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Abstract: Vegetation heat-stress assessment in the reclamation areas of coal gangue dumps is of great
significance in controlling spontaneous combustion; through a temperature gradient experiment,
we collected leaf spectra and water content data on alfalfa. We then obtained the optimal spectral
features of appropriate leaf water content indicators through time series analysis, correlation anal-
ysis, and Lasso regression analysis. A spectral feature-based long short-term memory (SF-LSTM)
model is proposed to estimate alfalfa’s heat stress level; the live fuel moisture content (LFMC)
varies significantly with time and has high regularity. Correlation analysis of the raw spectrum,
first-derivative spectrum, spectral reflectance indices, and leaf water content data shows that LFMC
and spectral data were the most strongly correlated. Combined with Lasso regression analysis,
the optimal spectral features were the first-derivative spectral value at 1661 nm (abbreviated as FDS
(1661)), RVI (1525,1771), DVI (1412,740), and NDVI (1447,1803). When the classification strategies
were divided into three categories and the time sequence length of the spectral features was set to
five consecutive monitoring dates, the SF-LSTM model had the highest accuracy in estimating the
heat stress level in alfalfa; the results provide an important theoretical basis and technical support for
vegetation heat-stress assessment in coal gangue dump reclamation areas.

Keywords: heat stress; live fuel moisture content; spectral features; long short-term memory

1. Introduction

The organic materials in coal gangue dumps can oxidize and generate heat, such that
spontaneous combustion may occur when the rate of heat generation exceeds that of heat
dissipation [1,2]. The spontaneous combustion of coal gangue dumps poses a serious threat
to the environment and human safety. This spontaneous combustion, by releasing a large
number of toxic and harmful gases and chemical [3], damages the surrounding soil and
water environment in the mining area [4,5]. It may also cause geological disasters during the
long-term stacking [6], resulting in human casualties. In 2005, a coal gangue hill in China,
spontaneously ignited, resulting in the death of eight people and burns to 122 people [7].
Further, over 30 miners were killed in the Ukraine from an explosion due to spontaneous
combustion of coal in 2014 [8]. Remediation of coal gangue dumps mainly involves
land reclamation and ecological reconstruction to reduce the probability of spontaneous
combustion and other disasters [9,10]. A warning of spontaneous combustion in coal
gangue dump reclamation areas helps managers take effective and timely countermeasures.
Remote sensing can be used for this purpose. Researching this type of monitoring has
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mostly focused on surface temperature and coal fire monitoring via thermal infrared
sensing [11–17]. However, changes in surface temperature are greatly affected by climate,
sunshine, and other factors, which cause high hysteresis in spontaneous coal fire monitoring
and make it impossible to obtain reliable early warnings. It has been found that prior to
spontaneous combustion in coal gangue dumps, there is an internal heat accumulation
stage that can affect the growth of plants. In this stage, there is potential to gain an early
warning based on the spectral responses of plants. By averting spontaneous combustion
disasters, the ecological environments of mining areas can be fundamentally improved.

Heat accumulation inside gangue dumps increases the surface soil temperature,
which can reduce root numbers, roots’ absorption of water and nutrients, and plant
fresh weights [18]. High soil temperature is far more influential than high air temper-
ature on plant growth [19]. At present, few studies have used remote sensing to monitor
soil heat stress and have mainly focused on drought stress [20], waterlogging stress [21],
high-temperature stress [22], disease stress, and heavy metal stress [23]. Plant environ-
mental stress has been estimated directly or indirectly based on spectral features (such as
frequency-domain transformation features [24], vegetation indexes [25]), physiological and
biochemical parameters (such as plant water [26], the leaf area index [27], pigment con-
tent [28], and chlorophyll fluorescence parameters [29]).

The heat stress caused by internal spontaneous combustion may eventually evolve
into a fire in coal gangue dump reclamation areas. In such scenarios, the monitoring
of plant water status is an important factor in detecting temperature anomalies [30].
Remote sensing can monitor plant water content because plant water absorbs radiation
in the near-infrared (750–1300 nm) and short-wave-infrared (1300–2500 nm) regions [31].
Research has found that equivalent water thickness (EWT [20]), live fuel moisture content
(LFMC [32]), and the relative water content (RWC [33]) of leaves can better reflect vege-
tation water status. Currently, commonly used vegetation moisture inversion methods
include radiation transfer model inversion [30,34,35], traditional regression models [36,37],
and machine learning models [38]. Yebra et al. [39] used radiation transfer model inver-
sion to estimate fuel moisture contents from MODIS reflectivity data and established a
flammability index through logistic regression modeling to map fire risk in Australia.
Yi et al. [40] reported that DR1647/DR1133 and DR1653/DR1687 (DR = first-order differen-
tial reflectance value) are the optimal indexes for estimating EWT and LFMC, respectively.
Rodríguez-Pérez et al. [36] used near-ground hyperspectral data to estimate grape leaf
water content and used ordinary least-squares regression (OLSR) and functional linear
regression (FLR) modeling, finding that the FLR model centered at 1465 nm had the highest
accuracy (R2 = 0.7, RMSE = 8.485). Krishna et al. [41] predicted RWC according to the water
deficit stress status of rice genotypes based on spectral indices, multivariate techniques,
neural network techniques, and existing water-band indices. They proposed new water-
band indices—the ratio index (RI) and normalized difference ratio index (NDRI)—for this
purpose. In previous studies, the water indicators obtained by remote sensing technology
have been used to qualitatively analyze plant water condition over an entire monitoring
period to determine environmental stress level on vegetation. However, the accuracy and
timeliness of the results are usually insufficient.

