1′17” E~109◦45′58′′ E, 30◦29′19′′ N~31◦22′33′′ N, Figure 1). Situated
in the east of the Sichuan Basin, as a mountainous region the county is the junction of the
Dabashan arc fold fault zone and east Sichuan arc concave fold zone, with a sophisticated
structural stress field (Figure 2). The region is mainly mountainous, with the highest
elevation at 2123 m. Topographic characteristics are high in the north, low in the south,
and vary widely. Its climate is subtropical monsoon, with frequent rainfall and annual
average precipitation of 1132 mm, predominantly occurring from May to September, and an
average annual temperature of approximately 16.5 ◦C. There are many water systems in
the county, with a drainage area of more than 50 km2. The Yangtze River runs through the
central part, with an average flow of 13,700 m3/s over many years.
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Figure 2. Geological Structure Outline Map of Fengjie County.

Figure 1 shows the geographical location of Fengjie County and the distribution of
historical landslides. As shown, most of the landslides are distributed among the banks of
the reservoir and both sides of the rivers, showing the spatial distribution characteristics
more for the north and less for the south. Signs indicate that the human engineering
activities of the Three Gorges Reservoir Area, such as town construction, resettlement, water
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storage, roads, bridges, and power generation of the reservoir areas, as well as continuous
precipitation, have led to a substantial impact on induced landslides. In addition, in terms
of time distribution characteristics, landslides mainly occur from May to October. This is
because the slope body is more prone to landslides under the influence of heavy rainfall in
summer after being soaked in winter. Therefore, the high occurrence period of landslides
is consistent with the annual flood season. Specifically, the landslide is relatively stable
in the dry season or normal conditions, but in severe convective weather or rainstorm,
the stability of the slope body will decrease.

According to the statistical results of landslide numbers in the counties of Chongqing
(Figure 3) from 2001 to 2016, compared with other counties, Fengjie County has the largest
number of landslides (1522). Especially, it has nearly 1.5 times as many historical landslides
as Yunyang County. The results show that the Fengjie County landslide disaster situation
is grim, and landslide disaster risk assessment is of great significance.
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Figure 3. Landslide numbers for the counties of Chongqing from 2001 to 2016.

2.2. Data

The data on 1522 historical landslides in Fengjie County from 2001 to 2016 are from
the Chongqing Geological Monitoring Station. The attribute table contains information on
landslide name, occurrence location, and time. Since 2007, the geological disaster manage-
ment department of Chongqing formed a geological disaster garrison (about 500 members)
permanently stationed in geological disaster-prone areas. Once the landslide emergency
is found, they will be responsible for the evacuation of personnel and recording basic
information on the landslide. Given the actual situation of the landslides in the study
area, the historical landslide data were divided into two types. Most of the landslides in
the study area were shallow/soil (81.68%) and only 18.32% were deep/rock landslides.
Therefore, we will generate a comprehensive susceptibility map for generic landslides in
the results.

During the field survey, the central latitude and longitude coordinates of the landslide
are recorded as the location, as a point to use as input data in the susceptibility model.
Therefore, we selected two typical landslides in Fengjie County, namely, the Xiawazhaping
Landslide and the Zhujiatian Landslide (Figure 4a,b), to show the location and center of
the landslide.
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Figure 4. Field survey of landslides in Fengjie County: (a) the Xiawazhaping Landslide; (b) the
Zhujiatian Landslide.

POI (point of interest) data in 2016 were crawled by a python program. These data
points include buildings such as hospitals, primary and secondary schools, business centers,
parks and squares, taking into account various types of commercial and educational activity
that can represent human engineering. Other data sources, types and accuracy are shown
in Table 1.

Table 1. Data and data sources.

Data Name Data Sources Type Scale

Historical landslide Chongqing Geological monitoring station Dataset
Elevation Aster satellite Grid 30 m

Geological data National Geological Data Center Grid 1:200,000
Land cover Chongqing Municipal Bureau of land and resources Vector 1:100,000

Administrative division Chongqing Municipal Bureau of land and resources Vector 1:100,000
River network Chongqing Water Resources Bureau Vector 1:100,000
Annual rainfall Chongqing Meteorological Administration Dataset 90 m

Road Chongqing Transportation Commission Vector 1:100,000
Satellite image Geospatial Data Cloud platform Grid 30 m

POI of Chongqing Web Crawler Dataset
GDP (Gross Domestic Product) Resource and Environment Science and Data Center Grid 1 km × 1 km

Population Resource and Environment Science and Data Center Grid 1 km × 1 km
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2.2.1. Data on Landslide Susceptibility Assessment

Landslide development is not only controlled by the geological conditions of the slope
but also interfered with by hydrological and climatic conditions [16]. Some scholars have
found that there are up to 596 factors in landslide susceptibility research [31]. According to
the principles of significance, representativeness, scientificity and operability, the primary
factors were selected. Based on the collected data and related literature, combined with
the spatial laws and regional characteristics of landslide disaster distribution in Fengjie
County, as shown in Table 2, four types of factor libraries were established in this study
and 25 disaster-causing factors were selected:

Table 2. Classification of conditioning factors of landslide susceptibility.

