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Abstract: Large damages and losses resulting from floods are widely reported across the globe.
Thus, the identification of the flood-prone zones on a flood susceptibility map is very essential.
To do so, 13 conditioning factors influencing the flood occurrence in Brisbane river catchment in
Australia (i.e., topographic, water-related, geological, and land use factors) were acquired for further
processing and modeling. In this study, artificial neural networks (ANN), deep learning neural
networks (DLNN), and optimized DLNN using particle swarm optimization (PSO) were exploited to
predict and estimate the susceptible areas to the future floods. The significance of the conditioning
factors analysis for the region highlighted that altitude, distance from river, sediment transport
index (STI), and slope played the most important roles, whereas stream power index (SPI) did not
contribute to the hazardous situation. The performance of the models was evaluated against the
statistical tests such as sensitivity, specificity, the area under curve (AUC), and true skill statistic (TSS).
DLNN and PSO-DLNN models obtained the highest values of sensitivity (0.99) for the training stage
to compare with ANN. Moreover, the validations of specificity and TSS for PSO-DLNN recorded
the highest values of 0.98 and 0.90, respectively, compared with those obtained by ANN and DLNN.
The best accuracies by AUC were evaluated in PSO-DLNN (0.99 in training and 0.98 in testing
datasets), followed by DLNN and ANN. Therefore, the optimized PSO-DLNN proved its robustness
to compare with other methods.

Keywords: deep learning neural network; flood susceptibility mapping; particle swarm optimiza-
tion; Australia

1. Introduction

It has become commonplace to say that destructive flood hazards are reported widely
and globally. Excessive urbanization and climate change are more often blamed as the
main reasons for such hazards [1,2]. The massive human, economic, and infrastructure
losses resulting from flood occurrences necessitate flood management, prediction, and
early warning systems [3,4]. At a global scale, in the period 1995–2015, it was reported
that 109 million people were influenced by flood hazards, with annual direct costs of
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75 billion dollars [5]; only between 2011–2012, indirect damages and losses were reported
as 95 billion dollars [6]. The annual human life losses due to flooding are estimated to be
20,000 people [5]. This has led to the creation of some national flood mapping agencies
and portals around the world, such as the USA (www.fema.gov, accessed on 30 May 2021),
Ireland (www.floodinfo.ie, accessed on 30 May 2021), and Australia (www.ga.gov.au, ac-
cessed on 30 May 2021), providing a database of flood studies, maps, metadata, weather
warnings alert, and flood risk maps. Flood research, especially in the Queensland govern-
ment and local government areas of Australia, is one of the extensive studies to manage
the Brisbane river floodplain. According to historical devastating flood events (1893,
1974, and 2011) in the Brisbane basin, annual exceedance probability of 55.3% was esti-
mated as the chance of flood occurrences with experiencing at least one in an 80-year
lifetime (https://cabinet.qld.gov.au/documents/2017/Apr/FloodStudies/Attachments/
Overview.pdf, accessed on 30 May 2021), causing the emergency and timely response in the
region. However, the mapping of potential hazardous areas remains unsettled. Certainly,
prediction of probable zones for flood hazards and identification of the likelihood of flood
occurrence as susceptibility mapping might assist the decision makers in timely flood
mitigation, early warning, and decreasing the damages [7,8]. Precise monitoring, response,
and urban management by the city planners require advanced technologies and large
geospatial datasets [9]. Today, remote sensors provide big data from the entire globe in no
time. Such data prove their effectiveness in sustainable urban and environment manage-
ment and the creation of urban informatics for better data representation, visualization,
and interpretation of new information [10,11]. Along with big data collection, fast and
accurate analysis and visualization are vital [10]. Hence, data mining, modeling, and
developing robust and accurate algorithms obtain more attention, especially for natural
disaster management and urban planning [12,13]. In this context, the integration of remote
sensing (RS) technologies and geographic information system (GIS) tackles the spatial,
temporal, and regional challenges of flood processes, and the availability of various earth
observation data helps to predict and map the flood events and susceptible areas [1,3,14,15].
Therefore, we tried to explore and exploit artificial and deep learning neural networks
and proposed optimization to obtain higher accuracy. The effect of robust big data mining
and modeling on the reliability of the flooded zone prediction as well as determining the
most important conditioning factors for this hazard in the subtropical area will reveal new
guidelines for the authorities to plan for effective flood management.

Related Studies

A lot of studies have been carried out on flood modeling and susceptibility map-
ping [16–20], while the choice of appropriate flood conditioning factors and more accurate
and certain algorithms is still under investigation. Chen et al. [15] divided the two common
groups of algorithms for flood modeling and mapping into qualitative and quantitative
methods. It was stated that exploiting statistical and probabilistic models is the main focus
of the quantitative methods such as weights-of-evidence (WOE), frequency ratio (FR),
and logistic regression (LR). Some examples of qualitative models are analytic network
process (ANP) and analytic hierarchy process (AHP) [16]. However, the dynamic nature
and complexity of the flood events in a large-scale region provoke the use of more robust
models where linear and simple statistical methods seem unreliable [1,19]. In research
performed by Dano et al. [16], the intergradations of GIS and ANP for flood prediction
and mapping were investigated. However, the calculation of the relative weights of flood
conditioning factors was dependent on expert knowledge and questionnaires due to the
ANP mathematical model. Although the proposed model exhibited simple procedures,
its dependency on expert opinion makes it incompatible with quantitative methods and
inapplicable in the broad area [19].

