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Abstract: Crop water status and irrigation requirements are of great importance to the horticultural
industry due to changing climatic conditions leading to high evaporative demands, drought and
water scarcity in semi-arid and arid regions worldwide. Irrigation scheduling strategies based on
evapotranspiration (ET), such as regulated deficit irrigation, requires the estimation of seasonal
crop coefficients (kc). The ET-driven irrigation decisions for grapevines rely on the sampling of
several k. values from each irrigation zone. Here, we present an unmanned aerial vehicle (UAV)-
based technique to estimate k. at the single vine level in order to capture the spatial variability
of water requirements in a commercial vineyard located in South Australia. A UAV carrying a
multispectral sensor is used to extract the spectral, as well as the structural, information of Cabernet
Sauvignon grapevines. The spectral and structural information, acquired at the various phenological
stages of the vine through two seasons, is used to model k. using univariate (simple linear), mul-
tivariate (generalised linear and additive) and machine learning (convolution neural network and
random forest) model frameworks. The structural information (e.g., canopy top view area) had the
strongest correlation with k. throughout the season (p < 0.001; Pearson R = 0.56), while the spectral
indices (e.g., normalised indices) turned less-sensitive post véraison—the onset of ripening in grapes.
Combining structural and spectral information improved the model’s performance. Among the
investigated predictive models, the random forest predicted k. with the highest accuracy (R?: 0.675,
root mean square error: 0.062, and mean absolute error: 0.047). This UAV-based approach improves
the precision of irrigation by capturing the spatial variability of k. within a vineyard. Combined with
an energy balance model, the water needs of a vineyard can be computed on a weekly or sub-weekly
basis for precision irrigation. The UAV-based characterisation of k. can further enhance the water
management and irrigation zoning by matching the infrastructure with the spatial variability of the

irrigation demand.
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1. Introduction

Water availability to horticultural crops in Australia is highly variable from season-
to-season due to variable climatic conditions including evapotranspiration and precipita-
tion patterns, extreme weather events, for example, heatwaves, and competing demand
for freshwater. Climatic conditions are expected to deteriorate due to variability in the
Indian Ocean Dipole, which is the key driver of ENSO outlook and the Australian cli-
mate [1,2]. The persistent drier conditions, combined with freshwater scarcities, will require
a wider adaptation of precision irrigation to sustain the horticulture and agriculture of
Australia [3,4]. As such, the horticultural industry needs to move from over-irrigation
to stress management practices by adopting evidence-based precision irrigation [5-7].
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One widely adopted irrigation strategy is evapotranspiration (ET)-based deficit irrigation,
where a fraction of crop water requirement is replenished [8,9]. To improve the precision of
the ET-based irrigation, accurate information of the crop coefficient (k) is required [10]. k¢
is a highly variable parameter affected by the canopy structure, training system, pruning
practices and vegetative growth. Within the same management vineyard block, spatial
variation still exists due to the variation in resource availability, soil rooting depth, vine
disease and terrain architecture. Due to this high spatiotemporal variability in the k, data,
such as those from remote sensing, are required to make the irrigation decisions. Further-
more, mixed pixels arising from the inter-row bare/vegetated area specific to horticulture
demands higher spatial resolution data, which can be achieved with an unmanned aerial
vehicle (UAV) [6]. Unmanned aerial vehicle (UAV) remote sensing offers the potential
to characterise ET [11,12], k. and the irrigation needs spatially, as well as on a canopy
level [13-15]. Canopy level irrigation requirements can be a basis on which to improve the
precision of irrigation and irrigation scheduling by matching the timing, volume and loca-
tion of irrigation with the crop water needs [16-19]. This, in turn, can sustain agriculture
by optimising farm and crop water use efficiency and industry profitability.

The direct measurement of crop evapotranspiration (ET.) can be made by lysimeter,
eddy covariance, Bowen ratio and soil water balance methods [20,21]. These methods
provide an accurate account of vegetation water balance; however, they are expensive,
cumbersome, and provide low spatial representativeness of measurements. In the absence
of direct ET. measurements, an indirect estimation can be made from numerical modelling,
empirical methods, and remote sensing, which use agronomic, biophysical, and meteoro-
logical elements as inputs [22-24]. The FAO Penman-Monteith method is the most widely
adopted empirical model for estimating the reference ET (also known as ET.¢ or ETy) [10].
ETy, when coupled with k. (single or dual), yields ET., which is often the basis for deficit
irrigation [25-29].

