
Supplementary file 

Methodology 

Land use prediction using CA-ANN model and sensitivity analysis 

CA-ANN model 

The ANN is a machine learning method capable of capturing and representing 

complex interactions between inputs and outputs. The ANN is a network of nodes that is inspired 

by the simplification of neurons in the brain. It consists of a number of neurons or nodes that act 

in parallel to convert input data into output categories. An ANN is usually made up of three layers: 

input, hidden layers, and output. Each layer in a network has several neurons, depending on the 

application. Direct connections link each neuron to other neurons in the next layer. These links 

have a weight that represents the strength of the outgoing signal (Varoonchotikul, 2003). There 

are several types of networks that can be used in an ANN, and the best one depends on the problem 

and data available. Multi-layer perceptron (MLP) is perhaps the most commonly used neural 

network, according to Govindaraju (2000). Artificial neurons, or processing units, in MLP are 

organised in a layered configuration with an input layer, a processing (“hidden”) layer (two hidden 

layers are used in complex topologies), and an output layer. By combining land-use change-

conditioning variables, ANN-MLP was used to forecast the transitional probability model in this 

analysis. Elevation, slope, proximity to the urban area, agricultural land, sparse forest, scrubland, 

and water bodies were extracted from the 2000 and 2018 LULCs maps. The derived data was then 

processed using the Euclidean distance method in ArcGIS software to generate proximity 

parameters. 

The CA model is a hybrid model that incorporates both cellular automata and Markov Chain 

concepts. The CA is made up of identical elements, such as cells, that are arranged in a regular and 

discrete space. The core theory behind CA is that any cell or pixel of LULC transition can be 

investigated using its existing situation and improvements in its surrounding cells or pixels. Using 

the Markov model, this incorporates transformation rules based on adjacent cells. The probabilities 

of original and later conditions are used to illustrate transition rules. The CA-Markov model creates 

a cell's or pixel's situation based on its initial state, the conditions of its neighbours, and a set of 

transformation rules. This depicts the complexities of transition using the proximity principle, 



which states that regions close to current areas of the same class are more likely to transition to 

different LULC classes. CA-Markov is known for its ability to forecast the complex dynamics of 

spatiotemporal patterns using a series of transformation rules. The model solves the problems 

associated with LULC transformations by acting on transition probabilities and using ANN-based 

suitability maps for each LULC category to generate accurate future predictions. 

 

Sensitivity analysis 

Random forest-based feature selection technique  

Random Forest, developed by Breiman (Breiman, 2001), is one of the widely applied powerful 

ensemble supervised algorithms. This algorithm can be used to solve the regression problem, 

classification, and unsupervised learning. It has been extensively used in different aspects, such as 

natural hazard modeling, hydrology, LULC classification, and finance (Salam and Islam 2020; 

Chen et al., 2019; Talukdar and Pal, 2020). 

The RF is the combination of the RSS and the bagging (Chen et al., 2019). The main advantages 

of the RF are the lower sensitivity to the multicollinearity test, which can handle the unbalanced 

and missing dataset. The RF model works in the following ways: (1) it produces subphases from 

the former data using the bootstrap re-sampling tool, which is equivalent to zero sizes in the former 

dataset, (2) it generates decision trees by applying the subphases, and (3) ultimately it produces 

the output by fusing the results of the prediction of all decision tree (Ntree) similarly. Chen et al., 

(2020) reported that the performance of the RF algorithm is mostly functioned by the number 

of Ntree and the features of the data which consisted of the subsets (mtry). A large value 

of Ntree led to higher times for modeling, whereas the low value produces more errors. In this 

work, RF was performed by the "Randomforest'' package in R Studio 3.2 software. The RF was 

used for modeling fragmentation probability.  

CART based sensitivity analysis 

Classification and regression trees (CART) are considered as a non-parametric supervised machine 

learning method, which has been employed for classification and prediction (Nefeslioglu et al., 

2010). The CART has become a popular data mining method because of its efficacy and easiness 



in solving a wide range of issues in the fields of agriculture, economics, engineering, and remote 

sensing research (Stenberg and Phillip, 1995; Waheed et al. 2006; Choubin et al. 2018). Generally, 

two types of CART have been used for modelings, such as classification trees and regression trees. 