Recently, machine learning (ML) algorithms (e.g., random forest (RF), support vector
machine (SVM), decision tree (DT), and artificial neural networks (ANN)) and optimized
models proved their abilities to handle large numbers of variables and large datasets timely
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and accurately [1,4,21]. ML algorithms have been successfully applied in many applications
such as landslide, flood, and wildfire susceptibility mapping [13,19,22,23]. However, the
implementation and reliability of these methods still need further investigation in natural
hazard prediction [15,19].

Khosravi et al. [24] applied some multiple-criteria decision-making algorithms (MCDM)
and ML algorithms (e.g., naive Bayes (NB) and naive Bayes tree (NBT)) to predict and locate
the areas prone to flooding and report the outperformance of the ML algorithms. Ac-
cordingly, the altitude was mostly responsible for the flood events, whereas land surface
curvature represented no influence. To predict the inundation area, Kia et al. [25] applied
ANN using seven conditioning factors and concluded that the most significant and in-
significant factors influencing the flood in the area were elevation and geology, respectively.
Again, ANN was exploited by Falah et al. [26] to determine the flood susceptible areas
using five factors, and it was highlighted that drainage density was the most and elevation
was the least important factor in the region. Their results were assessed by the area under
curve (AUC), and the values of 94.6% and 92.0% were obtained for training and validation,
respectively. In another study [27], the implementation of ANN and soil conservation
service runoff (SCS) with seven conditioning factors was investigated. The best root mean
square error (RMSE) was acquired by ANN as 0.16 at peak flow, promoting precipitation
and normalized difference vegetation index (NDVI) as the most influential factors. The
results of these studies also emphasized the case-specific selection of the flood causative
factors according to the region and its conditions [26]. However, the last three studies did
not comprehensively explore and compare ANN performance with other popular methods.
Hence, exploiting ANN might comprehensively examine its robustness to compare with
other models in different sites, and it can be a suitable benchmark to evaluate the proposed
ensemble algorithm.

Although ANN performs well in flood susceptibility mapping, it is limited to one or
two hidden layers for the optimization and complex problems. Therefore, deep learning
methods with multilayer architectures and higher performance and accuracy are in de-
mand [28]. The AUC values better than 0.96 were recorded by [29] using a deep learning
neural network (DLNN) to predict flash flood susceptibility, and this model outperformed
multilayered perceptron neural network (MLP-NN) and SVM and proved to be a supe-
rior model for the GIS dataset in the study area. In this regard, the optimization and
ensemble models also proved to be practical and effective to obtain more certainty and
accuracy during the modeling [1,17,19,30,31]. Bui et al. [22] also predicted flash flood zones
in tropical areas using optimized DLNN with four swarm intelligence algorithms (e.g.,
grasshopper optimization algorithm (GOA), social spider optimization (SSO), grey wolf
optimization (GWO), and particle swarm optimization (PSO)). Their proposed methods
exhibited higher accuracies than individual benchmarks such as PSO, SVM, and RF. How-
ever, the last two study areas suffer from flash floods that might be a consequence of heavy
and intensive precipitation. Therefore, careful examination of other conditioning factors
for flood susceptibility mapping is desired.

The ensemble of models reportedly improved the performance of the predictions.
Tehrany et al. [32] compared FR, SVM, and their ensemble models within a dataset in-
cluding digital elevation model (DEM), slope, geology, curvature, river, stream power
index (SPI), land use/cover, rainfall, topographic wetness index (TWI), and soil type to
map the susceptible areas for flood, and they established the better performance of the
proposed ensemble model. In another study, Tehrany et al. [1] introduced a GIS-based
ensemble method (evidential belief function and SVM with linear, polynomial, sigmoid
kernel, and radial basis functions) for susceptibility mapping in the Brisbane catchment,
Australia, using the 12 conditioning factors of altitude, slope, aspect, SPI, TWI, curvature,
soil type, land use/cover, geology, rainfall, distance from road, and distance from river.
The authors reached the maximum accuracies by the ensemble models (e.g., 92.11%) up to
7% higher than the individual algorithms. Another work [15] conducted an investigation
into ensemble-based machine learning techniques by deploying reduced-error pruning
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trees (REPTree) with bagging (Bag-REPTree) and random subspace (RS-REPTree) using
13 flood-influencing factors to estimate the probability of the flood zones. Their experiment
also ranked the ensemble model’s performance as superior compared with the individual
models. Four models, namely FR, the ensemble of FR and Shannon’s entropy index (SE),
the ensemble of the FR and LR, and the statistical index (SI) model, were exploited by
Liuzzo et al. [18], and 10 factors affecting floods were included in the modeling. The highest
performance was reported by the ensemble of the FR and LR, again.