The similarity of k. and the satellite-derived vegetation indices (VIs) resulted in the
use of low-cost remote sensing technology for estimating k. for a range of spatiotemporal
scales [30-32]. The satellite-based VIs proxied the photosynthetically active vegetation
cover, which in turn can be used to estimate both k. and ET.. For example, sources such
as IrriSAT provide k. estimates at 30 m resolution using a linear model based on the
normalised difference vegetation index (NDVI) [33-36]. In similar studies, k. has been
estimated using several spectral/thermal indices such as NDVI and crop water stress index
(CWESI) [37-39]. Similarly, structural properties ,such as canopy size, canopy area, leaf area
index (LAI), and shaded area [40—43], have been utilised to estimate k.. Using multiview
stereo and structure-from-motion (SfM) techniques, UAV remote sensing can capture the
3D structure of the vegetation as well as the spectral bands [44,45]. Structural information
and spectral reflectance on their own were used to estimate k. from the aforementioned
studies; however, combining the spectral and structural information could present an
opportunity for the robust and precise estimation of k.. Moreover, UAV-based estimation
of k. is a novel concept for grapevines, which, in the future, could potentially be used in
lieu of field sampling.

In this paper, we present the UAV-based multispectral remote sensing technique for
spatial estimation of the k. of field-grown grapevines. Specifically, we combine the spectral
reflectance and structural features of the grapevine in various modelling frameworks to
provide an estimate of k.. A workflow for canopy-level remote sensing data extraction, as
well as modelling of k., is presented. Various predictive models (linear, non-linear and ma-
chine learning) are investigated for the canopy-specific estimation of k.. This fine-scale
canopy level k. measurement can be used to estimate the canopy scale or irrigation zone
level water requirements. k. maps, which can be used to determine the spatial irrigation
requirements, are generated by the best performing model for Cabernet Sauvignon at
Wynns Coonawarra Estate, Coonawarra, SA, Australia.
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2. Materials and Methods
2.1. Test Site

The test sites for this study are located in rural South Australia in the Coonawarra
region (see Figure 1). Coonawarra is known for its premium quality red grape/wine
attributed to the porous terrarossa soil, which generates moderate water stress [46,47]. The
Cabernet Sauvignon vineyard at the Wynns Coonawarra Estate (37°17'8.5"'S 140°49'37.9"E)
at Coonawarra, which was planted over 17.3 ha in 1988, was used in this study. Two
experimental blocks (each sized approximately 1 ha) were delineated at the two ends
of the 700 m long row of the vineyard, which was planted in the east-west orientation.
The grapevines had a bilateral cordon with a sprawling training system typical for the
area. Conventional vineyard floor, canopy management and integrated pest management
practices were conducted in this vineyard.

Adelaide
)

3
The wine region of

South Australia, Australia Coonawarra, SA, AUS The vineyard blocks used in this study

Figure 1. Two Cabernet Sauvignon vineyards at the Wynns Coonawarra Estate, Coonawarra, SA,
Australia used in this study of crop coefficient and irrigation requirements.

2.2. Scientific Payload for Remote Sensing

A hexacopter multirotor (DJI Matrice 600 Pro, Da-Jiang Innovations Science and
Technology Co., Ltd., Shenzhen, China) was deployed, which offered over 12 min of flight
time and over 5 kg of scientific payload capability. The UAV carried trifecta cameras
including a multispectral placed in a Gimbal (DJI Ronin, Da-Jiang Innovations Science
and Technology Co., Ltd., Shenzhen, China). The gimbal allowed a stable platform for
the cameras in order to acquire the images of the vines. The multispectral camera was
equipped with a global navigation satellite system antenna to assist with the georeferencing
and a downwelling light sensor (DLS) for reflectance calibration.

The RedEdge-MX captured five discrete images in blue, green, red, rededge and
near infrared electromagnetic regions with bandwidths of 20 nm, 20 nm, 10 nm, 10 nm
and 40 nm respectively. The bands had a centre wavelength of 475 nm, 560 nm, 668 nm,
717 nm and 840 nm, respectively. The camera had a field of view of 47.9 x 36.9 and
a focal length of 5.4 mm. Each of the five discrete charge-coupled device chips had
1280 x 960 pixels with a radiometric resolution of 14 bit. The aerial images, captured from
30 m altitude, resulted in ground coverage of approximately 26.7 m x 20.0 m with a spatial
resolution of 2.1 cm. This level of spatial detail is considered sufficient for single plant-level
data acquisition, which resulted in several thousand multispectral pixels representing a
single vine canopy.