Type Factor Classification

Topographic Factors

plane curvature 1. <−1.4; 2. −1.4∼−0.38; 3. −0.38∼0.4; 4. 0.4∼1.5; 5. >1.5

elevation/m 1. <343; 2. 343∼538; 3. 538∼712; 4. 712∼872; 5. 872∼1025; 6. 1025∼1185;
7. 1185∼1357; 8. 1357∼1554; 9. 1554∼1783; 10. >1783

elevation coefficient of
variation

1. <0.008; 2. 0.008∼0.02; 3. 0.02∼0.035; 4. 0.035∼0.055; 5. 0.055∼0.085;
6. 0.085∼0.153; 7. >0.153

slope/◦ 1. <6; 2. 6∼13; 3. 13∼19; 4. 19–24; 5. 24∼30; 6. 30∼35; 7. 35∼42; 8. 42∼50;
9. >50

aspect 1. Flat; 2. North; 3. Northeast; 4. East; 5. Southeast; 6. South;
7. Southwest; 8. West; 9. Northwest

slope variability 1. <4; 2. 4∼7; 3. 7∼10; 4. 10∼13; 5. 13∼17; 6. 17∼20; 7. 20∼25; 8. 25∼31;
9. >31

curvature 1. <−2; 2. −2∼−0.8; 3. −0.8∼0.7; 4. 0.7∼2.8; 5. >2.8
profile curvature 1. <−2; 2. −2∼−0.6; 3. −0.6∼0.4; 4. 0.4∼1.8; 5. >1.8

slope shape 1. Convex slope; 2. Concave slope; 3. Straight slope
RDLS/m 1. <15; 2. 15∼29; 3. 29∼43; 4. 43∼58; 5. 58∼78; 6. 78∼112; 7. >112

slope position 1. Valleys; 2. Flats slope; 3. Ridge; 4. Middle slope; 5. Lower slope;
6. Upper slope

micro-landform

1. Canyons, Deeply incised streams; 2. Open slopes; 3. Midslope ridges,
Small hills in plains; 4. Plains; 5. Upland drainages, Headwaters;
6. Mountain tops, High narrow ridges; 7. Local ridges hills in valleys;
8. Midslope drainages, shallow valleys; 9. Upper slopes, Plateau;
10. U-shape valleys

TRI 1. <1.07; 2. 1.07∼1.2; 3. 1.2∼1.4; 4. 1.4∼1.8; 5. >1.8
incision density 1. <0; 2. 0∼2; 3. 2∼3; 4. 3∼4; 5. 4∼5; 6. >5

Incision depth/m 1. <433; 2. 433∼616; 3. 616∼700; 4. 933∼1126; 5. 1126∼1369;
6. 1369∼1835; 7.>1835

TWI 1. <5; 2. 5∼7; 3. 7∼10; 4. 10∼15; 5. >15

Geological Factors

lithology 1. T3xj; 2. T3b1; 3. T2b2; 4. T1j; 5. T1d; 6. S1–2; 7. P2; 8. P1; 9. J3p/J3s;
10. J2s/J2xs; 11. J1–2z/J1z; 12. D2/D3

CRDS 1. Reverse slope; 2. Tangential slope; 3. Outward slope; 4. Oblique slope;
5. Flat; 6. Dip-slope I; 7. Dip-slope II

distance from the fault/m 1. <500; 2. 500∼1000; 3. 1000∼1500; 4. 1500∼2000; 5. 2000∼2500;
6. 2500∼3000; 7. >3000

Meteorological and
Hydrological Factors

distance from rivers/m 1. <100; 2. 100∼200; 3. 200∼300; 4. 300∼400; 5. 400∼500; 6. 500∼600;
7. >600

SPI 1. <15; 2. 15∼30; 3. 30∼45; 4. 45∼60; 5. 60∼100; 6. 100∼1000; 7. >1000

groundwater type

1. Carbonate fissure cave water; 2. Fracture water of clastic rock
interbedded karst cave; 3. Crushed rock fissure water; 4. Sandstone
fissure/Gravel fissure/shale pore fissure water; 5. Sandy pebble micro
confined water; 6. Dolomite fissure karst water; 7. Mud dolomite fissure
water; 8. Weathering fissure water; 9. Without water

STI 1. <133; 2. 133∼1071; 3. 1071∼3483; 4. 3483∼8708; 5. >8708

Vegetation Factors
NDVI 1. <0.1; 2. 0.1∼0.2; 3. 0.2∼0.3; 4. 0.3∼0.4; 5. 0.4∼0.5; 6. 0.5∼0.6; 7. >0.6

land cover 1. Meadow; 2. Farmland; 3. Water area; 4. Forest; 5. Garden plot;
6. Others; 7. Residential land; 8. Transportation
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(1) Topographic Factors: plane curvature, elevation, elevation coefficient of varia-
tion [32], slope, aspect, slope variability, curvature, profile curvature, slope shape, relief
degree of the land surface (RDLS), slope position, micro-landform, terrain roughness in-
dex(TRI), incision density, incision depth and topographic wetness index (TWI). These
factors were all calculated with a digital elevation model (DEM). DEM data from Aster
satellite are at 30 m spatial resolution. Topographic factors are closely related to landslide
occurrence and they are the main factors which control the spatial distribution of landslide
disasters. Mark et al. [33] studied the corresponding relationship between frequency of
shallow landslide and the terrain. The results show that landslide disaster has a good
correlation with steep terrain.

(2) Geological Factors: lithology, combination reclassification of stratum dip direction
and slope aspect (CRDS), distance from the fault. As important internal causes of landslides,
different geological factors show large differences in physical and mechanical parameters
and directly affect the slope stability. In general, the occurrence and formation of landslide
occurs under certain geological environmental conditions, such as free interface of slope,
sliding soil and rock mass, cutting slope and groundwater active tectonic surface.

(3) Meteorological and Hydrological Factors: distance from rivers, stream power index
(SPI), groundwater type, sediment transport index (STI). Factors such as surface water and
groundwater are important in affecting slope stability. Many landslides are related to the
role of water, or water is their trigger factor. Water softens or mudifies the rock mass of the
slope, which greatly reduces the shear strength of rock mass. The erosion of surface water
and the dissolution of groundwater also directly damage the slope. In this study, most of
the historical landslides are distributed along rivers, because Fengjie County is located in
the center of the Three Gorges Reservoir, and the periodic rise and fall of the water level is
one of the main causes of landslides.