In this paper, a long short-term memory network model based on spectral features
is proposed to estimate heat stress. It simulates the temperature–gradient test of plant
heat stress in coal gangue dump reclamation areas and monitors plant water condition
based on hyperspectral remote sensing. This provides a new way to monitor spontaneous
combustion in coal gangue dumps. This method considers temporal variation in the
spectral features of water status in vegetation under environmental stress. It allows
accurate diagnoses to be made as soon as possible and provides a new method of remote
sensing monitoring of other environmental stresses.
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2. Materials and Methods
2.1. Experimental Design

The simulation experiment was carried out in the autumn of 2020 at the potted prov-
ing ground of Yangzhou University, Yangzhou, China (119◦25′ N, 32◦23′ E). Yangzhou
is in the transition zone between the humid subtropical monsoon climate and the tem-
perate monsoon climate. It has four distinct seasons and abundant sunshine and rainfall.
Alfalfa, a common herbaceous plant commonly used in the reclamation areas of coal gangue
dumps, was selected as the experimental plant. The species used was Algonquin [42].

Seeds were sown on 10 September 2020 at a sowing density of 10 holes per pot
and two seeds per hole. Ten seedlings per pot were grown to the three-leaf stage and
harvested on 15 November 2020. The inner diameter of the bottom of the barrel was 20 cm,
the inner diameter of the mouth was 28 cm, the height of the pots was 31.5 cm, and the
empty barrel weighed 0.54 kg. Each barrel was loaded with 10 kg air-dried light loam
and 5.28 g compound fertilizer with an N-P-K ratio of 15%:15%:15%. One kilogram of
soil was used to cover the seeds after sowing. The first alfalfa crop took about 60 days
to grow from the sowing to the flowering stage. The gradient experiment of heat stress
was started on 16 October 2020. The experimental design consisted of one control group
and five experimental groups (T1, T2, T3, T4, T5), and each group was replicated five
times, as shown in Figure 1a. For the experimental groups, five heat sources of different
temperature T (T1 = 60 ◦C, T2 = 90 ◦C, T3 = 120 ◦C, T4 = 150 ◦C, and T5 = 180 ◦C) were
placed at a depth of 30 cm in the soil layer, which is the typical thickness of overlying
soil used in reclamation projects [43] (Figure 1b). Each group was replicated five times,
as shown in Figure 1a. The relative water content of all treated soils was controlled at
about 60%.
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2.2. Data Acquisition
2.2.1. Spectral Data

A portable ground object spectrometer (Spectra Vista Corporation SVC HR-1024I)
was used to measure the spectral reflectance of alfalfa leaves. The spectral measurement
range was 340–2500 nm, and the spectral sampling intervals were 1.5 nm (sampling
range 350–1000 nm), 3.8 nm (sampling range 1000–1885 nm), and 2.5 nm (sampling range
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1885–2500 nm). The resample interval was 1 nm. The measurements were synchronized
with the heating. The first measurement was made on 16 October 2020, and then every
4 days, postponed on cloudy and rainy days. The spectral reflectance of leaves was
measured between 10:00 and 14:00 on sunny and windless days. The spectral data were
collected eight times until 15 November 2020. A standard whiteboard was used for
calibration of measurements using a hand-held leaf spectrum detector with a light source.
The middle adaxial part of a leaf sample was clamped to the detector to measure its
spectrum. Each process measured three pots, and each pot was measured at six leaves,
with the average taken as the processed alfalfa leaf spectrum reflectance. During the
measurement process, standard whiteboard calibration was performed every 30 min.

2.2.2. Leaf Water Content

Leaf water content data were collected synchronously with spectral data. Three alfalfa
plants samples were selected for each treatment and packed in self-sealing plastic bags to
avoid water loss from the plants as much as possible. Samples were quickly brought back
to the laboratory to weigh their fresh weight (m f ) with a precision balance and manually
measure their leaf area. Each treated fresh leaf was put into a beaker filled with distilled
water and soaked for 24 h. After reaching a constant weight, the saturated fresh weight
was measured (mt). Then, a blade was put into the paper bag, which was placed in an
oven at 105 ◦C for 30 min, then the drying temperature was set at 80 ◦C for 48 h until the
constant weight was attained, which was measured as the dry weight (md). The leaf water
content was calculated according to Equations (1)–(3):

LFMC =
m f −md

md
(1)

where m f is the measured weight of fresh leaves, and md is the weight of the same sample
after drying.

EWT =
m f −md

A
(2)

where A is the leaf area.

RWC =
m f −md

mt −md
(3)

where mt is the measured saturation weight of the leaves.