A custom-built flexible solar panel (also known as ‘Paso Panel’), sized 30 cmx 150 cm,
was used for the ground sampling of k. following an empirical formula [40]. Canopy LAI
measurement was taken using an AccuPAR LP-80 Ceptometer (Meter Group, Inc., Pullman,
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WA, USA). Four greyscaled spectral panels were deployed during each flight to calibrate
the canopy reflectance.

2.3. Data Acquisition

This study is comprised of the UAV-based and ground-based data collected during
two grape growing seasons—2018/19 and 2019/20—and at five timepoints during the two
seasons. The acquisition timepoints included early- to late-season, which captured a wider
range of k. values. Early season data include acquisition at EL-19 (flowering, 2019/20),
and EL-31 (pea-size, 2019/20). The mid-season data were acquired around véraison at
EL-34 (onset of véraison, 2018/19) and EL-35 (véraison 2019/20). Similarly, late season
data were captured at EL-37 (pre-harvest, 2018/19) [48].

2.3.1. Aerial Data Acquisition

The UAV flight planning and multispectral image acquisition protocol were fixed
for the entire two seasons of the field campaign. The UAV was flown at a height of 30 m
above the ground at a speed of 3 ms~! and in a regular mapping pattern flight, while the
camera captured a multispectral image (5 band discrete images) every second. The flight
parameter and camera setting together resulted in over 80% forward and side overlap,
which is necessary for SfM processing [49,50].

Four greyscaled spectral panels (white, light-grey, dark-grey and black) were devel-
oped using a combination of barium sulphate and white paint [51]. These panels were
deployed during each flight for atmospheric correction and reflectance calibration purposes.
The MicaSence calibration panel and DLS were not utilised for four reasons: (a) the user
manual recommended that the sampling method of the calibration panel was not feasible
for the heavy UAV used in this study [52]; (b) the DLS without a cosine corrector could
have directional variation [53,54]; (c) the use of four greyscaled spectral panels instead
of one allowed more control during the empirical line correction; and (d) capturing the
reflectance data of both plants and spectral panels from the same altitude potentially better
corrected the atmospheric effects.

2.3.2. Reference Ground Data Acquisition

The ground reference data included the in-field k. measurement using the Paso
Panel. The Paso Panel measured the output current at full sun and when placed under
the canopy. During the measurement, the panel was placed orthogonally to the cordon,
approximately 10-15 cm from the ground. The final adjustment was made to make sure
that the panel was level, that the vine shadow was approximately in the middle of the panel,
and that no shadow was cast to the panel from the crew. For each vine, two under-vine
measurements were made, one on each cordon. After measuring every four vines, the full
sun measurement was repeated to accommodate for any changes in incident solar radiation.
The k. was computed analytically using Equation (1) [40].

L I
=17x L1--=-)-0. 1
ke XWr( Is) 0.008, (1)

where L, is the length of the Paso Panel, W, is the row spacing, I; and I; are the current
readings made under full sun and the canopy shade, respectively.

Thirty-two ground references were measured at both ends of the vineyard per time-
point (Figure 2). Note that this dataset is a part of a bigger irrigation trial. The irrigation
trial tested several irrigation strategies using environmental, soil and plant-based sensors
to schedule irrigation. The average seasonal irrigation for the block was approximately
0.5 ML ha~! for the vine density of 1700 vines ha™!. In the trial, the investigated irrigation
strategies were limited to specific rows, resulting in the ground sampling vines for this
k. study being limited to specific rows throughout the season. Lacking the spatial distri-
bution presented a risk of ground-based k. values being clustered within a tight range.
However, a wide range of k. values was observed due to the distribution of sampling
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timepoints (early-, mid- and late-season), multiple seasons, and the different irrigation
treatment-induced physiological responses.

LTS R e
7 “’"”"‘mm;mp
BB

Figure 2. The ground data are sampled from 64 vines (32 on the east and 32 on the west end) of the
vineyard (east end shown) per timepoint (EL-31 shown). Highlighted are the measurement vines
that were measured throughout the two seasons.