For predicting a discrete variable, the classification trees have been employed while regression 

trees have been utilized for predicting a continuous parameter. It uses a stepwise tool to establish 

splitting rules (Stenberg and Phillip, 1995; Brieman et al., 1984). The classification tree is split 

into the space demarcated by the independent parameters dependent on the dependent parameters 

(Fakiola et al., 2010) and a continuous parameter e.g., regression tree, which forecasts the value 

of a dependent parameter based on numerous independent parameters. Contrasting the 

classification tree, the regression tree does not generate categories of dependent parameters. For 

this, the total sample has been partitioned into two or more homogeneous sets based on the most 

significant splitter in input variables. The key advantage of CART, a decision tree algorithm is its 

cross-validation nature (Brieman et al., 1984), which tries to identify overfitting problems that 

would lead to poor forthcoming forecasts. Another advantage of CART is that it has often triggered 

more precise predictions than other statistical tools (Kattan and Beck, 1995; Choubin et al. 2018). 

However, regression trees do not have pre-assigned categories, the output of this phase is a 

response value to each of the original values for the dependent parameter. In the present study, this 

method was implemented to derive the weight or power of influence of the different parameters 

for explaining the predicted fragmentation probability models. To the best of the authors' 

knowledge, this is the first study that employed CART based sensitivity analysis for finding the 

most sensitive parameters of the model. 

Probability distribution function-based sensitivity analysis  

The probability distribution function (PDF) was calculated using the data obtained from the whole 

map of seven LULC changing parameters and land use suitability models for the data of 2000 and 

2018. In our study, we used JASP (version 0.13.1.0) software to calculate PDF for seven 

parameters and land use suitability models 

Pearson correlation-based sensitivity analysis 

Pearson correlation coefficient was used to determine the association among seven LULC 

parameters and land use suitability methods for the data of 2000 and 2018. In this study, we used 



SPSS (version 22) software to perform correlation coefficient analysis for seven LULC changing 

parameters and land suitability methods 
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Supplementary figure 1 LULC change conditioning factors, such as (a) elevation, (b) slope, (c) 

proximity to urban area, (d) proximity to agricultural land, (e) proximity to scrubland, (f) 

proximity to sparse vegetation, (g) proximity to water bodies for predicting 2018 LULC 

 



Supplementary figure 2 LULC change conditioning factors, such as (a) elevation, (b) slope, (c) 

proximity to urban area, (d) proximity to agricultural land, (e) proximity to scrubland, (f) 

proximity to sparse vegetation, (g) proximity to water bodies for predicting 2028 LULC. 

Explanation: Lower elevation and slope provide favorable conditions for urban expansion. While 

regions, which located near the urban area have higher chances to be converted to the urban area. 

On contrary to this, high distance from core forest, water bodies, agricultural land have been the 

deciding factors for the transformation of the urban area. Supplementary figures 1 and 2 showed 

the LULC change conditioning factors for 2018 and 2028. The conditioning factors for predicting 

2018 were prepared from the data of 2000, while the conditioning factors for predicting 2028 were 

generated from the data of 2018. However, supplementary figure 1 showed that the eastern and 

northeastern parts of the study area have lower elevation and slope, which is a suitable condition 

for constructing new habitat. While the northern part of the study area was very far from the 

existing urban area (6270m in 2000 and 7068 m in 2018). Therefore, the conversion to the urban 

area in this region is very difficult, even in the future. On the other hand, agricultural land, sparse 

vegetation, and scrubland in the eastern and northeastern parts of the study area were situated very 

close to the urban area in 2000. Therefore, these areas had a higher chance to be converted to the 

urban area in 2018. Similarly, the closeness of these areas toward the urban area increased 

significantly in 2018, which indicates the conversion of these areas to urban areas in 2028 

(supplementary figure 2). 