2.3. Methods
2.3.1. Spectral Feature Construction

Raw spectral data processing: MATLAB 2017a (MathWorks, Natick, MA, USA) was
used to average the spectral curves collected for each treatment in the heat-stress test to
reduce the differences within groups. Then, a one-dimensional Gaussian filter was applied
to the mean spectral curve along the spectrum direction to smooth it. The sliding window
was set to 5, as shown in Figure 2 and Supplementary Figure S1.
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First derivative spectrum: Differential processing of a spectrum can reduce the influ-
ence of background information such as field noise and soil on spectral data [44]. The direct
difference method was used to calculate the first-derivative spectrum of spectral reflectance
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to highlight the target spectral features. Equation (4) was used to calculate the first deriva-
tive of the spectrum.

ρ′(λi) = [ρ(λi + 1)− ρ(λi − 1)]/2∆λ (4)

In the formula, λi is the wavelength, ρ(λi) and ρ′(λi) are the reflectance and first-
derivative spectrum of the wavelength λi, respectively, and ∆λ is the interval between the
wavelength λi − 1 and λi.

Spectral reflectance index: The spectral reflectance index was constructed using
the two-band combination method of raw and first-derivative spectral reflectance and
compared with the conventional index (Table 1). The two-band combination method
included the ratio vegetation index (RVI (λ1, λ2)), normalized difference vegetation index
(NDVI (λ1, λ2)), and difference vegetation index (DVI (λ1, λ2)). These are commonly
used in remote sensing monitoring. The selection range of any band combination was
between 340 and 2500 nm, and their formulas [45] are as follows:

NDVI (λ1, λ2) = (Rλ1 − Rλ2)/(Rλ1 + Rλ2) (5)

RVI (λ1, λ2) = Rλ1 /Rλ2 (6)

DVI (λ1, λ2) = Rλ1 − Rλ2 (7)

where λ1 and λ2 are wavelengths (nm), and Rλ1 and Rλ2 are the reflectances at wavelengths
λ1 and λ2, respectively, and λ1 6= λ2.

Table 1. Spectral reflectance indices related to leaf water content.

Water-SRIs Acronym Equation 1 Reference

Water index WI (900, 970) R900/R970 [46]
Water index WI (1300, 1450) R1300/R1450 [47]

Normalized difference water index NDWI (R870 − R1260)/(R870 + R1260) [48]
Moisture stress index MSI R1610/R842 [49]

Vegetation-SRIs Acronym Equation 1 Reference

Normalized difference vegetation index NDVI (R 858 − R645)/(R 858+R645) [50]
Normalized difference infrared index NDII (R858 − R645)/(R858 + R645) [51]

Simple ratio vegetation index SR R800/R680 [52]
Photochemical reflectance index PRI (R570 − R531)/(R570 + R531) [53]

1 Rλ = reflectance at wavelength λ .

2.3.2. Spectral Feature Selection

Correlation analysis: The Pearson correlation coefficient (Equation (8)) was used to
correlate the spectral parameters (raw spectrum, first-derivative spectrum, and vegetation
index) with plant leaf water content indicators (LFMC, EWT, and RWC). Pairwise analysis
selected highly correlated spectral features in the appropriate band range.

r(X, Y) =
Cov(X, Y)

δXδY
(8)

where Cov(X, Y) is the covariance of X and Y, δX is the variance of X, and δY is the variance
of Y.

Lasso regression: The Lasso (least absolute shrinkage operator) regression model was
proposed by Robert in 1996 and has become an important regression model in the field of
machine learning [54]. The method is a compression estimator that constructs a penalty
function to obtain a relatively refined model. This makes it compress some regression
coefficients; that is, the sum of the absolute value of the forcing coefficient is less than
a fixed value. Through regularization, the regression coefficients of some independent
variables are compressed to zero, then the variable selection is completed. At the same time,
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Lasso regression retains the advantage of subset contraction and is a biased estimation
model (Equation (9)) for dealing with data with multicollinearity.

min
β0,β

(
1

2N

N

∑
i = 1

(yj − βxT
i − β0) + λ

p

∑
j = 1

∣∣β j
∣∣) (9)

where N is the sample number, yj is the predicted true value, xi is the observed value, β0 is
the bias, β is the weight of the observed variable, and λ is a non-negative regularization
parameter. λ∑

p
j = 1

∣∣β j
∣∣ is called L1 regularization.