2.4. Data Processing
2.4.1. Extraction of Canopy Level Data

The multispectral images were mosaicked using standard SfM workflow in Agisoft
Metashape (Agisoft LLC, St. Petersburg, Russia) Professional Version 1.6.2. The products
generated using the software included the digital elevation model (DEM), the digital
surface model (DSM) and the orthomosaic, all expressed in projected coordinate frame
MGA zone 54 (EPSG:28354). The temporal orthomosaics were processed using a custom-
developed Python script routine that performed the radiometric/atmospheric calibration,
masking, and data extraction from all individual canopies.

The radiometric/atmospheric calibration of the temporal orthomosaics was performed
with respect to the reflectance of the four greyscaled spectral panels that were deployed
during each flight (Figure 3). Using the reflectance of the four panels at five bands, the or-
thomosaics were converted to the reflectance by empirical line correction [55,56]. As the
four greyscaled panels were used regularly in the field condition, the panels could degrade
due to repeated handling, hence the panels were also calibrated regularly. The four panels
were calibrated twice each season at the start and at the end (e.g., before budburst and
after harvest) using an ASD HandHeld 2 spectroradiometer (Malvern Panalytical Ltd.,
Malvern, UK) and a calibrated Spectralon. The HandHeld 2 acquired the spectral signature
of the panels within the spectral range of 325-1075 nm with a spectral resolution of 3 nm.
The sampled spectral profile of the four panels was resampled using a Gaussian model to
match the wavelength centre and wavelength bandwidth of the RedEdge-MX sensor.
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Figure 3. The four greyscaled spectral panels (a) were calibrated twice each season—Dbefore the start
and after the end of the season. The reflectance curve (b) shows the sample reflectance of the four
panels acquired using the ASD handheld spectroradiometer and the calibrated spectralon.

A canopy height mask and a normalised difference vegetation index (NDVI) mask

were generated for each timepoint to mask out the non-canopy pixels including the inter-

row, wooden post, and so forth. The canopy height mask was created by offsetting the
DEM and DSM and applying a global threshold of 0.7 m (average height of the canopies
was 1.7 m). The NDVI mask was created by computing the NDVI and a global threshold of
0.3 (average NDVI of the canopies was 0.6). The combination of the two masks effectively
removed the inter-row vegetation, background soil and wooden posts, as well as diseased
vines with significantly smaller canopies. Using the macrostructure information of the
vineyard (i.e., vine spacing and row spacing), a spatial grid was created using QGIS version
3.16.2 and was approximately aligned with the vines—effectively placing a single canopy
within each polygon of the grid. Each polygon of the grid was separated with a buffer of
20 cm to limit the crossover of the canopy to the adjacent polygon. Using the buffered and
aligned grid over the masked orthomosaic, pure canopy data were extracted from every
single vine and written in the attribute table. The extracted data included the mean spectral
reflectance as well as canopy pixel count and height. Using the total pixels within a canopy,
various structural information was derived including canopy area (c_area), canopy width,
and canopy fraction cover within the ground area per vine (row spacing x vine spacing).
Using the reflectance of five bands, several spectral indices were computed. This structural
information and the spectral indices were then exported as a CSV file (see Figure 4).

Agisoft Metashape + Python script Python script

Multispectral images
NDVI mask

StM Orthomosaic Reflectance
A = e
> L‘ Atmospheric = = ::"-‘*&{i:
Agisoft — . = s
8 Metashape correction :‘%,
DEM > Canopy height mask
—t—.
P e
% Int
nter-row
m 7] removal
%
== l
=
Pure canopy

QGls Spatial grid

g Zonal Statistics

Vine data
(includes structural properties and Vls of each vine)

Figure 4. The workflow developed to process the UAV-based images and extract the canopy-specific

structural information and spectral indices.
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2.4.2. Spectral and Structural Feature Selection

This study incorporated numerous spectral features computed using the blue, green,
red, rededge and near infrared bands (e.g., indices available at [57-60]), structural features
(e.g., available at [44,61]) and canopy fraction cover [62], as well as a number of cus-
tom/adopted features (e.g., cummulative NDVI, canopy width, canopy area and canopy
volume above cordon). A correlation analysis of each spectral and structural feature
was performed with respect to the ground measured k. for all the timepoints combined.
The features that revealed no significant (Pearson test, p-value > 0.05) correlation with
k. were discarded for the modelling. Furthermore, the features with a high degree of
collinearity (correlation coefficient > 0.95) were refined to select only one with the highest
significance or correlation coefficient. These two steps of feature filtering eliminated most
of the spectral/structural features that were initially computed for consideration. The fea-
tures retained after the two elimination processes were taken as an input for developing k.
prediction models (see Table 1).