(4) Vegetation Factors: Normalized Difference Vegetation Index (NDVI) and land cover.
NDVI, as an important parameter of ecological environment quality, directly affects the
degree of soil erosion. Land cover shows the degree of human disturbance and destruction
of rock and soil. Forest is beneficial to solid slope and reduces the occurrence of landslide,
while farmland and residential land will destroy the stability of slope and cause slope
damage.

The lithology and fault factor can be obtained by vectorizing the 1:10,000 geological
map. Groundwater type was generated after vectorization based on a 1: 200,000 hydro-
geological map. NDVI data was generated by Landsat 8 OLI processing. Distance from
the fault and rivers is needed to establish multi-level buffer zones for faults and rivers.
In summary, 30 m × 30 m was selected as the basic unit of susceptibility assessment and
for establishing the factor geospatial database (Figure 5).
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2.2.2. Data for Landslide Hazard Assessment

Based on the collected data and related literature [34–36], combined with the spatial
distribution and regional characteristics of Fengjie County landslides, the landslide risk
evaluation library was constructed by selecting three secondary triggering factors under
the two kinds of index, annual average rainfall and human engineering activities, including
distance from roads and houses. The annual average rainfall is obtained by spatial interpo-
lation based on the data of meteorological monitoring stations in the county. The distance
from roads and houses are obtained by multiple buffers ranging from less than 100 m to
over 600 m. Landslide hazard assessment factors are shown in Figure 6.
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2.2.3. Data of Landslide Vulnerability Assessment

Evidence from various studies indicates that material, community, and economic fac-
tors need to be considered in vulnerability assessment [13,37,38]. Based on disaster-affected
body data collection, remote sensing interpretation and field investigation, we selected
four important factors in constructing the landslide vulnerability evaluation library. These
are widely used in previous studies and best reflect vulnerability, including POI kernel
density, road cost (CNY/km2), population (CNY/km2) and GDP (CNY/km2). Landslide
vulnerability assessment factors are shown in Figure 7. POI kernel density is related to
material and is based on location services. If each POI site is regarded as a functional
unit, then the higher the POI density, the more landslide vulnerability is likely to increase.
POI kernel density analysis was made with ArcGIS software. Generally, with an increase
in road cost, population and GDP, landslide vulnerability is likely to increase [38,39]. Ac-
cording to the principle that different roads correspond to different prices, road cost was
created in ArcGIS software. Furthermore, population and GDP came from the Resource
and Environment Science and Data Center and were also made with ArcGIS software.
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To reduce the data dispersion, all the factors after reclassification should be normalized.
The classification index values of these factors were transformed linearly, thereby reducing
the values to [0,1] intervals. The normalization formula is denoted as follows:

X∗ = (X− Xmin)/(Xmax − Xmin) (1)

where X∗ is the normalized data; X is the original data; Xmin is the minimum value after
each factor is assigned; and Xmax is the maximum value after each factor is assigned.



Remote Sens. 2021, 13, 2625 16 of 34

2.3. Methodology

Referring to the landslide risk assessment framework of Van et al. (2006) [40], this work
is divided into four steps, using the technical route shown in Figure 8: (1) Landslide
susceptibility assessment. According to field investigation and related data, combined
with 1522 historical landslides in Fengjie County and the ArcGIS platform, 25 landslide
influencing factors were selected to construct the landslide susceptibility database. Then,
the dominant factors were screened by GeoDetector, and the landslide susceptibility was
evaluated by the random forest method. (2) Landslide hazard assessment. Based on the
relevant data, interpretation and field investigation, the hazard assessment index of the
study area is established, and the landslide hazard is further evaluated combined with
the results of susceptibility assessment. (3) Landslide vulnerability assessment. Spatial
analysis and quantification of selected vulnerability factors are carried out to evaluate
landslide vulnerability. (4) Quantitative risk assessment of landslides. Based on the above
assessments, the quantitative risk assessment for the Fengjie County landslides was carried
out based on the GIS platform.
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2.3.1. Landslide Susceptibility Assessment Method
1. Random Forest Model (RF)

First proposed by Breiman (2001) [41], Random Forest (RF) is an ensemble method
of separately trained binary decision trees. Compared with the traditional landslide
division methods, the RF method introduces two random samplings (samples and features).
The decision trees improve the accuracy and stability of the model more than a single
decision tree, by using a randomly generated method to select samples and features. Then,
the judgment results of multiple decision trees are voted on to arrive at the final output.



Remote Sens. 2021, 13, 2625 17 of 34

The key point of RF is to combine n independent decisions (u(X, θk; k = 1, 2, . . . n)) to
build a model. Each decision tree in the model judges or predicts the samples. Different
classification models u1(X), u2(X), . . . , uk(X) are obtained after sample training. Then,
these classification models can be used to build RF models:

U(X) = argmax
Z

k

∑
i=1

I(ui(X) = Z) (2)

where U(X) represents an RF model, ui(X) denotes a single decision tree model, Z means
output variable, and I(.) is an explicit function.