 

Supplementary figure 3 Correlation between simulated LULC for 2018 and LULC change 

conditioning parameters 



 

Supplementary figure 4 Sensitivity analysis of simulated LULC of 2018 by comparing the PDFs 



Explanation: In the present study, we prepared PDFs and correlation coefficient for seven 

independent parameters and LULC probability or suitable models of 2000 for simulating the 

LULC of 2018 to exploring the data pattern of the parameters and comparing the shape of the 

PDFs to analyze the sensitivity (Supplementary figures 3-4). Except for elevation, seven LULC 

change conditioning parameters have almost identical data distribution patterns. The shape of the 

PDFs showed that the data distribution of seven parameters is not normally distributed and skewed 

rightward (Supplementary figure 4). On the other hand, the shape of PDFs or data distribution 

pattern was quite different and normally distributed. However, we also prepared a PDF for the 

land-use suitability model of 2000 for simulating the LULC map of 2018. It also showed a similar 

shape of PDF or data distribution pattern. The shape of PDFs of proximate to urban, vegetation, 

and agricultural land were almost identical with the shape of PDF of a land suitable model. While 

the shape of PDFs of proximate to water bodies, and elevation were quite different from the shape 

of a land suitable model. Therefore, based on the analysis of the data distribution pattern, it can be 

stated that proximity to urban, vegetation, and agricultural land can influence or control maximally 

the land suitable model. We also computed the relation between the land suitability model and 

independent variables using Pearson's correlation coefficient. Supplementary figure 3 showed that 

proximity to the urban area had a higher correlation (r:0.714) at the significance level of <0.01. 

While the elevation had a very low correlation with the land suitable model. 

In the present study, we prepared PDFs for seven independent parameters and LULC probability 

or suitable models of 2018 for projecting the LULC of 2028 to exploring the data pattern of the 

parameters and comparing the shape of the PDFs to analyze the sensitivity (Supplementary 

figure 5). Except for elevation and proximity to water bodies, six LULC change conditioning 

parameters have almost identical data distribution patterns. The shape of the PDFs showed that 

the data distribution of seven parameters is not normally distributed and skewed rightward. On 

the other hand, the shape of PDFs or data distribution pattern of elevation and proximity to water 

bodies were quite different and normally distributed. However, we also prepared a PDF for the 

land-use suitability model of 2018 for projecting the LULC map of 2028. It also showed a 

similar shape of PDF or data distribution pattern. The shape of PDFs of proximate to agricultural 

land, vegetation, and urban were almost identical with the shape of PDF of a land suitable model. 

While the shape of PDFs of proximate to water bodies and elevation was quite different from the 

shape of a land suitable model. 



 

 

 



Supplementary figure 5 Sensitivity analysis of simulated LULC of 2028 by comparing the PDFs 

Explanation:  

In the present study, we prepared PDFs for seven independent parameters and LULC probability 

or suitable models of 2018 for projecting the LULC of 2028 to exploring the data pattern of the 

parameters and comparing the shape of the PDFs to analyze the sensitivity (Supplementary figure 

5). Except for elevation and proximity to water bodies, six LULC change conditioning parameters 

have almost identical data distribution patterns. The shape of the PDFs showed that the data 

distribution of seven parameters is not normally distributed and skewed rightward. On the other 

hand, the shape of PDFs or data distribution pattern of elevation and proximity to water bodies 

were quite different and normally distributed. However, we also prepared a PDF for the land-use 

suitability model of 2018 for projecting the LULC map of 2028. It also showed a similar shape of 

PDF or data distribution pattern. The shape of PDFs of proximate to agricultural land, vegetation, 

and urban were almost identical with the shape of PDF of a land suitable model. While the shape 

of PDFs of proximate to water bodies and elevation was quite different from the shape of a land 

suitable model. Therefore, based on the analysis of the data distribution pattern, it can be stated 

that proximity to agricultural, scrubland, vegetation, and urban can influence or control maximally 

the land suitable model. We also computed the relation between the land suitability model and 

independent variables using Pearson's correlation coefficient. Figure 5 showed that proximity to 

the urban area had a higher correlation (r: 0.569) at the significance level of <0.01. While the 

elevation had a very low correlation with the land suitable model. 