2.3.3. Assessment of Heat Stress by SF-LSTM

LSTM is a recurrent neural network (RNN) architecture used in the field of deep learn-
ing and was proposed by [55]. Unlike standard feedforward neural networks, LSTM has
a feedback connection. It not only processes point datasets (such as images) but also
processes data sequences. Compared with other deep learning algorithms, LSTM performs
very well in processing regression or classification problems with time series feature data
and is now widely used. The characteristics of temporal change in physiological param-
eters must be taken into account when estimating environmental stress level, and the
influence of subjective qualitative analysis on the estimation accuracy should be avoided
as far as possible. Therefore, in this paper, based on the multi-dimensional and multi-time-
series characteristics of the test plant moisture indicators, Pytorch (Facebook AI Research,
Menlo Park, CA, USA) was used to construct the artificial RNN SF-LSTM. Its structure is
shown in Figure 3.
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SF-LSTM is a neural network model based on bidirectional LSTM and uses spectral
features as the input layer. The whole network is composed of an input layer, bidirectional
LSTM layer, full connection layer, SoftMax layer, and classified output layer. At the lower
left of Figure 3, the data structure of the input layer is enlarged. Inspired by image data
processing, a three-dimensional matrix was constructed with dimensions of (1) spectral
features, (2) time-series, and (3) stress level. The data structure of the input layer not only
considers the calculation of various spectral features but also ensures that the data can be
calculated according to the time series. At the same time, the multi-dimensional vector
operation makes the calculation efficient. The core computing units, called memory cells,
are zoomed in at the lower right of Figure 3. In the memory cells, “⊗” and “⊕” denote the
dot product and matrix addition, respectively. The first step of the memory cell is to decide
what information to discard from the cellular state. This decision is made by a sigmoid
layer called the “forget gate”. It looks at ht−1 (the previous output) and Xt (the current
input) and outputs a number between 0 and 1 for each number in Ct−1 (the previous
state), where 1 represents total retention and 0 represents total deletion (Equation (10)).
The next step is to decide what information to store in the cellular state. The sigmoid layer
called the “input gate” decides, which values to update, and the next tanh layer creates a

candidate vector
∼
Ct (Equations (11) and (12)), which is added to the state of the cell and

combined with Ct−1 to create the updated value Ct (Equation (13)). Finally, the “output
gate” determines the output of the memory cells. The output value of ht is obtained by
multiplying the output of a sigmoid layer with the normalized Ct value of the tanh layer
(Equations (14) and (15)).

ft = σ(W f · [ht−1, Xt] + b f ) (10)

it = σ(Wi · [ht−1, Xt] + bi) (11)
∼
Ct = tanh(Wc · [ht−1, Xt] + bc) (12)

Ct = ft ∗ Ct−1 + it ∗
∼
Ct (13)

ot = σ(Wo · [ht−1, Xt] + bo) (14)

ht = ot ∗ tanh(Ct) (15)

where σ is the logistic sigmoid function, W is the weight matrix, ∗ is a dot product, and b is
a bias term.

2.3.4. Validation

The observed sample data for constructing the model were divided into a training set
(segmentation scale = 0.8) and validation set (segmentation scale = 0.2). The coefficient
of determination (R2) and root mean square error (RMSE) were used as indicators of its
accuracy [26] (Equations (16) and (17)). Accuracy is defined as the degree of consistency
between the model results and the true categories (Equation (18)). Ten-fold cross-validation
was adopted for the training set [56].

RMSE =

√
∑n

i = 1 (ŷi − yi)
2

n
(16)

R2 = 1− ∑n
i = 1 (ŷi − yi)

2

∑n
i = 1 (yi − yi)

2 (17)

Accuracy =
nclass

n
× 100% (18)

where yi is the true value, ŷi is the predicted value, yi is the mean value, n is the number of
samples, and nclass is the number of correctly classified samples.
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3. Results
3.1. LFMC, EWT, and RWC Time Series Analysis

This study focused on alfalfa, a herbaceous plant commonly used in the reclamation
areas of coal gangue dumps. The soil layer was heated on the day after the first data
collection on 16 October, and leaf samples were collected eight times in total. Figure 4
shows the significant differences between treatments at each measurement date and the
changes in LFMC, EWT, and RWC with time under different treatments. The soil layer was
not heated when the soil was collected on 16 October. At this time, the growth trend in
each alfalfa pot was similar, and the differences in LFMC, EWT, and RWC between each
experimental group were non-significant. After heating, there was a lack of regularity in
the significant differences in LFMC, EWT, and RWC between treatments within each mea-
surement date. Therefore, we focused on analyzing the temporal trends of the three water
indicators as follows. (1) EWT: All treatments showed an overall growth trend. The control
group increased almost all the time, reaching the maximum value on 11 November before
dropping slightly on 15 November. Apart from this overall trend, the EWTs of the other
treatment of temperature groups showed different trends with no strong regularity over
time. (2) RWC: The differences between groups on a particular date were small and the
range of variation in RWC on different dates was relatively stable. On 7 and 11 November,
the RWC of the control group and each experimental group peaked. On 15 November,
the RWC of each treatment group declined, with a relatively large range of decreases.
In general, there was no significant temporal trend in RWC between the control and ex-
perimental groups. (3) LFMC: After heating the soil layer, the LFMCs of the control group
were significantly higher than those of the experimental groups on each monitoring date.
The LFMCs of each experimental group showed gradually decreasing trends. In the late
monitoring period, the LFMC decreased with increases in the temperature gradient on 7,
11, and 15 November and reached the lowest point on 15 November, exhibiting a clear
decrease over time.