Figure 9 shows the steps of the RF algorithm.
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In order to build decision trees, we use the Classification and Regression Tree (CART)
algorithm to split the nodes in this study. CART follows the minimum principle of Gini.
At node t, CART randomly extracts an object which is assigned to class i according to
probability p(j|t) . The estimated probability that the object belongs to class j is p(j|t) .
Under this rule, the estimated probability of misclassification is as follows:

Gini = ∑J
i 6=j(p(i|t)p(j|t)) (3)

2. GeoDetector

Geodetector is a new method proposed by Wang et al. [30] to detect spatial differences
and reveal driving factors. Unlike other statistical methods, it gives a clear physical mean-
ing and may overcome the limitations of statistical methods in dealing with variables [42].
The general assumption of the application of Geodetector to landslide research can be
expressed as follows: if the condition factors control or contribute to the occurrence of the
landslide, the spatial distribution characteristics of the landslide and the condition factor
should be similar. Geodetector includes factor detector, risk detector, ecological detector
and interaction detector. In this study, the factor detector is mainly used to calculate the
explanatory q value of the conditional factor X when the landslide occurs, and the spatial
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correspondence between X and the dependent variable Y is measured by the explanatory
degree of the factor X, expressed as:

q = 1− ∑S
m=1 Nmσ2

m
Nσ2 = 1− WSS

TSS
(4)

WSS =
S

∑
m=1

Nmσ2
m (5)

TSS = Nσ2 (6)

where m = 1, . . . , S is the stratification of variable Y or factor X, Nm is the number of units
in the entire area, and σ2

m and σ2 are the variance of the Y value of the layer m and the
entire area, respectively. WSS is the sum of variance within the layer, and TSS is the total
variance of all the regions. The range of q is [0,1], and the larger the value of q, the stronger
the spatial heterogeneity of Y.

3. Evaluation of LSM Model

It is important to evaluate the model, which can reflect the model performance,
and different aspects can be assessed. The precision (positive predictive value), sensitivity
(true positive rate), specificity (true negative rate), and accuracy are usually considered
effective indicators of fitting and predictive accuracies. Therefore, this paper applied these
indicators to evaluate the performances of the RF model in the present research (Table 3).

Table 3. Explanation of statistical-index-based evaluations.

No. Metric Equation Definition

1 Precision Precision = TP
TP+FP

The fraction of relevant instances in the
retrieved instances.

2 Sensitivity (SST) SST = TP
TP+FN

The percentage of landslide cells that are
correctly classified.

3 Specificity (SPF) SPF = TN
TN+FP

The percentage of non-landslide cells that
are correctly classified.

4 Accuracy (ACC) ACC = TP+TN
M

The proportion of landslide and
non-landslide cells are correctly classified.

5 Recall Recall = TP
TP+FN

It indicates how many positive examples
in the sample are predicted correctly.

TP is the number of correctly predicted landslide cells. FP is the sum of cells of non-landslides that are classified as
a landslide. FN is the sum of cells of landslides that are classified as non-landslide. TN is the number of correctly
predicted non-landslide cells. M is the sum of landslides and non-landslides.

Otherwise, the Receiver Operating Characteristic (ROC) curve is also a method to
measure the effectiveness of a model. The area under the receiver operating characteristic
(AUC) value is used as the basis for determination [43]. This value ranges from 0.5 (very
poor performance) to 1.0 (perfect performance). When the AUC value is greater than 0.7,
the closer it is to 1, the more accurate the model’s prediction. The value of AUC can be
computed by the trapezoidal rule of integral calculus, as shown in Equation (7).

AUC = ∑n
p=1

(
Xp+1 − Xp

)
×

(
Sp+1 − Sp − Sp/2

)
(7)

where Xp is specificity and Sp is sensitivity.

2.3.2. Landslide Hazard Assessment Method

The susceptibility assessment is only aimed at the analysis and evaluation of static
factors, without considering the dynamic factors that affect the occurrence of landslides.
Therefore, based on the landslide susceptibility assessment, this paper incorporates the
external dynamic factors mainly based on average rainfall and human engineering activities
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over many years to realize the hazard assessment for landslide disaster in Fengjie County.
The calculation formula is:

H = S× (w1 + w2 + · · ·+ wn) (8)

H is the landslide hazard index; S is the regional landslide susceptibility value; and
w1, w2, . . . , wn are the normalized risk assessment factors.

2.3.3. Landslide Vulnerability Assessment Method

The vulnerability assessment model for landslides mainly considers the disaster-
bearing body. It refers to objects that suffer from landslide disasters, such as human beings,
property, resources or the ecological environment [37]. Within the hazard range, evaluating
the damage and the degree of damage that the hazard-bearing body may produce when
suffering from a landslide disaster is known as vulnerability evaluation. After considering
the characteristics of the study area and the difficulty of data acquisition, three types of
vulnerability assessment indicators, material, social and economic, are selected. Among
these, material vulnerability refers to POI density and road cost in the county. Social
vulnerability considers population density in the county, and economic vulnerability
mainly considers GDP. The calculation formula is:

V = E + M + C (9)

In the formula, V represents the vulnerability of the disaster-bearing body; M, C, and E
represent material, community, and economic vulnerability, respectively. Considering that
the importance of these three parts is indistinguishable, the weights account for 1/3 each.

2.3.4. Landslide Risk Assessment Method

Risk refers to the expected value of loss of human life, property, and economic and
social activities due to a certain natural disaster in a certain area and period. A landslide
is a natural phenomenon, but if it threatens human society, then it is a disaster. In 1984,
Varnes [8], a well-known landslide expert in the United States, proposed a basic definition
of geological hazard risk, which was universally recognized. Landslide risk is the study of
the possibility of losses caused by landslide damage, including the possibility of disasters
and the magnitude of losses. Based on the above concept of ‘risk’ and the definition by
scholars such as Varnes (1984), Einstein (1988) [44], Fell (1994) [45], the product of hazard
and vulnerability is generally used as the value of landslide risk [31,46]:

Risk = Hazard × Vulnerability (10)

Hazard reflects the natural attribute of landslide, and vulnerability reflects the social
attribute of landslide. Through the calculation of this formula, the randomness and
uncertainty of landslide occurrence and development are included, reflecting the close
relationship between nature and human society.