 

 



 

Supplementary figure 6 parameters for modeling ecosystem health conditions in 1990, such as 

(a) ESV, (b) vegetation status (NDVI), (c) resilience 



 

Supplementary figure 7 parameters for modeling ecosystem health conditions in 2000, such as (a) ESV, 

(b) vegetation status (NDVI), (c) resilience 

 



 

Supplementary figure 8 parameters for modeling ecosystem health conditions in 2018, such as 

(a) ESV, (b) vegetation status (NDVI), (c) resilience 



 

Supplementary figure 9 parameters for modeling ecosystem health conditions in 2028, such as 

(a) ESV, (b) vegetation status (NDVI), (c) resilience 

 

 



 

Supplementary figure 10 modeling of fragmentation conditions in 1990 using (a) cohesion, (b) 

patch contagion, (c) edge density, (d) patch density 



 

Supplementary figure 11 modeling of fragmentation conditions in 2000 using (a) cohesion, (b) 

patch contagion, (c) edge density, (d) patch density 



 

Supplementary figure 12 modeling of fragmentation conditions in 2018 using (a) cohesion, (b) 

patch contagion, (c) edge density, (d) patch density 



 

Supplementary figure 13 modeling of fragmentation conditions in 2028 using (a) cohesion, (b) 

patch contagion, (c) edge density, (d) patch density 

 



 

Supplementary figure 14 Final ecosystem health conditioning fuzzy crisp parameters for 1990, 

such as (a) fragmentation, (b) ESV, (c) NDVI, and (d) resilience   

 



 

Supplementary figure 15 Final ecosystem health conditioning fuzzy crisp parameters for 2000, 

such as (a) fragmentation, (b) ESV, (c) NDVI, and (d) resilience   



 

Supplementary figure 16 Final ecosystem health conditioning fuzzy crisp parameters for 2018, 

such as (a) fragmentation, (b) ESV, (c) NDVI, and (d) resilience   



 

Supplementary figure 17 Final ecosystem health conditioning fuzzy crisp parameters for 2028, 

such as (a) fragmentation, (b) ESV, (c) NDVI, and (d) resilience   

 

 

 

 

 

 

 



 

 

Supplementary figure 18 Sensitivity analysis for ecosystem health condition model of 1990 



 

Supplementary figure 19 Sensitivity analysis for ecosystem health condition model of 2000 



 

Supplementary figure 20 Sensitivity analysis for ecosystem health condition model of 2018 

 

 

 

 



List of supplementary tables 

Supplementary Table 1 ecosystem resilience coefficient of land use types (Xie et al., 2008; Peng 

et al., 2015; He et al., 2019) 

Ecosystem 

types 

Forest HCG MCG LCG water Agricultural 

land 

Built 

up 

Sand Bare 

land 

 0.9 0.8 0.7 0.6 0.8 0.5 0.2 0.1 0.2 

 

 

Supplementary Table 2 Coefficient for ESV estimation  

LULC Equivalent Biomes Costanza 
et al. 
(1997) 

Costanza et 
al. (2014) 

 

(Costanza) (1994 base 
price) 

(2007 base 
price) 

  
[C97a] [C97b] 

    

1994 
US$ ha—1 
yr—1 

1997 
US$ ha—1 
yr—1 

Cropland Cropland 92 5567 

Sparse 
Vegetation 

Grassland/rangelands 232 4166 

Mangroves Wetland/Tidal marsh 9990 193843 

Waterbodies /Mangroves 
Lakes/Rivers 

8498 12512 

Sandy Coast Desert 0 0 

Urban built-
up 

Urban 0 6661 

 

Supplementary table 3 Transitional probability matrix between 1990-2000 LULC maps 



Land use 

types 

Built 

up 

Water 

bodie

s 

Dense 

vegetatio

n 

Sparse 

vegetatio

n 

Agricultur

al land 

Scrublan

d 

Bare 

soil 

Expose

d 

rockes 

Built up 0.746

7 

0.000

4 0.0008 0.0053 0.0052 0.0976 

0.036

0 0.1080 

Water 

bodies 

0.021

8 

0.667

1 0.0033 0.0470 0.0371 0.1853 

0.017

2 0.0212 

Dense 

vegetation 

0.002

1 

0.002

8 0.2076 0.6214 0.0239 0.0457 

0.000

0 0.0964 

Sparse 

vegetation 

0.045

6 

0.000

3 0.0171 0.4114 0.0390 0.3053 

0.004

0 0.1772 

Agricultur

al land 

0.050

2 

0.000

0 0.0091 0.0881 0.2995 0.3709 

0.168

0 0.0142 

Scrubland 0.048

1 

0.000

2 0.0009 0.0223 0.0172 0.5827 

0.085

7 0.2428 

Bare soil 0.096

0 

0.000

0 0.0001 0.0021 0.0088 0.0575 

0.808

9 0.0265 

Exposed 

rockes 

0.030

5 

0.000

2 0.0005 0.0074 0.0011 0.0675 

0.034

4 0.8585 

 