The optimization was widely reported in recent years. Sachdeva et al. [19] proposed an
optimized model of PSO and SVM and compared its result with susceptibility maps from
RF, neural networks (NN), and LR. They used 11 conditioning factors, namely elevation,
slope, aspect, TWI, SPI, plan curvature, soil texture, land cover, rainfall, NDVI, and distance
from rivers. Their findings highlighted the lowest (91.86%) and highest (96.55%) accuracies
for the LR and optimized model, respectively. Li et al. [31] applied a discrete PSO-based sub-
pixel flood inundation mapping (DPSO-SFIM) algorithm to create flood maps and reported
the success of optimization compared with the other four models. Adaptive neuro-fuzzy
inference systems (ANFIS) with three optimization algorithms (ant colony optimization,
genetic algorithm, and PSO) were studied by [30], and the susceptible areas for flood were
accurately mapped by ANFIS-PSO. In a study of flooded area mapping [33], the authors
used synthetic aperture radar (SAR) data and the interferometric SAR information about
a flood hazard and improved the performance of a Fuzzy C-Means model by integration
and optimization with PSO. Similarly, a model enhancement was reported by [34] by the
integration of PSO with Bayesian regulation back propagation NN using Landsat images of
the flood events. Nevertheless, the focus of both works was on flood mapping and not flood
susceptibility mapping. Thus, the applicability of optimized PSO-DLNN models in flood
susceptibility mapping in different sites still needs more consideration, and testing the
capabilities and level of improvement of the optimization method to map the susceptible
flood zones was also the motivation to conduct this research.

Flood susceptibility mapping of the Brisbane catchment, Australia, using other algo-
rithms (SVM, evidential belief function, LR, and FR) was practiced by [1,15,16], and at best,
higher performance accuracy of 92.11% was obtained. Then, we looked for a way to achieve
better performance. To the best of the authors’ knowledge, there is no comprehensive study
fully exploring the optimized DLNN via PSO to map flood susceptibility in the Brisbane
catchment, Australia. Therefore, we aimed (1) to classify the flood susceptible zones in
the study area into five probability classes (i.e., very low, low, moderate, high, and very
high) using three models, namely ANN, DLNN, and the optimized DLNN using PSO (PSO-
DLNN); (2) to assess and compare the accuracy and reliably of the three models based on
sensitivity, specificity, the area under curve (AUC), and true skill statistic (TSS) tests; and
(3) to determine the most important factors (i.e., altitude, slope, aspect, curvature, distance
from river, distance from road, rainfall, land use, lithology, soil, SPI, TWI, and sediment
transport index (STI)), influencing the flood occurrence, in the subtropical climate region.

2. Study Area and Materials
2.1. Study Area

The region of study (Figure 1) is a part of the Brisbane river catchment in Queensland,
Australia. As a result of tropical cyclones, two flood events were recorded on February 1893
and January 1974 (the largest flood of 20th century) based on Queensland Government
reports. Brisbane experienced devastating flood hazards between 2010 and 2011 [20] and,
later on, in January 2013. Therefore, the region is considered as a floodplain area and is
under continuous study by the Queensland government in partnership with other sectors.
Here, the study area (Figure 1) covers 1,474,617 square meters and lies between latitudes
of 27◦45′S and 27◦25′S and longitudes of 152◦50′E–153◦05′E. The majority of the area
represents the dense urbanization. The altitude in the region varies from 0 to 548 m, with
humid subtropical climate characteristics, average temperature of 20.3 ◦C, and annual
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rainfall of 1168 mm [1]. According to the geology, Neranleigh-Fernvale beds, clay, and
sandstone are the dominant coverage (Table 1 and Figure 2i).
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2.2. Data Description

For the purpose of flood modeling and susceptibility mapping, two types of datasets
were prepared: an inventory map of the past flood events and the factors influencing this
hazard [20].

2.2.1. Flood Inventories

The flood inventory consisted of 128 historical areas from Brisbane floods dated
back to 2001 and extracted from the high-resolution aerial photography after the flood
event (Figure 1c). It was provided by Queensland government open data portal (https:
//www.data.qld.gov.au/dataset/flood-extent-series, accessed on 30 May 2021). At the
time of data preparation, we randomly selected non-flood points (128) within the area
using a precise buffer around the flood zones by binary classification of flood and non-flood
locations using ArcGIS software. Thereafter, the inventory map was randomly divided
into 70% and 30% points to extract the corresponding values of 13 conditioning factors for
the training and testing of the models, respectively.

2.2.2. Explanatory Factors

According to the literature [1,17,24,26,30,32] and availability of the data in the region,
13 causative factors, namely altitude, slope, aspect, curvature, distance from river, distance

https://www.data.qld.gov.au/dataset/flood-extent-series
https://www.data.qld.gov.au/dataset/flood-extent-series
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from road, rainfall, land use, lithology, soil, SPI, TWI, and STI, were selected. Light detection
and ranging (LiDAR) data from the Australian government (http://www.ga.gov.au/elvis/,
accessed on 30 May 2021) were the source of a DEM in 10-m resolution to create flood
conditioning factors such as altitude, slope, aspect, curvature, SPI, TWI, and STI.