Table 1. The list of spectral and structural features retained after the feature filtering processes, i.e., the removal of non-

significant and highly collinear features. Note: R, G, and NIR represent the spectral bands red, green and near infrared,

respectively. n and r represent the number of pure-canopy pixels and the spatial resolution of the pixels, respectively.

Indices Abbreviation Formula Reference
Greenness index GI % [58,59]
Normalised difference vegetation index NDVI %fﬁ;ﬁ [60,63]
Visible-band difference vegetation index VDVI % [64,65]
Enhanced NDVI #2 ENDVI2 AR modified [66,67]
Enhanced NDVI #3 ENDVI3 N modified [66,67]
Plant height p_height DEM-DSM [44,61]
Cumulative NDVI cum_NDVI Y NDVI

Canopy top-view area c_area nxr

2.4.3. Modelling

Within the five timepoints of the two seasons, a total of 320 datapoints were acquired,
which included remotely sensed spectral /structural features and the corresponding ground-
reference k.. Outliers in the dataset were investigated and removed using Cook’s distance
(2/n), which reduced the number of datapoints to 231 [68,69]. The spectral/structural
features synthesised in Table 1 were used to develop predictive models of k.. The training
and testing datasets were split randomly in the ratio of 3:1 (173 training and 58 testing
datapoints). Using the training dataset and the leave-one-out cross-validation, k. prediction
models were developed. This leave-one-out approach of fit-control recursively develops
a model and validates on one random datapoint until all the datapoints are used for
validation [70]. Various models, such as the simple linear model (SLM), generalised
linear model (GLM), generalised additive model (GAM), neural network model (NNM)
and random forest model (RFM) were developed using the caret package in R programming
languages (Version 4.0.4, RStudio Version 1.4.1106) [71-73]. The final refined model was
tested on the testing dataset (58 datapoints). The model performance was evaluated using
indicators including R squared (R?), Root Mean Square Error (RMSE) and mean absolute
error (MAE).

3. Results

The grape growing season in the Coonawarra region starts relatively late with bud-
burst in late October, reaching flowering approximately in December, pea-sized berries in
January, véraison in February and harvest in April. The cumulative growing degree days
for the two seasons are computed by integrating the local weather station data (Australian
Government, Bureau of Meteorology, weather station number 026091, Coonawarra, SA,
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Australia) starting from the budbrust up to the grape harvest (see Figure 5). The field
data acquisition timepoints (3 timepoints in the 2018/19 season and 2 timepoints in the
2019/20 season) and the corresponding phenological stage of the grapevine are shown in
the figure. In comparison, the 2019/20 season was cooler with fewer heatwaves and less
extreme temperatures.

1500

——2018/19 season ===2019/20 season

1200

EL-35 (post-veraison)
2020-02-24

-7 | EL-37 (pre-harvest)
,If{ 2019-03-20
900

EL-31 (Pea size)

Cumulative growing degree days (Celsius)

2020-01-06 . EL-34 (Veraison onset)
4 2019-02-15
600
EL- 19 (flowering)
2019-12-09
300
0
1 22 43 64 85 106 127 148 169 190

Number of days after budburst

Figure 5. The cumulative growing degree days for the Cabernet Sauvignon at the Wynns Coonawarra
Estate, Coonawarra for the two seasons, 2018/19 and 2019/20. The data acquisition stages for both
seasons are shown.