According to the results of water indicator monitoring and the above analysis, it is
clear that LFMC is the best water indicator for reflecting heat stress in alfalfa. This is
consistent with previous studies. LFMC is very sensitive to heat stress and is an important
variable in many fire behavior prediction models and fire-risk indicators [39,57].
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3.2. Correlation Analysis of Spectral Features and Leaf Water Content
3.2.1. Correlations between Raw Spectrum, Derivative Spectrum, and Leaf Water
Content Data

The Pearson correlation coefficient is one of the most commonly used indicators in
correlation analysis [58] and was used in this paper. Correlation analysis of EWT, RWC,
and LFMC was performed using raw leaf spectrum and first-derivative spectrum data
from throughout the monitoring period (16 October–15 November; Figure 5). The results
show that the raw spectra of leaves were positively correlated with EWT at all wavelengths,
negatively correlated with RWC except at a small number of visible wavelengths (VIS,
400–780 nm), and negatively correlated with LFMC at all wavelengths. Overall, the EWT,
RWC, and raw spectrum correlations were weak (|r| < 0.6), of which the RWC was weaker,
while LFMC was best in the short-wave infrared band (SWIR, 1400–2500 nm) to obtain
the strong correlation band (|r| > 0.7), and the correlation was strongest at 1889 nm
(r = −0.75). The first-derivative spectrum can effectively suppress influences such as
the soil background. In the correlation analysis of the first-derivative spectrum, EWT and
RWC, the positive and negative correlations were uncertain, and the absolute values of the
correlation coefficients were small. The performance of LFMC continued to be excellent,
with the maximum correlation coefficient between LFMC and the first-derivative spectrum
appearing at 1661 nm (r = −0.77).
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3.2.2. Correlation between Spectral Reflectance Indices and Leaf Water Content

In remote sensing monitoring of plant water content, spectral reflectance indices have
been widely used and are some of the most important spectral parameters. Therefore, we first
analyzed the correlations between eight classical spectral reflectance indices and EWT,
RWC, and LFMC (Table 2). The correlations between each index and EWT and RWC
were weak. In contrast, the correlations between LFMC and each index were better.
The spectral reflectance indices with good correlations with LFMC comprised bands mainly
concentrated in the near-infrared and SWIR regions. The WI (1300,1450), NDVI, and NDII
had correlations with LFMC of >0.6, among which the correlation between WI (1300,1450)
and LFMC was the highest at 0.7. The results in Table 2 show that these classical spectral
reflectance indices are not quite adequate for application in this paper, and a spectral
reflectance index with better correlation needs to be constructed.

Table 2. Coefficients of correlation (r) between existing spectral reflectance indices and leaf water content.

Water-SRIs
r

Vegetation-SRIs
r

EWT RWC LFMC EWT RWC LFMC

WI (900,970) 0.34 −0.39 −0.64 * SR −0.37 −0.33 −0.57 *
WI (1300,1450) 0.44 −0.39 −0.7 * NDVI 0.39 −0.33 −0.57 *

NDWI 0.22 −0.57 * −0.59 * NDII 0.33 −0.44 −0.63 *
MSI −0.35 0.42 0.64 * PRI −0.44 0.31 −0.5

* Indicates significant differences at 95% confidence level.

To find the best spectral reflectance indices for estimating leaf water content, the cor-
relations between the ratio (RVI), normalized difference (NDVI), and difference (DVI)
vegetation indices of the two bands in the 340–2500 nm range with EWT, RWC, and LFMC
were systematically analyzed. Figure 6 presents a matrix of the correlation coefficients
based on the different band combinations of the raw full-band spectrum and the leaf
water content. The results show that the correlations between the vegetation indices and
EWT and RWC were still weak, with LFMC performing best, which is consistent with
the previous analysis. From Figure 6g–i, the three indices with the highest correlation
coefficients r (RVI (1525,1771), DVI (1412,740), and NDVI (1447,1803)) were screened out,
with the r-values being 0.81, 0.82, and 0.77, respectively. The band compositions of the
three vegetation indices are in the near-infrared and SWIR, and they were highly correlated
with the LFMC. Therefore, they can be preliminarily used as the spectral characteristic
parameters of the LFMC.
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3.3. Optimal Spectral Features

According to the temporal changes in leaf water content and the correlation analysis
with the raw spectral data, first-derivative spectrum, and spectral reflectance index, it is
obvious that LFMC is the best water indicator for assessing heat stress, while EWT and RWC
are not suitable. Based on correlation analysis, RS (1889; raw spectral value at 1889 nm),
FDS (1661; first-derivative spectral value at 1661 nm), RVI (1525,1771), DVI (1412,740),
and NDVI (1447,1803) were the five spectral features with strong correlations with LFMC.
In general, selecting more features is not necessarily better, and data redundancy will
reduce computational efficiency and affect the accuracy and applicability of the model.
Therefore, it is necessary to further screen the spectral characteristic parameters of LFMC.

The regular term constructed in the Lasso regression model makes it possible to
compress the dimension of the input sample. First, we need to determine the optimal
regular coefficient Lambda (λ) and adopt 10-fold cross-validation for the dataset (Figure 7a).
As shown in Figure 7a, the minimum λ of the RMSE was obtained after multiple iterations
and was used as the regular term coefficient of the model. Then, the compressed spectral
characteristic parameters were determined, and the accuracy of the regression model was
tested. The results are shown in Table 3 and Figure 7b. It can be seen from Table 3 that
RS (1889), as an independent variable, is compressed to 0 in the model, indicating that RS
(1889) is removed from the input dimension. The R2-value of the Lasso regression model
constructed with FDS (1661), RVI (1525,1771), DVI (1412,740), and NDVI (1447,1803) as
independent variables was 0.77 with an RMSE of 0.05. Although the spectral features were
reduced, the model accuracy was still high.