3. Results
3.1. Results of Landslide Susceptibility

The factor detector based on Geodetector screened the influencing factors and obtained
the detection results (Figure 10). q value explains the contribution rate of the factor, namely
the degree of influence degree of the factor on the landslide. The results show that elevation,
lithology, groundwater type, land cover, incision depth, elevation coefficient of variation,
distance from rivers, distance from the fault, slope, RDLS, TWI, TRI, slope variability, plane
curvature, curvature, micro-landform, NDVI, profile curvature and aspect are relatively
important. Among these, elevation has the strongest explanatory power for the occurrence
of landslides, while the q value of the CRDS, slope position, slope shape, SPI, STI and
incision density are less than 0.001, which does not have explanatory power, indicating
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that the relationship with the occurrence of landslides in the study area is very limited.
Therefore, this paper conducted a landslide comprehensive susceptibility evaluation based
on the above 19 factors (q ≥ 0.002).
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Figure 10. Factor detector results.

Based on 1522 historical landslides in the study area, the 500 m buffer zone and the
river area are excluded as non-landslide areas. Since the number of training samples will
directly affect the training accuracy, this paper constructs the modeling data set according
to a ration of landslide (1522):non-landslide (15,220), i.e., 1:10. Five-old cross-validation
is used to reduce the impact of a single sampling method. The basic principle is that all
data sets (1522 landslides and 15,220 non-landslides) are randomly and averagely divided
into five disjoint subsets, one subset used for each test, and the remaining subsets used
for model training. As shown in Table 4, the average accuracy of RF model training and
test samples are 0.976 and 0.913, respectively. Among them, sample 3 has the highest
test accuracy (0.919). Therefore, the model constructed with this sample is used for the
simulation of global landslide comprehensive susceptibility.

Table 4. The accuracy of five-fold cross-validation.

Subset Accuracy

Training Testing
1 0.977 0.908
2 0.977 0.917
3 0.975 0.919
4 0.975 0.904
5 0.976 0.918

Average 0.976 0.913

For the binary classification problem (landslide 1, non-landslide 0), the confusion
matrix is often used to analyze the prediction accuracy. The confusion matrix of all data
sets of the random forest model is given in Table 5, and is classified by using the library
‘Information Value’ to select a better threshold, instead of the traditional threshold of 0.5.
If the predicted value is greater than the threshold, landslide will occur, and vice versa.
It can be seen that the overall accuracy of the RF model is 0.991, the prediction accuracy
of landslide and non-landslide are 0.997 and 0.939, and the sensitivity and specificity are
0.930 and 0.997, respectively. The results show that the RF model has good prediction
performance.
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Table 5. Confusion matrix of landslide comprehensive susceptibility.

RF
True Condition

Summation
Landslide Non-Landslide

Prediction
Condition

Landslide 1416 (TP) 40 (FP) Precision: 0.997
Non-landslide 106 (FN) 15,180 (TN) Precision: 0.939

Summation Recall: 0.930 Recall: 0.997 Accuracy: 0.991

Additionally, the results of landslide comprehensive susceptibility constructed by the
RF model can also be tested by the receiver operating characteristic (ROC). Area under
the ROC curve can quantitatively test the accuracy of the model prediction. In this study,
R language was used to perform ROC curve analysis in R Studio software. The AUC values
of training, testing, and all samples were 1.000, 0.877 and 0.994 (Figure 11), respectively.
Especially, the AUC value of testing is greater than 0.7, which means the model has high
accuracy and reliability.
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The RF model can learn, after training the sample data. It can be applied to the
geospatial database of the whole study area, and then the probability value of each grid
pixel landslide (0~1) can be obtained. Then, according to the expert experience method [47],
the susceptibility results are divided into five grades: very low, low, medium, high, and very
high (Figure 12). Very low and low susceptibility level areas indicate that landslide disasters
are not easy to occur under basic topographic and geological conditions. The medium level
area indicates that landslide disasters are more likely to occur under basic topographic and
geological conditions. High level areas indicate that landslide disasters are prone to occur.
Very high susceptibility indicates that landslide disasters are easy to occur.
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To quantitatively analyze the defined susceptibility mapping result, the grid number,
area proportion, landslide number and landslide density of each susceptibility grade are
counted, as shown in Table 6. It can be seen that areas of high and very high susceptibility
account for 2% of the total area of Fengjie County, and the number of landslides accounts
for 89.94% of the total. Areas of low and very low susceptibility are more than half of the
county area, accounting for 53%, and the number of landslides is only 3.61% of the total.
The area of medium-prone area accounts for 19.28%, and the proportion of landslides in
this area is 6.44%. Overall, with an increase in susceptibility grade, the smaller the area
ratio and the larger the proportion of landslides. There is a significant positive correlation
between the number of historical landslides and the susceptibility level, and the area
and the proportion of landslides in the susceptibility area are also at a reasonable level.
The landslide comprehensive susceptibility mapping based on the RF method is consistent
with the actual situation.

Table 6. Statistical results for landslide comprehensive susceptibility in different classes.

Landslide Probability Susceptibility Class Grid Number Area Proportion Landslide Landslide Proportion

<0.16 Very low 1,775,732 39.41% 16 1.05%
0.16–0.23 Low 635,784 14.11% 39 2.56%
0.23–0.31 Medium 868,521 19.28% 98 6.44%
0.31–0.41 High 922,251 20.47% 269 17.67%

>0.41 Very high 303,324 6.73% 1100 72.27%
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3.2. Results of Landslide Hazard

Based on the ArcGIS10.4 platform, the above landslide comprehensive susceptibility
result and hazard factors are superimposed and calculated according to Formula (8).
The results were divided into five grades according to the natural breakpoint method as
shown in Figure 13, namely, very low, low, medium, high and very high, and the landslide
hazard map of Fengjie County was obtained, because the natural breakpoint method is
a statistical method for classification based on numerical statistical distribution and can
ensure the categories have relative consistency. In principle, there are some natural turning
points and feature points in any statistical sequence that can be used to divide the object of
study into different groups, which means the difference between the same category of data
is the smallest, and the difference between different categories of data is the largest [48].
Different hazard levels represent the possibility of landslides over a short time. The higher
the grade, the greater the risk of landslide. The hazard level of Fengjie County shows an
obvious spatial distribution, and the very low and low hazard areas are mostly distributed
in the high-altitude mountainous areas in the south and southeast. High and very high
hazard areas are concentrated along rivers and central towns. The medium hazard area is
distributed in the low mountains outside of the high hazard area.
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To further analyze the hazard grade division, the ArcGIS10.4 software tool is used to
count the number of grids, the percentage of grids, the number of landslides and other
data in each division, as shown in Table 7.
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Table 7. Statistical result of landslide hazard in different classes.