The evolution of k¢, along with the most significant spectral /structural features, are
presented in Figure 6. The displayed features had the highest significance and correlation
coefficient with k.. The seasonal k. values followed the pattern, which was noted physically
and observed in the canopy LAI measurements, of rapid canopy growth until the véraison
and stability after that. The k. started at a mean value of 0.48 at the start of the season
and steadily increased to a mean value of 0.67 by the end of the season. The trends of
NDVI and ENDVI2 appear to be less sensitive to canopy growth, while the c_area was
the most sensitive, particularly in the early season between fruit set and pea-sized berries.
Between the pea size and véraison, all of the remote sensing temporal trends do not appear
to reflect the k. trend. Post véraison, all the indices show a strong agreement with each other
and reflect little to no changes in canopy development/growth. The decrease in spectral
indices post véraison may be reflecting the depletion of nitrogen in the vine, including
the leaves [74,75]. The seasonal evolution graph suggests that either the c_area alone or
a combination of c_area and spectral features could be the best predictors of k. at any
timepoint. The best performing model for each timepoint could incorporate the timepoint
specific data. However, this study assesses a holistic model to reduce the timepoint specific
bias due to the small sample size, as well as to provide a robust predictor that is not limited
by the growth stage of the plant.

Among various spectral indices and structural parameters (not listed exclusively
here), few of the features were selected for modelling purposes following the removal
of non-significant as well as collinear features. The correlogram in Figure 7 shows the
selected indices, their statistical significance and correlation coefficients with the response
variable, k.. The c_area had the strongest correlation with k. (highly significant and highest
correlation coefficient). Composite feature cumulative NDVI and spectral features NDVI
ENDVI2 were the second-tier features showing a strong correlation with k., while other
features, such as the greenness index (GI), ENDVI3, visible-band difference vegetation
index (VDVI) and plant height (p_height), had a weak but significant correlation.
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Figure 6. Seasonal evolution of the k. along with the highly correlated and statistically significant

spectral features, represented in the primary y-axis and canopy area (c_area) represented in the

second y-axis. The shaded band on the seasonal evolution plot represents the +1¢ around the mean.
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Figure 7. Correlogram showing the scatter plot, correlation coefficient values and statistical signifi-
cance (Pearson test: p-value < 0.05 as *, p-value < 0.01 as **, and p-value < 0.001 as ***) between the
selected features (spectral and structural) and the crop coefficient.

To develop k. models, the dataset (231 datapoints) was split into training and testing
on a ratio of 3:1. The training dataset was used to train the model while the testing
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dataset was used to access the performance accuracy. The leave-one-out cross-validation
approach ensured that a large number of datapoints (172) were available for each of the
model generations. The best univariate indicator of k. was the c_area, which performed
with reasonable accuracy (R% = 0.295, RMSE = 0.091, MAE = 0.076). Multidimensional
regression using all the features substantially improved the prediction accuracy (e.g., GLM)
with improved AIC (SLM AIC: —340.0, GLM AIC: —411.7). Further improvement in the
prediction was achieved using non-linear-multidimensional models (e.g., GAM with AIC of
—461.7) and machine learning models such as CNN (a 8-5-1 network with 51 weights) and
REM (ntree = 500, mtry = 3). While all the multidimensional models investigated used the
same input features (listed in Table 1, the features that ended up being important in all the
models were significantly different. For example, the REM, which performed the best, had
c_area as the most important feature whereas the CNN, which used cum_NDV]I, performed
relatively poorly. In addition to the leave-one-out, a k-fold cross-validation approach was
tested, which resulted in a similar trend in the model accuracy—RFM performing the best

of all the models evaluated in this study (see Table 2).

Table 2. Accuracy of various models used to predict the k. using leave-one-out fit-control. Note the accuracy metrics were
derived by applying the model to the unseen testing dataset. Note: AIC in the table heading is an abbreviation of the Akaike

information criterion.

Most Influential Features

Models R? RMSE MAE AIC
Generalised linear 0.528 0.074 0.061 —411.7 GI
Generalised additive 0.594 0.069 0.055 —461.7 c_area
Convolutional neural network 0.619 0.072 0.060 na cum_NDVI
0.675 0.062 0.047 na c_area

Random forest

The simple linear model provided the most straightforward model while the RFM
provided the most accurate model for estimating k.. The RFM model was used to further
predict spatial k. values at the vineyard scale at two key phenological stages of the vine
(Figure 8). Using the estimated k. values, along with the weather data (temperature,
humidity, wind speed), the spatial irrigation requirements of the vineyard were computed

on a per vine basis.
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Figure 8. The map of estimated k. values and at the early season ((left) pane, flowering stage, EL-19)

and late season ((right) pane, post véraison, EL-35) of Cabernet Sauvignon.