The Topographic Factors

The topographic factors such as altitude, slope, aspect, curvature, and TWI play major
roles in predicting the regions of flood occurrence [1]. The altitude of the region was derived
from DEM varying from 0 to 548 m (Figure 2a). Accordingly, the slope of the study area
(Figure 2b) was calculated between 0 and 55.5 ◦, and this steep area increases the runoff
velocity [1]. The aspect map (Figure 2c) reflects the direction of the terrain and then the
direction of floodwater flow [29], and it was classified into nine classes, namely flat, northeast,
east, southeast, south, southwest, west, and northwest. The curvature (Figure 2d) indicates
the divergence and convergence of runoff, and it was categorized into three classes of convex,
flat, and concave [29,32]. TWI (Figure 2e) measures the direction and accumulation of water
flow due to the gravity of the place [32]. It is calculated by Equation (1):

TWI = ln
(

As

tan β

)
(1)

where As is the upslope area per unit of contour length (m2/m) and β measures the
topographic gradient or local slope gradient in degree [35]. The higher value indicates
higher accumulation and runoff flow and thus more sensitivity to the flood occurrence [3,7].

Moreover, distance to river and road (Figure 2f,g) are amongst the influential factors
for the flood events [20,23,32], and road and river were collected from https://www.data.
qld.gov.au/dataset/baseline-roads-and-tracks-queensland (accessed on 30 May 2021) and
calculated using Euclidean distance analysis [36].

The Water-Related Factors

The hydrological factors such as SPI (Figure 2h) and STI (Figure 2i) are considered
important factors reflecting the soil moisture and influencing the flood events [37]. SPI
measures the water erosion power resulting from the water flow to be calculated by
Equation (2) [18,36].

SPI = ln(As· tan β) (2)

The lower value of this index points out the higher sensitivity to the flood hazard [3].
Moreover, the erosion and deposition of an area can be estimated by STI as follows [35]:

STI =
(

As

22.13

)0.6( sin β

0.0896

)1.3
(3)

Similarly, the lower value of STI indicates the higher probability of the flooding.
Another water-related factor was fainfall data (Figure 2j), which were obtained from
meteorological stations available in the Bureau of Meteorology website (http://www.bom.
gov.au/climate/data, accessed on 30 May 2021), and then they were interpolated to create
a continuous climatic map.

Geological Factors

The soil type map in 1:250,000 scale (Figure 2k) and lithology in 1:100,000 scale
(Figure 2l) were downloaded from the CSIRO and Australian government websites, and
then the subset area was selected. According to the soil types represented in Table 2
(in 10 classes), the area is mainly covered by hard acidic yellow and red mottled soils.
From a lithology point of view, the region was classified into nine categories (Table 1)
predominantly in the Bundamba Group, Landsborough sandstone, Neranleigh-Fernvale
beds, Bunya Phyllite, and paleocene–oligocene sediment classes.

http://www.ga.gov.au/elvis/
https://www.data.qld.gov.au/dataset/baseline-roads-and-tracks-queensland
https://www.data.qld.gov.au/dataset/baseline-roads-and-tracks-queensland
http://www.bom.gov.au/climate/data
http://www.bom.gov.au/climate/data
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Table 2. Soil contents and classes in the study area.

Class Description

Cd3 Sands (Uc2.12) and siliceous sands (Uc1.21 and Uc1.22) on sandstones, grey cracking clays (Ug5.23) on shales,
and shallow red clays (Uf6.12) on basalt

Fu2 Shallow and stony leached loams (Um2.12) and also (Um5.2) loams.
Fu3 Shallow and stony leached loams (Um2.1), and also (Um5.2) loams.

Kb28 Moderate and shallow forms of dark cracking clays on the slopes.

MM9 Brown and grey cracking clays (Ug5.34), (Ug5.39), and (Ug5.2), which occur on the third terrace with (Gn3.21),
(Dy3.41), and (Dy3.13) soils.

Mw30 Red earths (Gn2.14) with associated areas of red friable earths (Gn3.11).
Pl1 Hard acidic red and yellow soils (Dr3.41), (Dr2.41), and (Dy3.41) with some areas of (Dy3.43) and (Dr3.43) soils.

Sj12 Hard acidic yellow and yellow mottled soils (Dy2.41) and (Dy3.41) with (Dd1.41) on the flat areas, together
with leached sands (Uc2.33 and Uc2.32) on low broad sandy banks.

Tb64 Hard acidic yellow (Dy3.41) and red (Dr3.41) mottled soils.
Tb65 Hard acidic and neutral yellow and red soils (Dy3.41), (Dy3.42), (Dr3.41), and (Dr2.12) on sandstones.