Hazard Class Grid Number Area Proportion Landslide Landslide Proportion

Very low 1,380,163 30.63% 19 1.25%
Low 1,321,706 29.33% 76 4.99%

Medium 963,268 21.38% 211 13.86%
High 585,668 13.00% 395 25.95%

Very high 242,624 5.38% 821 53.94%

According to the statistical results from the above table, the number of grid units in
the very low hazard area compared to the very high hazard area decreases in turn, and the
grid percentage decreases from 30.63% to 5.38%. The areas with low hazards and below
account for 59.97% of the county area, indicating that more than half of the areas in the
county have a small probability of landslide under the influence of natural and human
activities. The high and very high hazard area accounts for 18.38% of the total area, but it
contains 79.89% of the landslides, indicating that the distribution range of landslides in the
county is relatively concentrated, which is consistent with the actual situation. The density
of landslides increased by about 250 times (from 0.015 to 3.760) in the process of evaluation
grading from very low to very high. There was a significant positive correlation between
the density of landslides and the hazard degree.

3.3. Results of Landslide Vulnerability

Based on the grid calculator of ArcGIS 10.4, the four vulnerability factors of POI kernel
density, population, GDP and road cost are superimposed and calculated to obtain the
vulnerability results for the study area. The study area is still divided into very low, low,
medium, high and very high vulnerability areas by using the natural breakpoint method,
and the map for Fengjie County landslide disaster vulnerability is obtained by mapping
and synthesis (Figure 14).

The grid cell number, area and area ratio of each vulnerability partition in the study
area were statistically analyzed, as shown in Table 8. The area of very low and low landslide
vulnerability areas in the study area is 4001.49 km2, accounting for about 99.48% of the
total. Most of these areas are uninhabited or far from the main roads. The medium,
high and very high vulnerability areas accounted for only 0.52% of the total area, and this
huge difference in number is because in Fengjie County, due to its mountainous terrain
hindering economic development, the overall GDP level is low, the population density is
small, and housing and transportation facilities are still relatively lacking. The very high
vulnerability areas are almost all concentrated in the central urban area of Fengjie County,
where the urban and regional population density is relatively large, and infrastructure such
as housing and factories are built. Once these areas slide, people’s lives and property will
be seriously damaged.

Table 8. Statistical result of landslide vulnerability in different classes.

Vulnerability Class Grid Number Area Proportion Area (km2)

Very low 3,147,329 70.42% 2832.60
Low 1,298,767 29.06% 1168.89

Medium 12,899 0.29% 11.61
High 7481 0.17% 6.73

Very high 2580 0.06% 2.32
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3.4. Results of Landslide Risk

Based on the results of landslide hazard and vulnerability assessment, the grid super-
position calculation was carried out. Formula (10) was used to calculate the landslide risk
value of Fengjie County, and this was divided into five risk areas by the natural breakpoint
method: very low, low, medium, high and very high. A regional landslide risk map is
obtained by cartographic generalization (Figure 15).

According to the landslide risk map (Figure 15), natural factors such as topography,
environmental conditions, meteorological hydrology and social factors such as population
and economic factors give the landslide risk map of Fengjie County a certain regularity.
Table 9 shows the statistical results of the landslide risk map. The very low and low-risk
area is 2949.17 km2, accounting for 73.71% of the study area, indicating that the risk level
of most areas is below middle risk, and most of these areas are distributed at high altitude,
above the mountains, belong to the unpopulated area, where human activities are weak,
even if there is a low risk landslide. The medium-risk area accounts for about 23.79%,
which is mostly distributed along the valleys and rivers. Villages are scattered in these
areas, and the villagers suffer great landslide risks. Very high and high areas accounted
for 2.5% of the study area, concentrated in the central city of Fengjie County, and these
areas are located along the Three Gorges Reservoir Area, densely populated, and where
building density is larger. Under the influence of extreme weather such as reservoir water
fluctuation and heavy rainfall, landslides are prone to occur, which is more likely to cause
major casualties and property losses. Therefore, the risk degree in these regions is also high.
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Table 9. Statistical result of landslide risk in different classes.

Risk Class Grid Number Area Proportion Area (km2)

Very low 1,341,361 30.17% 1207.22
Low 1,935,495 43.54% 1741.95

Medium 1,057,730 23.79% 951.96
High 94,178 2.12% 84.76

Very high 16,714 0.38% 15.04

4. Discussion
4.1. Importance of Contributing Factors

Effective and contribution factors play an important role in landslide research. An-
alyzing the contribution rate and influence of each factor on landslide occurrence and
identifying the dominant factors can provide important guidance for landslide disaster
prediction and prevention. Therefore, based on the GeoDetector, we have given the q-value
statistical results of 25 landslide factors (Figure 10). To better analyze the relationship
between factors and landslides, a statistical chart of historical landslide density ranking
with the top three factors of q value was drawn: elevation, lithology, and groundwater type
(Figure 16).
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Figure 16. Typical factors in landslide density statistics: (a) Elevation; (b) Lithology; (c) Groundwater type.