4. Discussion

There exist differences in mesoclimate between different sites and within the site
receiving uniform irrigation. For instance, the two sites used in this study received uniform
irrigation despite highly variable soil depth. This variability presents a significant challenge
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for irrigation management that could be partly overcome by adopting high-resolution
data capture. A significant advantage of UAV remote sensing in precision irrigation is the
unprecedented spatial details that can reveal spatial variability within a vineyard receiving
uniform irrigation. This detailed (canopy-specific) level of information is, however, not fully
exploitable, that is, canopy-specific irrigation management is not practicable. The current
irrigation management technology in vineyards generally has a fixed infrastructure, which
makes the spatial control of the irrigation unfeasible or costly to incorporate. A potential
benefit could lie in the improvement of the zoning of the vineyards such that zones
receiving uniform irrigation have reduced spatial variability [76]. Using spatial clustering,
irrigation zones can be set to minimise spatial variability whilst still maintaining economic
viability [77].

The k. is an evolving parameter that changes together with the development stage of
the crop, canopy cover and architecture, and transpiration [10,40]. As such, different crops
with different management practices will have a unique evolution of water requirements
and k. values throughout the various phenological stages [31,43,78]. Even for a single crop,
such as a grapevine, a single k. value may lead to over- or under-irrigation depending on
the time of the year. This has numerous implications for management. The availability
of a time series of k. maps will allow spatially explicit parameterisation of models for
irrigation management and this will facilitate improved realism in models (see [7] for a
recent review of models). Spatio-temporal estimates of k. will help with implementing
regulated deficit irrigation (RDI). A typical RDI regime necessitates a minimum of two
timepoints of k. values. The temporal evolution of k. seems to follow the thermal time
(GDD) graph; however, it requires further temporally-intensive data at multiple seasons
for verification. Such co-evolution of k. and GDD, if established, could require only a few
timepoints of k. determination that can be extrapolated temporally based on the evolution
of the thermal GDD.

This research could have limitations due to the study of just two seasons of data and
the lack of spatial distribution of ground reference. Two seasons of data were considered
sufficient as the investigated vines were mature and were managed using set management
practices, which resulted in minimal seasonality effect on the canopy structure and ar-
chitecture. However, there could still be some underlying seasonal variability requiring
further data acquisition. The spatial distribution of the ground reference was set by a
larger irrigation treatment study, which this research was a part of. The ground reference
measurement vines were selected based on the physiology of the plant from set rows to
minimise the inter-vine variability and to construct the irrigation system. As a result, only
the selected vines that were located in certain rows were measured. However, despite this
lack of spatial distribution, our dataset captured a wide extent of k. measurement values,
predominantly due to the data acquisition at early-, mid-, and late-season, as well as due to
the application of various irrigation treatments. Moreover, the UAV-estimated range of k.
values was equivalent to the ground-observed range of k. values.

The k. is generally measured on the ground from several representative samples
within each irrigation zone. This approach, however, does not capture the entire variability
within a field and the selection of samples can be subjective to the user. UAV-based
observation of the entire irrigation zone could provide a more unbiased and holistic view
of the vineyard. Moreover, the UAV-based k. estimation incorporates measurements from
the entire canopy while the k. measured on the ground using the Paso Panel incorporates
a section of the canopy. For instance, we sampled k. values once from each side of the
cordon. This sampling strategy is equivalent to the incorporation of 0.6 m out of 2.1 m of
the canopy cordon. As a result, the ground sampling is computed by observing less than
30% of the canopy foliage while the aerial sampling incorporates the entire canopy foliage.
Hence, some errors associated with the UAV-based modelling of k. could also be attributed
to the Paso Panel acquired ground data. The UAV-based k. values could, therefore, be
more robust than is expressed in the model performance results (Table 2).
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Preliminary economic calculations based on Australian standards, and excluding the
Research and Development cost, revealed that the UAV-based approach could be profitable
for the industry in the long run. Measuring on a small scale (e.g., 1 ha vineyard), the Paso
Panel approach costs approximately AU$20/vine/season considering the measurement
of 50 vines from the 1 ha at six timepoints throughout the season. The UAV-based ap-
proach costs approximately AU$5/vine/season considering the initial capital investment
and the measurement of 2000 vines from 1 ha at six timepoints. When considering a
larger vineyard, for example, 20 ha, the UAV-based approach was substantially cheaper
(AU$0.45/vine/season) while the Paso Panel approach cost remained approximately the
same. The total cost of the UAV-based approach was substantially high in the first year;
however, it becomes progressively cheaper on a per-vine-per-season basis. In subsequent
years, both the UAV and Paso Panel approaches had approximately similar year-on-year
running costs. Hence, following the initial capital investment in the UAV and multispectral
camera, the industry will be able to measure every vine by spending a similar amount as
on the Paso Panel based approach. However, a detailed cost-benefit analysis in this regard
is needed to establish a complete understanding of the costs associated with the adaptation
of this technology and its benefits, both short- and long-term.