Land Use

Additionally, a land use/cover map of the region (Figure 2m) was prepared from
the Queensland land use mapping program (QLUMP) and reclassified into eight classes.
Residential, conservation and natural environment, and intensive uses (mining) were the
most dominant land cover classes in the area. Eventually, all of the datasets transformed
into the same resolution of 5 × 5 m, and the classifications were performed using a natural
break in ArcGIS 10.2 [3].

3. Methodology
3.1. Overview

Figure 3 is the workflow for this research. After data preparation (flood inventory and
conditioning factors), the training and test data values of the 13 conditioning factors were
extracted from the flood location points in ArcGIS. Subsequently, the coefficients of the
flood conditioning factors were calculated for the variance inflation factor (VIF) analysis
and tolerance. Next, the two ML models (ANN and DLNN) and an optimized DLNN via
PSO were trained to categorize susceptible zones into five probability classes: very low
(less than 0.2), low (between 0.2–0.4), moderate (between 0.4–0.6), high (between 0.6–0.8),
and very high (more than 0.8). Finally, validations were carried out based on (1) sensitivity
and specificity, (2) receiver operating characteristics (ROC) curve, and (3) TSS tests.

3.2. Multicollinearity Analysis

To predict the flood-prone zones, a large dataset including several causative factors
needs to be modeled. Therefore, the presence of redundant data might lead to heavy and
timely calculation and even lower performance [38]. Commonly, the intra-relationships
between the factors and multicollinearity can be identified by VIF and coefficients of
tolerance (Tolerance) [39,40]. VIF is calculated according to Equation (4):

VIF =
1

1− R2
i

(4)

where Ri is the multi correlation coefficient of i th factor on the remaining factors [41]. The
coefficients of tolerance are also estimated from the Equation (5):

Tolerance = 1− R2
i (5)

The multicollinearity among the variables is defined by a VIF value greater than 5 and
the tolerance value less than 0.1 [41] and highlight the presence of linear correlation within
the factors, and removal should be considered [42].
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3.3. Modeling with ML Methods

ML algorithms have shown their potential to handle complex and non-linear prob-
lems existing in natural hazard prediction such as flood susceptibility [15,24]. With the
ability of large dataset modeling [43], ML methods learn from initial so-called training
datasets to entirely model, classify, and predict the variables in the whole datasets [1].
Moreover, the integration and optimization of ML techniques reflect promising results as
the optimized values and parameters will enhance the algorithm performance [22]. For
the present research, ANN, DLNN, and optimized DLNN via PSO were exploited using
R programming with CARET packages.

3.3.1. Artificial Neural Networks (ANN)

ANN as a mathematical model with the simulation capability and pattern recognition
similar to the human brain can be trained by the variables [44]. It deploys a nonlinear
function that literately learns the complex relationship between variables and training
datasets in a network structure [45,46]. The common ANN (Figure 4) includes an input
layer (with several neurons), hidden (internal) layer, and output layer where the hidden and
output layer neurons multiply each input with specific weight function and weights errors
are continuously calculated between the variables and corresponding observations [47].
The input layer (feed-forward of inputs) with 13 nodes of flood conditioning factors
(Figure 4) was fed into ANN, and the weights of each factor in the hidden layer were
calculated by the back-propagation training algorithm to iteratively minimize and adjust
the error between the predictions and training datasets. The output (Out) form input and
hidden layer can be determined as follows [25]:

Out = f (
n

∑
j=1

wjxi + θj) (6)

where f is a transfer function, wj defines the weight vector, and xi is the node flow (causal
factors) from the inputs. θj represents a threshold value or bias. The transfer function
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f (x) is typically defined by
(
1 + e−2x)−1, and wj is determined by minimizing an error

measure of the fit between the output and the target feature [48].
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The learning rate was adjusted to 0.01 with the initial weights varying between 0.1
and 0.3, randomly. As the stopping criterion, the number of epochs was also set to 1000
with the RMSE of 0.05. During training of ANN, the final weights between layers were
calculated as the level of contribution (significance) of each of the 13 factors to predict the
potential of flood events. Eventually, the weights were applied to the region, the output
layer was the susceptibility map, and flood-prone zones were classified (equal interval)
into five probability classes (very low, low, moderate, high, and very high).

3.3.2. Deep Learning Neural Networks (DLNN)

DLNN (Figure 5) are generally categorized as ANN algorithms but with multiple
(deep) hidden layers (based on the complexity of the features) applying feed-forward
network for the back-propagation training algorithm [22,49]. The use of numerous hidden
layers empowers the algorithm to better describe the nonlinear and complex features such
as flooding [29]. Herein, the hidden layer was set to three according to the previous studies
and to obtain stronger feature learning [22,29]. DLNN is a type of neural network with the
Sigmoid function deployed within each neuron in the hidden layers to perform the back-
propagation and weighting system. The sigmoid [22] activation function f (x) is defined
by (1 + e−x)

−1. Due to training via the gradient-based algorithm with backpropagation,
ReLU is used to avoid dispersing gradient [29].
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3.3.3. Optimized DLNN via PSO

PSO is a computational method based on simulation of social behavior and arrangement
of the insect/bird group involving a random initialization of population (swarm) of particles
(encoded candidate solutions) in the search space [22,50,51]. The PSO model ironically
examines the best routes and optimized solutions for the population to find the food [39].
Several features with various textural, spectral, and geometrical characteristics are selected
by the best routes and optimization solutions. Random scattering of each examined feature
(swarm of an individual class) formed the start of process in the searching space.