It can be seen from Figure 16a that the landslide density is negatively correlated with
elevation: the landslide density is higher at lower elevation. Fengjie County is located in a
typical mountain environment, with high difference and low altitude. The low altitude area
has flat terrain, fertile soil, and is close to water sources, which is convenient for human
beings to carry out economic and life activities. Human engineering activities are frequent.
Therefore, landslides occur frequently. The area with higher altitude has steep terrain,
inconvenient transportation and less human activity, so there are fewer landslides.

As an important internal cause of landslides, different lithologic characteristics con-
tribute to great differences in physical and mechanical parameters, which directly affect
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slope stability. Fengjie County has many types of lithology, mainly including Jurassic
(J3p, J2s, J1, etc.) and Triassic (T1d, T1j, T2b2, etc.). According to the statistical results
in Figure 16b, since the lithological geology of Jurassic soft–hard interphase strata has
unique characteristics, the landslide-intensive areas are mostly distributed in this region.
The soft–hard interphase structure formed by sandstone and mudstone is unstable, which
is a common type of sliding bed structure in China. It is widely distributed in the counties
of the Three Gorges Reservoir Area and even in the eastern part of Sichuan.

Figure 16c shows that that different types of groundwater have a significant impact on
the stability and deformation of landslides. Among them, the landslide density of weath-
ering fissure water, dolomite fissure karst water, sandstone fissure/gravel fissure/shale
pore fissure water and other groundwater types is larger. Because of the special geologi-
cal environment of these groundwater, sandstone, sandy conglomerates, carbonate and
shale are characterized by weathering disintegration and interaction of soft and hard rock
layers. Groundwater has developed underground, and mudstone with weak resistance to
rainwater erosion and weathering is easy to collapse and form cavities. Sandstone is more
prone to instability and failure due to the cutting effect of the structural plane, resulting in
collapse and landslide, which seriously affects the stability and durability of the slope.

4.2. Risk Prevention Zoning

According to the results of the risk map, the landslide prevention and control area
is divided into very low and low-risk area as the general prevention and control area,
medium risk area as the sub-key prevention and control area, and high and very high-
risk level area as the key prevention and control area. The results are shown in Table 10.
The general prevention and control areas are mainly located in scenic spots, nature reserves
and mountains, accounting for 73.71% of the total area. The landslide density is only
0.07/km2, and the risk level is low. Sub-key control areas are mostly located in the valley
in the transition landslide zone unstable slope area, accounting for 23.79% of the area,
landslide density 0.82/km2; compared with the general control area, this is a nearly
twelve-fold increase. As shown in Figure 17, the key prevention and control areas are
mainly divided into three sub-regions. The key prevention and control sub-region (III-1) is
located in the landslide group at the eastern Yongan Town and the western Zhuyi Town
(Figure 17a). The region is located in the central urban area of Fengjie County, with a high
density of buildings and population. The county town is built along the river, near high
mountains, steep slopes and fewer rocks. Secondly, the probability of slope instability will
greatly increase due to the excavation of mountain slopes by human engineering activities,
resulting in high landslide risk. The key prevention and control sub-region (III-2) includes
the Chenjiabao landslide, Guanmiaotuo landslide and Linjiawan landslide (Figure 17b).
These three landslides are concentrated in the vicinity of schools and shops. Once the slope
slides again, the loss will be extremely serious. In Figure 17c, the landslide risk of the key
prevention and control sub-area (III-3) in the central urban section of Hurong Expressway
is also very high. Fengjie County is a typical mountainous terrain. The construction of a
mountainous expressway will inevitably fill and excavate a large number of slopes along
the line, and destroy the slope.
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Table 10. Division of landslide disaster prevention in Fengjie County.

Division Name
and Code Subregion Name and Code Area (km2) Area

Proportion Landslide Landslide
Proportion Landslide Situation

General Control
Area (I)

Scenic spots, nature reserves and
other general prevention and
control areas of high mountains
and extremely high mountains

2949.17 73.71% 208 0.07%

It belongs to the very low
and low-risk area of
landslide disaster.
The landslide density is
small and the risk level is
low.

Sub-focus Areas
(II)

Subkey control area of landslide
and unstable slope in the
transition zone of a river valley

951.96 23.79% 785 0.82%

It belongs to the risk area of
the landslide; the landslide
density is large and the risk
level is high.

Key Control
Areas (III)

Key prevention and control
subregion of landslide group at
the junction of eastern Yongan
town and western Zhuyi town
(III-1)

5.35 0.13% 29 5.42%

It belongs to the very
high-risk area of landslide,
with high landslide density
and high-risk level.

Chenjiabao landslide,
Guanmiaotuo landslide and
Linjiawan landslide key
prevention and control
sub-region (III-2)

0.98 0.02% 3 3.06%
It belongs to very high-risk
area, with big landslide
density and high-risk level.

Key Prevention and Control
Sub-districts in the Central
Urban Section of Hurong
Expressway (III-3)

1.45 0.04% 6 4.13%
It belongs to very high-risk
area, with large landslide
density, and high-risk level.
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4.3. Contributions and Shortcomings

In this study, we adopted the natural breakpoint method to classify the results. In fact,
there are different methods to classify a map: e.g., quantile, standard deviation, geometric
interval, etc. Since the elements are grouped into each class in the same number by the
quantile classification method, the maps obtained are often misleading. Similar elements
may be placed in adjacent classes, or elements with large differences in values may be
placed in the same class. The standard deviation classification method is used to display
the difference between the attribute value and the average value of the elements. The disad-
vantage is that it is vulnerable to the influence of two extreme values. A geometric interval
classification scheme is used to create a classification interval according to the group dis-
tance, with geometric series. As one of the most commonly used classification methods,
the natural breakpoint method can maximize the difference between classes. The elements
will be divided into multiple categories and their boundaries will be set at positions where
the data values are relatively different, so as to achieve the best classification results.