Table 3. Correlation coefficients between existing vegetation indices and leaf water content.

Spectral Parameters
Lasso Regression Regression Coefficients R2_CV RMSE_CV

RS (1889) 0

0.77 0.05
FDS (1661) 29

RVI (1525,1771) 30.93
DVI (1412,740) 0.19

NDVI (1447,1803) −2.76
Equation 1 y = 29x1 + 30.93x2 + 0.19x3 − 2.76x4

1 y = LFMC; x1 = FDS (1661); x2 = RVI (1525,1771); x3 = DVI (1412,740); x4 = NDVI (1447,1803).
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3.4. SF-LSTM Estimation of Heat-Stress Level

The direct use of spectral characteristics to accurately estimate the stress level in plants
requires full consideration of the temporal changes in spectral data under different stress
levels. Although it is sometimes feasible to estimate the spectral data in a single period,
its generalization ability is often weak. To solve this problem, the spectral features of the
time series were used as input to construct an SF-LSTM, and the estimation of plant stress
level was transformed into a classification problem. The network structure is shown in
Figure 4. To find the optimal model, the input layer data were set up with unified spectral
features and different time series lengths, and different classification strategies were trialed:
(1) spectral features: FDS(1661), RVI(1525,1771), DVI(1412,740), and NDVI(1447,1803);
(2) time series: the time series length of spectral features was divided into lengths of 3,
5, and 7 (each length is a continuous date and does not reverse repeat); (3) classification
strategies: two categories (control group and experimental groups), three categories (control
group, T1 and T2, and T3, T4, and T5) and six categories (control group and each of the five
experimental groups). The number of samples in each test was determined by the length of
the time series, and the ratio of the training set to the verification set was 4:1. The number of
output layer categories was consistent with the number of stress level categories. The initial
learning rate was 0.01, and the batch size was adjusted according to the sample size.
The adaptive moment estimate (Adam) was selected by the network optimizer and the
cross-entropy error function was adopted as the loss function. The classification results are
shown in Figure 8.

When using deep learning to estimate the heat-stress level in terms of a binary classifi-
cation or multiple classification problem, the classification of categories has a huge impact
on the modeling results. The test results show that the classification strategy determines the
convergence of the model’s loss and accuracy and the overall stability of the model. Under
the same classification strategy, the time series length of spectral features determines the
level of model accuracy. As shown in Figure 8, among the different classification strategies,
the loss and accuracy of the dichotomy model converged, the accuracies of the training set
and evaluation set were not ideal, and the stability of the model was low. When divided
into six categories, the model cannot converge many times and its stability is very poor.
The heat-stress level was divided into three categories. The model training set had the
highest accuracy, and the accuracy convergence value was >95%. Under different time
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series lengths, the effect was not good at a time series length of three. When the time
series length of the data was five, the training set loss and accuracy had good convergence.
The evaluation set had high accuracy and good stability, and its accuracy was stable at
about 90%. Overfitting occurred at a time series length of seven. The overall results
show that the SF-LSTM model is suitable for estimating heat stress when the classification
strategies are divided into three categories, and the time series length is five.
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4. Discussion

In this study, alfalfa was used to simulate thermal stress in a coal gangue dump recla-
mation area to conduct a gradient test with several treatments (control group, T1 = 60 ◦C,
T2 = 90 ◦C, T3 = 120 ◦C, T4 = 150 ◦C, T5 = 180 ◦C). Water content and hyperspectral data on
alfalfa leaves were collected one month before the flowering period. Correlation analysis
and selection of the spectral features of alfalfa leaf water content were carried out. Based on
the SF-LSTM model, the stress level in alfalfa under heat stress was estimated.

4.1. Leaf Water Content

The LFMC showed obvious regularity under different temperature gradients, which may
be due to the calculations of LFMC and leaf dry and fresh weights. Root system growth
has a huge impact on the dry and fresh weights of the plant leaves. As the heat-stress
time increases, the supply of water and nutrients to plant leaves becomes insufficient.
Long-term high soil temperatures cause significant changes in the LFMC of plant leaves.
Compared with high air temperature, the photochemical efficiency of leaves and the root
growth of plants are more severely affected by stress due to high soil temperature. Ref. [59]
also reported that shoot growth and senescence in winter wheat are influenced more by
soil temperature than air temperature. The adverse effects of high soil temperature on
physiological activities are probably due to direct inhibition of root growth and activity
and, therefore, limitation of water and nutrient supplies to the leaves [60] and disruption
of cytokinin synthesis in roots [61]. High soil temperatures also promote leaf senescence
by increasing the transport of root abscisic acid (ABA) to the leaves [62]. Although there
were fluctuations in EWT and RWC during the monitoring period, the regularity was
weak. This may be due to water shortages in the plant leaves, lack of nutrients, and
destruction of the internal microstructure of the leaves under different degrees of high soil
temperatures [63], resulting in varying degrees of change in leaf area and saturated water
content.