Explanation: Supplementary Table 3 showed the transitional probability matrix between 1990 

and 2000. The LULC types, having the higher probability to be stabled or unchanged, were 

exposed rocks, bare soil, built-up area, and water bodies, accounting for 86%, 81%, 75%, and 67% 

of their original areas, respectively (Supplementary Table 3). Dense vegetation had the lowest 

probability to be unchanged, with significant areas transformed into sparse vegetation (62.1%) 

during the periods of 1990 and 2000. On the other hand, sparse vegetation was converted to 

scrubland and exposed rocks by 30.5% and 17.7%, respectively during this period. Similarly, 

agricultural land was transformed into scrubland and bare soil by 37% and 16.8% respectively. 

Scrubland was converted to exposed rocks by 24.3%. Therefore, based on the analysis of the 

transitional probability matrix, it can be stated that slight land-use changes have been taken place 



during these periods. Land use types, which can provide ecosystem services, were transformed 

into non-ecosystem services providing land-use types, which is not a good indicator. Even, the 

urbanization process was very insignificant, just 9% of bare soil was converted to the built-up area.  

Supplementary table 4 Transitional probability matrix between 2000 and 2018 land use maps 

Land use 

types 

Built 

up 

Water 

bodie

s 

Dense 

vegetatio

n 

Sparse 

vegetatio

n 

Agricultur

al land 

Scrublan

d 

Bare 

soil 

Expose

d 

rockes 

Built up 0.837

1 

0.000

0 0.0033 0.0126 0.0115 0.0818 

0.015

1 0.0385 

Water 

bodies 

0.123

8 

0.437

7 0.2412 0.0535 0.0048 0.0687 

0.004

0 0.0663 

Dense 

vegetation 

0.081

4 

0.004

4 0.3751 0.3052 0.0952 0.0760 

0.003

4 0.0594 

Sparse 

vegetation 

0.056

8 

0.000

0 0.0835 0.5916 0.0316 0.1910 

0.002

0 0.0435 

Agricultur

al land 

0.149

8 

0.000

0 0.0477 0.1765 0.2068 0.3331 

0.066

7 0.0195 

Scrubland 0.189

9 

0.000

0 0.0039 0.0734 0.0157 0.5367 

0.053

5 0.1269 

Bare soil 0.196

3 

0.000

0 0.0015 0.0064 0.0167 0.3209 

0.431

2 0.0269 

Exposed 

rockes 

0.128

7 

0.000

0 0.0011 0.0190 0.0017 0.0876 

0.007

3 0.7546 

 

Explanation: Supplementary Table 4 showed the transitional probability matrix between the 

LULC maps of 2000 and 2018. Built-up area, exposed rocks, and sparse vegetation had the largest 

probability to be stabled or unchanged during this period by 83.7%, 75.4%, and 59.2% 

respectively. While the agricultural land had the lowest probability to be transformed by 20.7%. 

However, very small areas of built-up were converted to other land use types, such as exposed 



rocks (03.8%), scrubland (8.18%), and agricultural land (1.1%). Contrary to this, bare soil, 

scrubland, agricultural land, exposed rocks, and water bodies were converted to the built-up area 

by 19.6%, 18.9%, 14.9%, 12.8%, and 12.3% respectively. Except for the built-up area, the water 

bodies did not convert to any other land use types during this period. Similar to the built-up area, 

the scrubland has gained a huge amount of area from other land use types, such as sparse vegetation 

(19.1%), agricultural land (33.31%), and bare soil (32.09%). From this analysis, it can be 

concluded that the urbanization process has accelerated to capture other land use types in the 

process of urbanization and development. Therefore, this period can be called the period of 

urbanization in the study area. 