For non-horticultural homogenous field crops, the satellite-based estimation of k. is
very reliable [30,31,38]. Complexity in the horticultural setting specifically due to inter-row
bare/vegetated areas reduces the estimation accuracies. In vineyards, R? of 0.177 and 0.426
was achieved using satellite-based SAR and NDVI images, respectively [79]. In a ground-
based study of a vineyard, [43] showed a linear relationship between the ground-based LAI
and the ground-based k. in Cabernet Sauvignon with an R? of 0.66. In a similar study, [40]
estimated the k. of the Thompson Seedless table grape as a function of leaf area per vine
(R? = 0.87), LAI (R? = 0.87) and shaded area (R? = 0.95). The higher estimation accuracy
with the table grape canopies can be attributed to the overhead trellis systems as compared
to the VSP trellis with the wine grapes [43]. Our study of k. on sprawling Cabernet
Sauvignon wine grapes is comparable to the ground-based study presented in [43]. Using
UAV remote sensing, our study presented the capability of remotely measuring k. with a
similar accuracy to that of the ground-based measurements (R? = 0.675). This capability
combined with the benefits of remote sensing in terms of efficiently and inexpensively
sampling a much larger area (several hectares) could increase the use of UAV in lieu of
field sampling.

The k. in vineyards is highly variable and can be influenced by vine management
practices, soil depth, rooting systems and vine training systems, among other factors.
While there are k. maps freely accessible to growers, these maps will require a site-, region-,
and crop-specific ground calibration to establish their usability [30,33]. Using a UAV-based
approach, the most practical solution from a grower’s perspective could be with the use
of a simple RGB camera on an autonomous UAV to compute the c_area as a proxy of
k.. Using just the c_area as an input, k. was estimated, in this study, with an R? of 0.295,
an RMSE of 0.091, and an MAE of 0.076. Given the improved level of autonomy of the
UAUVs and the increased efficiencies via data processing pipelines, estimating irrigation
requirements at multiple timepoints of the season could be within reach for growers using
a UAV-based RGB camera. This will improve the precision of the irrigation by computing
spatially explicit irrigation requirements for each vine as well as for the entire irrigation
zone. However, for the most accurate quantitative estimation, growers could consider
sophisticated models such as GLM, GAM or machine learning.

5. Conclusions

In this article, we demonstrated the application of an unmanned aircraft system to esti-
mating the crop coefficient and subsequent irrigation requirements of vineyards. The spec-
tral indices were highly correlated to k. until the véraison timepoint. After véraison,
the correlation between the spectral indices and k. value started to diverge. The structural
features presented the highest correlation coefficient and statistical significance with k. val-
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ues throughout the season. Combining both the spectral reflectance and structural features
of the grapevine provided a robust estimation of k. for both early as well as late in the
season. Incorporating k. values with an energy balance model can provide an estimate of
the irrigation requirements at different phenological stages. Preliminary economic analysis
revealed that the proposed UAV-based method was the most cost effective and quickest
method for estimating the k. and subsequent crop water needs per vine. With the continued
development of UAV and battery technology, we envision the increased use of UAV remote
sensing for the estimation of irrigation requirements in both small and large vineyards.
Future research directions could include irrigation thresholding and automated triggering
based on the measured crop water needs and the monitoring of vines and their physiology.
While ET. provided a basis for evidence-based irrigation, more precise control of grapevine
irrigation needs could require the use of plant-based sensors such as microtensiometers.
A combination of both ET- and plant-based sensors could be a way forward to potentially
maximise water use efficiency on a fine to a large scale.
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