4.2. Spectral Features

Changes in leaf spectra are usually affected by changes in chlorophyll, water content,
internal structure, dry matter content, etc. The reflectance spectra of green plants in the
1000–2500 nm region are mainly influenced by liquid water and dry compounds. The water
absorption band is 1360–2080 nm, which is highly correlated with leaf water content and
is not affected by leaf structure [64]. This study shows that the band sensitive to the leaf
water content of alfalfa under high soil temperature heat stress is mainly concentrated
in the long-wave infrared region (1400–2500 nm). Correlation analysis of the raw and
first-derivative spectra with water content data showed that the bands at 1889 nm and
1661 nm had the highest correlations with LFMC, which was the optimal spectral feature
(see Figure 3). This is similar to previous studies [65].

Due to the strong reflection from the surfaces of fresh leaves and the influences of
the surface and internal structures of leaf cuticles, leaf hairs, etc., it is difficult to compre-
hensively and accurately estimate plant moisture status using a single band of spectral
reflectance. By constructing a vegetation index, the effective spectral information of the
vegetation can be maximized, the single-band scattering effect can be effectively reduced,
and prediction accuracy can be improved [66]. This article analyzed the correlations be-
tween the ratio, difference, and normalized vegetation indexes and leaf water content
in any two bands within 340–2500 nm. It found that the correlations between various
indexes and LFMC were all high. Specifically, the three spectral features RVI (1525,1771),
DVI (1412,740), and NDVI (1447,1803) had the highest correlations. The results of this
part of the correlation analysis also verify that LFMC is the most suitable water content
indicator for this study on temporal changes in leaf water content.

Through correlation analysis, we screened out several spectral features with strong cor-
relations with LFMC. However, in multiple regression, when the independent variable has
a higher dimension, there are often problems such as collinearity and data redundancy [67].
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Using the Lasso regression model to further optimize the above-mentioned spectral fea-
tures can minimize the adverse effects of multi-dimensional input data on the assessment
results when estimating the heat-stress level. After dimensionality reduction and Lasso
regression, the spectral features selected in this paper were FDS (1661), RVI (1525,1771),
DVI (1412,740), and NDVI (1447,1803).

4.3. Heat Stress Estimation

Considering the importance of temporal sequences in the estimation of plant envi-
ronmental stress, LSTM (which can effectively utilize a temporal sequence of data in deep
learning) was used to build an heat-stress model. Meanwhile, stress-level estimates were
presented in the form of classification results for the application scenarios considered in
this paper. Compared with traditional machine learning classification methods, LSTM is
more effective in classifying remote sensing time series data [68]. A variety of classification
strategies and time-series-length models were tested. The dichotomy strategy was the most
common strategy used in the classification model. According to the results in Figure 8,
although the parameters of the model constructed using the dichotomy strategy can con-
verge, the accuracy was not acceptable. This may be related to the large difference in
the proportion of the number of samples of the two categories in the training set and the
evaluation set. In the next step of the study, this adverse factor was reduced by increasing
the sample size of the control group during experimental data collection. Among the
multi-classification strategies, three categories had the best effects. The longer the time
series, the better. The model had the highest accuracy with a sequence length of five.
This conclusion is in line with the laws of deep learning. Over-redundant data, complex
neural network architectures, and inappropriate classification strategies not only make
models unable to fit the data, but also lead to over-fitting [69]. Over-fitted models have
poor generalization ability and weak applicability.

5. Conclusions

In this study, an SF-LSTM model was established by using the time series spectral
features of leaf water content obtained through an experiment that simulated heat stress in
coal gangue dump reclamation areas. The model was effective in estimating the heat-stress
level in alfalfa. Through time series analysis of leaf water content data, it was found
that the EWT and RWC do not have high regularity over time, making it difficult to
distinguish between normal and heat damage statuses in alfalfa. Heat stress in alfalfa was
best indicated by the LFMC leaf water content index. According to correlation analysis of
the raw spectrum, first-derivative spectrum, three forms of vegetation index, and leaf water
content data, RS(1889), FDS(1661), RVI(1525,1771), DVI(1412,740), and NDVI(1447,1803)
had the strongest correlations with LFMC. After further screening by the Lasso regression
model, FDS(1661), RVI(1525,1771), DVI(1412,740), and NDVI(1447,1803) were found to be
the optimal spectral features of inversion LFMC and can be used as spectral features to
assess heat stress. The SF-LSTM model was constructed to estimate the heat-stress level
in alfalfa based on a time series of spectral features. The results show that this model can
estimate the stress level with high accuracy when the classification strategies are divided
into three categories (control group, T1 and T2, and T3, T4, and T5) and a spectral feature
time series length of five (where the dates in the monitoring period are continuous without
repetition). The results of this study provide a new way to assess plant heat stress in coal
gangue dump reclamation areas. This has important practical application value and is
expected to be further verified and applied in other types of environmental stress research.
Subsequent studies will verify the conclusions of this experiment at larger spatial scales.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/rs13132634/s1, Figure S1: Mean and Gaussian filtered spectra of alfalfa leaves.

https://www.mdpi.com/article/10.3390/rs13132634/s1
https://www.mdpi.com/article/10.3390/rs13132634/s1


Remote Sens. 2021, 13, 2634 17 of 19

Author Contributions: Q.W. and F.Y.: conceptualization, methodology, data curation: application
of statistical, mathematical, computational, or other formal techniques to analyze or synthesize
study data, visualization, writing—original draft preparation. Y.Z. and W.X.: writing—review
and editing, funding acquisition, conceptualization. T.L. and H.S.: provision of study materials,
laboratory samples, instrumentation. All authors have read and agreed to the published version of
the manuscript.