Supplementary table 5 Transitional probability matrix between the LULC maps of 1990 and 2018 

Land use 

types 

Built 

up 

Water 

bodie

s 

Dense 

vegetatio

n 

Sparse 

vegetatio

n 

Agricultur

al land 

Scrublan

d 

Bare 

soil 

Expose

d 

rockes 

Built up 0.836

7 

0.000

0 0.0022 0.0138 0.0070 0.0583 

0.011

8 0.0702 

Water 

bodies 

0.105

2 

0.350

8 0.2429 0.1681 0.0126 0.1052 

0.000

0 0.0152 

Dense 

vegetation 

0.028

9 

0.002

8 0.5341 0.2963 0.0429 0.0169 

0.000

0 0.0781 

Sparse 

vegetation 

0.152

8 

0.000

2 0.0637 0.4780 0.0397 0.1713 

0.001

1 0.0933 

Agricultur

al land 

0.171

9 

0.000

0 0.0324 0.1572 0.1532 0.3995 

0.069

7 0.0161 

Scrubland 0.218

2 

0.000

0 0.0024 0.0469 0.0139 0.4504 

0.053

9 0.2143 

Bare soil 0.238

8 

0.000

0 0.0005 0.0061 0.0105 0.2878 

0.429

6 0.0266 

Exposed 

rockes 

0.124

0 

0.000

0 0.0016 0.0119 0.0024 0.0839 

0.025

4 0.7508 

 



Supplementary table 6 Transitional probability matrix between the LULC maps of 1990 and 2028 

Land use 

types 

Built 

up 

Water 

bodie

s 

Dense 

vegetatio

n 

Sparse 

vegetatio

n 

Agricultur

al land 

Scrublan

d 

Bare 

soil 

Expose

d 

rockes 

Built up 0.838

0 

0.000

0 0.0022 0.0132 0.0066 0.0663 

0.010

3 0.0635 

Water 

bodies 

0.661

2 

0.213

8 0.0384 0.0212 0.0053 0.0483 

0.000

0 0.0119 

Dense 

vegetation 

0.049

8 

0.003

4 0.5080 0.2987 0.0515 0.0203 

0.000

0 0.0684 

Sparse 

vegetation 

0.223

6 

0.000

2 0.0628 0.4378 0.0385 0.1530 

0.001

0 0.0829 

Agricultur

al land 

0.242

7 

0.000

0 0.0318 0.1417 0.1405 0.3686 

0.059

5 0.0152 

Scrubland 0.279

7 

0.000

0 0.0022 0.0441 0.0125 0.4352 

0.044

7 0.1817 

Bare soil 0.266

0 

0.000

0 0.0005 0.0152 0.0098 0.3085 

0.379

4 0.0206 

Exposed 

rockes 

0.193

5 

0.000

0 0.0016 0.0545 0.0052 0.1256 

0.022

1 0.5975 

 

 

Explanation: Supplementary Table 6 showed the transitional probability matrix between the 

LULC maps of 1990 and 2028. Built-up area, exposed rocks, and dense vegetation had the largest 

probability to be stabled or unchanged during this period by 83.8%, 59.7%, and 50.8% 

respectively. While the agricultural land had the lowest probability to be transformed by 14%. 

However, very small areas of built-up were converted to other land use types, such as exposed 

rocks (6.35%), bare soil (10.3%), and sparse vegetation (13.2%). Contrary to this, water bodies, 

sparse vegetation, agricultural land, exposed rocks, and bare soil were converted to the built-up 

area by 66.1%, 22.3%, 24.27%, 19.3%, and 26.6% respectively. Except for the built-up area, the 



water bodies did not convert to any other land use types during this period. Similar to the built-up 

area, the scrubland has gained a huge amount of area from other land use types, such as sparse 

vegetation (15.3%), agricultural land (36.86%), and bare soil (30.85%). From this analysis, it can 

be concluded that the urbanization process has accelerated to capture other land use types in the 

process of urbanization and development. Therefore, this period can be called the period of 

urbanization in the study area. Supplementary Table 6 represented the transitional probability 

matrix between the LULC maps of 2000 and 2028. The built-up area in the study area was the 

most consistent and stabled land-use type having the largest transitional probability to be 

unchanged by 96.5%. However, the built-up area has not changed to other land use types 

significantly. Scrubland and exposed have gained an insignificant amount of built-up area over 10 

years. While the rapid urbanization process has been observed in the study area. The huge amount 

of other land use types, such as sparse vegetation, agricultural land, scrubland, bare soil, exposed 

land, and water bodies were converted into urban areas  

 

 