Therefore, we integrated PSO and DLNN for optimized feature selection of the
datasets to obtain better performance. In the n-dimensional search space, each parti-
cle in its location moves toward the best fit solution according to its own and adjacent
particles’ positions [51]. The positions and velocities of each particle are dynamically saved
and updated as xi = (xi1, xi2, . . . , xin) and vi = (vi1, vi2, . . . , vin) while the velocity is
defined between vmax and vmin [30,51]. Then, the best position of each particle and the best
position of whole group of population are recorded as pbest and gbest, respectively [31]. The
position and velocity of the particle is calculated by the following Equations [30]:

vij(t + 1) = W × vij(t) + r1 × c1
(

pij(t)− xij(t)
)
+ r2 × c2

(
gi(t)− xij(t)

)
(7)

xij(t + 1) = xij(t) + vij(t + 1) (8)

where pij(t) and gi(t) are the best overall particle position and the best position of the
swarm, respectively. W denotes the weight of the inertia coefficient defined by W = 1

2 ln 2 ,
c1 and c2 are particle and swarm coefficient learning, and r1 and r2 stand for uniform
random numbers varying between 0 and 1. The related parameters for PSO-DLNN are
presented in Table 3.
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Table 3. Parameters used in ML models.

No Parameter
Model

ANN DLNN PSO-DLNN

1 Input nodes 13 13 13
2 Output nodes 2 2 2
3 Activation - ‘relu’ ‘relu’
4 Function - ‘Sigmoid’ ‘Sigmoid’
5 reluLeak - 0.01 0.01
6 Eta - 0.8 0.8
7 Hidden layer unit 1 3 3
8 Iteration 500 500
10 Phi - - 4.1
11 phi1 - - 2.05
12 Phi2 - - 2.05
13 W - - 0.73
14 C1 - - 1.49
15 C2 - - 1.49

3.4. Evaluation Methods

The efficiency and performances of the three models were evaluated against the popu-
lar statistical methods such as positive predictive value or sensitivity, negative predictive
value or specificity, the AUC, and TSS [19,37]. The evaluation methods can be better
described as follows:

Sensitivity =
TP

TP + FN
(9)

Specificity =
TN

TN + FP
(10)

where TP as true positive and TN as true negative are the number of flood points and
non-flood points that are correctly identified, while FN (false negative) and FP (false posi-
tive) represent the number of flood and non-flood points that are not correctly identified,
respectively [18]. The ROC curve is depicted by plotting Sensitivity (on the y axis) against
1− Specificity (on the x axis), and the AUC is a quantitative evaluation of the predictions.
The values range from 0 to 1, indicating random to perfect prediction [18].

TSS is another metric to evaluate the models from a perfect prediction to a random
guessing prediction by TSS value from +1 to -1 [52]. It is calculated as below:

TSS = Sensitivity + Specificity− 1 (11)

4. Results

Data redundancy and multicollinearity within big remote sensing data might lead
to heavy calculation and accuracy loss. VIF and tolerance analysis (Table 4) revealed that
there was no strong correlation among the available condition factors (no VIF and tolerance
values greater than 5 and less than 0.1, respectively). Therefore, all 13 conditioning factors
were fed to the three aforementioned algorithms, and susceptible areas to the flood were
predicted and mapped.

The susceptibility maps resulting from three models are illustrated in Figure 6 in
five classes of susceptibility, and the area and percentage of each individual class were
calculated in Table 5 [52]. The map from ANN represented more salt and pepper looks
(Figure 6a), and predominantly very low (56.33%) and very high (24.69%) probability
classes were defined across the study area. DLNN (Figure 6b) provided a smoother
appearance with the very low class (67.61%) as the dominant category followed by the very
high class (19.23%). On the other hand, the optimized model (Figure 6c) mainly classified
the areas as the very low (61.99%) susceptible zone, while other classes appeared almost as
the same percentages, ranging from 9.53% to 11.28%.
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Table 4. Multicollinearity analysis for linearity detection within the independent variables.

Variables VIF Tolerance

Altitude 4.52 0.22
Slope 4.1 0.24

Aspect 1.03 0.97
Curvature 1.31 0.76

Distance from river 2.39 0.42
Distance from road 2.13 0.47

Rainfall 2.07 0.48
Land use 1.59 0.63
Lithology 1.38 0.72

Soil 1.99 0.50
SPI 1.15 0.87
TWI 1.69 0.59
STI 4.04 0.25

Table 5. The area and percentage of flood susceptibility classes.