Funding: This research was funded by the National Key Research and Development Program of
China, grant number 2016YF C0501103-4 and 2016YF C0501103-5.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author. The data are not publicly available due to the follow-up related work has not
been completed.

Acknowledgments: This work was supported by the National Key Research and Development
Program of China [grant numbers 2016YF C0501103-4, 2016YF C0501103-5]. The authors wish to
express heartfelt thanks to Yang Tianle, Yao Zhaosheng, Zhang Weijun, and Lin Zihan for data
acquisition work and to Wang Dunliang and Li Rui for debugging the test equipment.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Onifade, M.; Genc, B. Spontaneous combustion liability of coal and coal-shale: A review of prediction methods. Int. J. Coal Sci.

Technol. 2019, 6, 151–168. [CrossRef]
2. Alekseenko, V.A.; Bech, J.; Alekseenko, A.V.; Shvydkaya, N.V.; Roca, N. Environmental impact of disposal of coal mining wastes

on soils and plants in Rostov Oblast, Russia. J. Geochem. Explor. 2018, 184, 261–270. [CrossRef]
3. Wu, Y.; Yu, X.; Hu, S.; Shao, H.; Liao, Q.; Fan, Y. Experimental study of the effects of stacking modes on the spontaneous

combustion of coal gangue. Process Saf. Environ. 2019, 123, 39–47. [CrossRef]
4. Li, J.; Wang, J. Comprehensive utilization and environmental risks of coal gangue: A review. J. Clean. Prod. 2019, 239, 117946.

[CrossRef]
5. Nie, X.; Zhao, T.; Su, Y. Fossil fuel carbon contamination impacts soil organic carbon estimation in cropland. Catena 2021,

196, 104889. [CrossRef]
6. Wang, H.; Tan, B.; Zhang, X. Research on the technology of detection and risk assessment of fire areas in gangue hills. Environ.

Sci. Pollut. R. 2020, 27, 38776–38787. [CrossRef] [PubMed]
7. Xing, Y.; Feng, J.; Rong, X. Discussion on causes of combustion and explosion and of coal gangue at the No. 4 mine of Pingdingshan

coal Mine and countermeasures. Chin. J. Geol. Hazard. Control 2007, 18, 145–150.
8. Sloss, L.L. Assessing and Managing Spontaneous Combustion of Coal; IEA Clean Coal Centre: Washington, DC, USA, 2015.
9. Querol, X.; Zhuang, X.; Font, O.; Izquierdo, M.; Alastuey, A.; Castro, I.; Van Drooge, B.L.; Moreno, T.; Grimalt, J.O.; Elvira, J.

Influence of soil cover on reducing the environmental impact of spontaneous coal combustion in coal waste gobs: A review and
new experimental data. Int. J. Coal Geol. 2011, 85, 2–22. [CrossRef]

10. Xiaoshuai, W.; Yuegang, T.; Wang, S.; Schobert, H.H. Clean coal geology in China: Research advance and its future. Int. J. Coal Sci.
Technol. 2020, 7, 299–310.

11. Roy, P.; Guha, A.; Kumar, K.V. An approach of surface coal fire detection from ASTER and Landsat-8 thermal data: Jharia coal
field, India. Int. J. Appl. Earth Obs. 2015, 39, 120–127. [CrossRef]

12. Hu, Z.; Xia, Q. An integrated methodology for monitoring spontaneous combustion of coal waste dumps based on surface
temperature detection. Appl. Therm. Eng. 2017, 122, 27–38. [CrossRef]

13. Pandey, J.; Kumar, D.; Mishra, R.K.; Mohalik, N.K.; Khalkho, A.; Singh, V.K. Application of thermography technique for
assessment and monitoring of coal mine fire: A special reference to Jharia Coal Field, Jharkhand, India. Int. J. Adv. Remote Sens.
GIS 2013, 2, 138–147.

14. Mishra, R.K.; Pandey, J.K.; Pandey, J.; Kumar, S.; Roy, P.N.S. Detection and analysis of coal fire in Jharia Coalfield (JCF) using
Landsat remote sensing data. J. Indian Soc. Remote 2020, 48, 181–195. [CrossRef]

15. Mishra, R.K.; Roy, P.; Singh, V.K.; Pandey, J.K. Detection and delineation of coal mine fire in Jharia coal field, India using
geophysical approach: A case study. J. Earth Syst. Sci. 2018, 127, 1–10. [CrossRef]

16. Misz-Kennan, M.; Tabor, A. The thermal history of selected coal waste dumps in the Upper Silesian Coal Basin (Poland).
Coal Peat Fires A Glob. Perspect. 2011, 3, 431–474.
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