In landslide risk assessment, the distance from roads and houses are closely related
to the landslide occurrence. The construction of massive roads and houses is a process
whereby humans transform the natural environment, which includes transportation, ero-
sion, and accumulation of surface soil. Excessive digging, application of external loads
and vegetation destruction lead to steep slopes and loose soil. Finally, precipitation and
earthquakes can trigger landslides. According to the statistics, with an increase in distance
from the road, landslide density gradually decreases, and there is a significant negative
correlation between the two. The area within 200 m from the road is the high landslide
occurrence area. Landslide density within 400 m away from the houses is significantly
negatively correlated with the house distance. The highest density is 100 m away from
the houses because of the great damage to the soil caused by various human development
activities, which increases the probability of landslide.

Although this study provides a relative contribution to landslide risk assessment,
there are some limitations. Firstly, the Geodetector has a premise hypothesis regarding
landslide influencing factors, that is, there should be strong spatial heterogeneity among
factors, while the heterogeneity of factors such as land cover and CRDS is usually small
in adjacent units. In this case, the model may not fully fit the spatial heterogeneity of this
type of factor [49].

Secondly, the evaluation unit used in this study is a grid unit; such a unit may contain
multiple landslides or a landslide may be shared by several adjacent grids, that is, a grid
may not represent a specific landslide. After using the Geodetector, the grid unit can
be improved to some extent, but the problem of the landslide evaluation unit has not
been fundamentally solved. Some studies have compared different mapping units to test
the spatial scale effect of mapping, but there is no general method to obtain the optimal
mapping unit [50,51]. Therefore, to further improve the accuracy of landslide related
models, more reasonable evaluation units will be explored in subsequent studies.

Thirdly, the outcomes of landslide susceptibility mapping could be subject to uncer-
tainties, despite the fact that the RF model has good prediction performance and results [14].
In this study, factor selection, hyper-parameter optimization in the model, data used, sam-
ple fraction, etc., may be the main sources of uncertainty. We will attempt to explore
other methods to minimize uncertainties and improve landslide predictions. In vulnerabil-
ity evaluation, the four most important factors are selected in this study, but the factors
considered are not comprehensive, which may become one of the sources of uncertainty.
In addition, it should be noted that GDP and population create the problem of data match-
ing at different precisions, which will affect the accuracy of the results. Hence, the reliability
of the selected data must be improved.
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5. Conclusions

Taking Fengjie County in the Three Gorges Reservoir Area as the research region,
this paper studied quantitative risk assessment of landslides based on susceptibility map-
ping using random forest and GeoDetector. The main conclusions are drawn as follows:

(1) 19 dominant factors, such as elevation, lithology, groundwater type, etc., were se-
lected, by using Geodetector, as susceptibility assessment factors, and the landslide compre-
hensive susceptibility assessment model was established based on the RF model. Secondly,
the annual average rainfall and human engineering activities were determined as risk
assessment indexes, and the hazard assessment model of Fengjie County was established
based on GIS software and the weighted superposition method. At the same time, the vul-
nerability evaluation factors include POI kernel density, population, GDP and road cost.
The landslide vulnerability assessment model was established based on GIS grid technol-
ogy and weight superposition method. On this basis, the distribution of Fengjie County
landslide and quantitative risk assessment research was developed.

(2) Most landslides in Fengjie County are distributed on both sides of the reservoir
bank and the primary and secondary tributaries, showing a spatial distribution pattern
which is more north than south. In terms of quantity, landslide risk is mostly in the
low-risk level, a small part of the high risk or very high-risk level. Very low and low-
risk areas accounted for the largest proportion, 73.7%, of the study area. The middle,
high and very high-risk areas accounted for 23.79% and 2.5%, respectively. From the
perspective of spatial pattern, the overall risk level shows the high spatial distribution
characteristics in the central and eastern urban areas, and low in the southern and northern
high-altitude areas. Because very low and low-risk areas are mostly distributed above the
mountains, human activities are weak, even if there is a low risk landslide. The middle-risk
areas are mostly located near scattered villages along valleys and rivers, so the villagers
suffer more landslide risk. High and very high-risk areas are located along the Three
Gorges Reservoir, concentrated in the central city, densely populated and full of buildings.
Under the influence of extreme weather such as reservoir water lifting and heavy rainfall,
once landslides occur they cause serious casualties and property losses. The results of risk
zoning are in line with the actual situation of Fengjie County, which can provide a basis for
disaster prevention and mitigation and land space planning in the study area.

(3) The importance of the results for different landslide conditioning factors are
in line with basic geological laws and the regional characteristics. Elevation, lithology,
and groundwater type are the main factors. Secondly, the general, sub-key and key
prevention and control areas were divided, and the landslide prevention and control
management targeted. The general control area accounted for 73.71%, and the landslide
density was 0.07/km2, which is widely distributed and has low risk. Sub-key control
areas are mostly located in the valley to the transition zone landslide, an unstable slope
area, accounting for 23.79% of the area, and landslide density of 0.82/km2; compared
with the general control area, this is an increase of nearly 12 times. The key prevention
and control areas are divided into three sub-regions, which are mostly located around the
central towns, landslides and highways. The landslide density can reach 3–5 places/km2.
It is necessary to strictly prevent and control landslide disasters. Starting from two aspects
of prevention and control, according to the difference of risk levels in various regions,
zoning management is carried out according to local conditions. This study is helpful for
all levels of management departments to make timely and accurate disaster prevention
and mitigation decisions, and to provide decision-making information for regional urban
planning, land resources development, land use development and social and economic
sustainable development.
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