Models Area
Susceptibility Class

Very low Low Moderate High Very high

ANN
Km2 440.2872 144.0198 2.1537 2.1726 193.0005

% 56.33 18.43 0.28 0.28 24.69

DLNN
Km2 528.4881 48.6306 24.6753 29.5146 150.3252

% 67.61 6.22 3.16 3.78 19.23

PSO-DLNN
Km2 484.5816 74.4777 61.4268 73.0179 88.1298

% 61.99 9.53 7.86 9.34 11.28
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Figure 6. Flood susceptibility maps simulated using different models: (a) ANN, (b) DLNN, and (c) PSO-DLNN.

The percentages of flood inventory samples based on individual probability class are
presented in the Figure 7. Predominantly, more than 80% of the samples were classified
as “very high” probability by the three algorithms. A meaningful difference is seen in the
“high” probability class by the PSO-DLNN algorithm, and almost 10% of the samples were
categorized in that class. The proportions of other flood samples were minimal in other
classes for every algorithm.
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Table 6 represents the evaluation of ANN, DLNN, and optimized PSO-DLNN model-
ing against sensitivity, specificity, TSS, and AUC metrics. The sensitivity test for the ANN
model obtained the values of 0.98 and 0.94 for training and validation, respectively. Both
DLNN and PSO-DLNN models slightly acquired the highest values of sensitivity (0.99)
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within the training stage, while the values of 0.86 and 0.92 in the validation stage were quite
lower than the one by ANN. In term of specificity, ANN showed the maximum training
value (0.96) followed by PSO-DLNN (0.89) and DLNN (0.87). In contrast, in the validation
stage (specificity), PSO-DLNN scored the value of 0.98, remarkably higher than those by
ANN and DLNN (0.85). Again, the results of TSS for the ANN model had the maximum
values (0.94) at the training level, while PSO-DLNN performed as the best in the validation
stage (0.90). In addition, PSO-DLNN performances in both training and testing datasets
achieved the best accuracies by the AUC metric followed by DLNN and ANN, and there
was no sign of overfitting in the models. Figure 8 illustrates the AUC plot for each model.
The relationship between sensitivity or true positive rate (TPR) and 1-specificity or false
positive rate (FPR) can be better interpreted by these graphs.

Table 6. Predictive capability of ANN, DLNN, and PSO-DLNN models using train and test dataset.

Models Stage Evaluation Tests

Sensitivity Specificity TSS AUC

ANN
Train 0.98 0.96 0.94 0.98

Validation 0.94 0.85 0.79 0.93

DLNN
Train 0.99 0.87 0.86 0.98

Validation 0.86 0.85 0.71 0.96

PSO-DLNN
Train 0.99 0.89 0.88 0.99

Validation 0.92 0.98 0.90 0.98
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The results of variable importance for PSO-DLNNO are provided in Table 7. Accord-
ingly, the most important factor was altitude, followed by the distance from the river. STI,
slope, and distance from the road were the third, fourth, and fifth ranked in terms of their
significant effects on the flood occurrence in the region. Additionally, SPI seems to have no
contribution to the susceptibility mapping and was ranked 13th.

Table 7. Variable importance analysis derived from PSO-DLNN model.

Variables Importance

Altitude 100
Slope 33.05

Aspect 1.32
Curvature 16.55

Distance from river 55.44
Distance from road 29.21

Rainfall 9.31
Land use 22.63
Lithology 11.29

Soil 1.74
SPI 0
TWI 18.77
STI 39.69

5. Discussion

The availability of 10-m spatial resolution DEM in the study area along with other
influential factors led to the creation of a massive geodatabase with large datasets. The
robustness and high performance of the predictions were demonstrated by ANN, DLNN,
and PSO-DLNN models against all accuracy assessment metrics as all the values were
placed at a high level of accuracy, certainty, and goodness-of-fit. Accordingly, ANN
slightly demonstrated its higher ability at the training stage to compare with other models;
however, it underestimated the optimized modeling during the validation. The best
AUC result was obtained by the PSO-DLNN model, followed by DLNN and ANN. TSS
on validation data represented perfect agreement (rather than random guessing) in the
correct prediction by PSO-DLNN model almost 10% to 20% higher than ANN and DLNN,
respectively. Comparatively, it evaluated the optimized model as a reliable method for
flood susceptibility mapping. Our finding is in agreement with Sachdeva et al. [19], who
claimed the optimization of SVM via PSO outperformed other methods such as NN, LR,
and RF. In a profound review paper, [13] highlighted that the majority of ML algorithms
use a hybrid or ensemble model to improve their prediction accuracy. We also found that
the optimization could enhance the ability of the ML algorithm; it reflects the potential and
flexibility of ML algorithms in boosting using various methods.

Visually inspection of the susceptibility maps, the category of very high susceptible
zones tended to be modeled very similarly by ANN and DLNN; however, the estimation
in PSO-DLNN showed a different appearance. It highlighted the different structure of
the integration model where PSO optimized the procedures and led to higher accuracy
and certainty. Additionally, the use of ML models was practically effective to predict the
susceptible areas to the hazard, and it was in agreement with Band et al. [39] in modeling
and predicting. Figure 9 shows areas with very high sensitivity to floods. In this figure,
most of the areas that considered highly sensitive to flood hazards were along rivers. All
three models used in this paper predicted similar points as flood-sensitive areas. The
results showed that the ANN model classified more areas as very highly sensitive to
flood hazards, and the DLNN model optimized with PSO due to higher accuracy showed
fewer areas as flood-sensitive areas with higher accuracyflood-sensitive. DLNN and PSO-
DLNN are suitable when a larger number of samples or big data are available. These
algorithms are able to estimate the results with optimum accuracy. On the other hand,
the traditional ML algorithm such as ANN is not capable of handling a large number
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of samples, and the outcome from this perspective is less optimal compared to the deep
learning framework [39].
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Figure 10 compares the flooded areas predicted by PSO_DLNN methods and de-
termined by the hazard map. The west part of the map (Figure 10) mainly represented
the same regions, while in the eastern part, the flooded areas were more expanded by
the PSO_DLNN method (to compare with the hazard map). Comparisons of number
of pixels and the areas labeled by the susceptibility map (PSO_DLN) and hazard map
were represented in Figure 11a,b. The distribution of pixels (72,500 out of 82,768) and
areas (2,175,000 out of 2,483,040 m2) were mainly within “high” and “very high” classes,
showing a promising agreement between the susceptibility map and hazard map. The
flooded region and simulated spatial assessment of flood susceptibility using PSO-DLNN
are presented in Figure 12.

The importance of altitude, distance from river, STI, and slope were consistent with
the former studies [3,15,24,32]. SPI measurement showed almost equal erosion power from
water flow in the entire region, and it might be the reason for the zero value in variable
importance analysis by PSO-DLNN model; consequently, the regions with the high SPI val-
ues had lower sensitivity to flooding, and the probability was very low. The insignificance
of SPI and aspect were also in agreement with [3,24]. Although the calculation of very high
SPI values for this specific region led to rank SPI as the least important factor during the
PSO-DLNN model, it cannot be interpreted as an unimportant factor, denying the effect of
SPI to identify flood-prone areas in other regions. Surprisingly, the corresponding weight
for rainfall revealed that this factor is not as important as other factors in this subtropical
region, and our finding was consistent with [24] in another subtropical region. In this
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study, TWI was not amongst the top influential factors, which were opposed to a study
by [53]. The different ranking for the influential factors by several studies proved the site
dependency of significant factors to intensify the flood events in each study area.
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Figure 12. Comparison of flooded region by hazard map and simulated spatial assessment of flood
susceptibility ranked by each class using PSO-DLNN.

Mostly, the areas with altitude lower than 20 m were more susceptible to flood occur-
rence where geologically Middle to Late Triassic volcanic units, Quaternary alluvium and
lacustrine deposits, Neranleigh-Fernvale beds, and Bunya phyllite were presented, while
the Bundamba group and Landsborough sandstone were less prone to flooding. From the
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land-use perspective, the natural environment and conservation areas with dense forest
were the least susceptible regions to flooding. On the other hand, the most susceptible areas
are among the dense residential areas and intensive uses. The most probable soil types for
flood events were MM9 (brown and grey cracking clays), Tb64 (hard acidic yellow and red
mottled soils), and Sj12 (hard acidic yellow and yellow mottled soils) classes. Availability
and accessibility to the data at the time of the flood and right after that (with high spatial
resolution and accuracy) might be considered the limitation for such a dynamic hazard
for better analysis and precise prediction. The final result of our research implied a form
of new knowledge such as urban informatics [10] in the technique, visualization, and
representation of flood hazards for efficient interpretation in the urban area. This flow of
information from big data and successful prediction of potential hazardous zones might
improve land use planning and economic futures.

6. Conclusions

To reduce potential damage and losses of future floods, flood susceptibility maps
are the practical way to identify the hazardous areas in which early warning, evacuation,
mitigation, and limitation for urbanization growth can be set. The availability of remote
sensing and earth observation big data creates a platform for better understanding and
modeling of complex phenomena such as floods. Fast and accurate analysis, visualization,
and information extraction from big data are essential in natural disaster management and
urban planning, which seem viable through optimization and ML algorithms. Apparently,
the significance of the influential factor analysis for the region revealed that rainfall was not
as important as altitude, distance from river, STI, slope, distance from road, and land use.
Although the heavy rainfall was a triggering factor for flood hazards in this subtropical
climate region, it could not be blamed for the flood occurrences in this specific region.
As a consequence, the topographical and hydrological factors that highly suffer from
urbanization and human activities were in control of such hazards. Therefore, our finding
suggests revising the policy regarding urban growth and deforestation in similar regions to
decrease human loss. Additionally, the precise data modeling and accurate susceptibility
map by the integration of the PSO-DLNN model would enlighten the researchers and
governmental sectors for proper decision making and flood management in the Brisbane
river catchment. The future work will be based on creating a more accurate and complete
geodatabase including other conditioning factors for flood hazards and comparing different
optimization methods.
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