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Abstract: Falling snow alters its own microwave signatures when it begins to accumulate on the
ground, making retrieval of snowfall challenging. This paper investigates the effects of snow-cover
depth and cloud liquid water content on microwave signatures of terrestrial snowfall using reanalysis
data and multi-annual observations by the Global Precipitation Measurement (GPM) core satellite
with particular emphasis on the 89 and 166 GHz channels. It is found that over shallow snow
cover (snow water equivalent (SWE) ≤ 100 kg m−2) and low values of cloud liquid water path
(LWP 100–150 g m−2), the scattering of light snowfall (intensities ≤ 0.5 mm h−1) is detectable only
at frequency 166 GHz, while for higher snowfall rates, the signal can also be detected at 89 GHz.
However, when SWE exceeds 200 kg m−2 and the LWP is greater than 100–150 g m−2, the emission
from the increased liquid water content in snowing clouds becomes the only surrogate microwave
signal of snowfall that is stronger at frequency 89 than 166 GHz. The results also reveal that over high
latitudes above 60°N where the SWE is greater than 200 kg m−2 and LWP is lower than 100–150 g m−2,
the snowfall microwave signal could not be detected with GPM without considering a priori data
about SWE and LWP. Our findings provide quantitative insights for improving retrieval of snowfall
in particular over snow-covered terrain.

Keywords: snowfall retrieval; snow water equivalent; cloud liquid water; emissivity; brightness
temperature; passive microwave; GPM

1. Introduction

Passive microwave (PMW) retrieval of snowfall is one of the most challenging com-
ponents of precipitation monitoring from space, with the largest error in precipitation
retrieval often related to snowfall [1–6] over snow cover [7]. Snowfall emission is almost
negligible due to the low dielectric constant of ice particles, especially over emissive land
surfaces. Falling snow and ice particles scatter the upwelling surface radiation at high
microwave frequencies and thus decrease the observed brightness temperatures (Tb) at the
top of the atmosphere. This radiometric signal, however, is much weaker than the overland
rainfall scattering [8–10] and can be significantly masked due to the confounding effects of
increased cloud liquid water path (LWP) during snowfall and reduced surface emissivity
as a result of snow accumulation on the ground.

Snow particles have complex and variable nonspherical shapes and bulk densities. The
size distribution of snowfall particles depends on numerous factors, including temperature,
pressure, and the level of water vapor path (WVP) supersaturation at different vertical layers
of the atmosphere [11–15]. The nonspherical snow particles usually have lower densities than
raindrops with equal mass, which causes them to exhibit weaker scattering [9,10,16].
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Radiative transfer modeling shows that this weak scattering becomes detectable at
frequencies above 80 GHz and reaches its maximum at frequencies 150 to 166 GHz [17,18].
However, in snowy clouds thermal emission from the presence of supercooled liquid
water content can mask the already weak snowfall signal even at these high-frequency
channels [19]. The warming effects of the liquid water emission in the mixed-phase clouds
may even exceed the cooling effects of snowfall scattering [20] and completely mask the
snowfall signal [21,22], which adds to the complexity of (light) snowfall retrievals.

The presence of snow cover on the ground is another challenge in detecting the snow-
fall scattering signal. Snow cover is a relatively strong scatterer at microwave frequencies
above 20 GHz [23,24], and this scattering increases monotonically with frequency up to
100 GHz [25]. Increased scattering reduces the surface emissivity depending on physical
and microphysical properties of snowpack such as depth, density, wetness and the distri-
bution of grain size [24,26,27], which vary in response to the snow metamorphism [28–31].
A thicker and denser snowpack often scatters the upwelling surface emission more, espe-
cially when snow ages and develops larger and denser particles [23,27,32,33]. In addition,
radiometric properties of snow cover are very sensitive to its liquid water content. For
a very small amount of liquid water content of around 2%, the absorption dominates
scattering and turns the snowpack to almost a blackbody radiator [34]. The combination of
the explained radiometric processes has two important consequences, which add to the
complexity of PMW snowfall retrievals. First, there is a likelihood that the snow cover and
snowfall microwave signatures become very similar [2,35,36]. Second, the low emissivity
of dry snow cover can significantly weaken the already weak snowfall scattering [6,37–39]
or vanish it completely.

Radiative transfer modeling of both snowfall and snow-cover has large complexity
under diverse environmental conditions over land with large variability over temporal and
spatial scales and requires many input parameters [40]. Most radiative transfer modeling
has been conducted assuming that the snowfall particles are spherical [1,15], and single
scattering theories can approximate their scattering. The discrete-dipole approximation
is also used to account for the nonspherical shape of snowfall ice particles [41,42]. Nev-
ertheless, snowfall radiative transfer models can often account only for a limited number
of snowfall particle shapes [43,44] and lack the ability to properly address bulk scattering
of a snowfall profile throughout the atmospheric column [45]. Additionally, modeling of
the emission signal of the supercooled liquid water content in snowing clouds is still not
well parameterized, especially at frequencies above 31 GHz [15,46]. Using the Rayleigh
approximation in the absence of precipitation for water droplets larger than 0.2 mm, the
authors of [47] calculated the microwave absorption of supercooled liquid water at 21 and
31 GHz and found that this absorption strongly depends on cloud temperatures. Thus,
the resulting absorption derived from common dielectric models significantly deviates
during the snowfall at temperatures below 270 K mainly due to poor representations of
the primary relaxation frequency of water.

The snow cover scattering below 100 GHz can be explained by the Born approximation
approach [48], which partially accounts for the near-field radiation produced by adjacent
snow grains, using the low-frequency practical media theory [49]. More recently, in order
to extend the range to larger particles and higher-frequencies, Grody [27] proposed the use
of a quasi-crystalline approximation to bridge the gap between small- and large-size snow
grains. However, the radiative transfer modeling of snow cover effects is not conducted
for frequencies above 150 GHz [30] in which the primary snowfall retrieval bands are
located in the PMW spectra. The uncertainty of this high-frequency approximation is
often quite larger than that at lower frequencies because the optical parameters of snow
cover become less frequency-dependent and saturated as the particle diameter approaches
the wavelength.

Clearly, complexities of radiative transfer modeling are amplified when it comes to
modeling snowfall over snow cover, accounting for the presence of cloud liquid water
content, where there is significant heterogeneity in the characterization of the initial and
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boundary conditions at a global scale. The Global Precipitation Measurement (GPM)
Mission PMW observations can help to unpack these relatively unknown radiometric
interactions and to provide some important insights into PMW snowfall retrievals. A recent
empirical study conducted by [38] using coincidental CloudSat and GPM observations
found that cloud liquid water emission increases the brightness temperatures up to 10 K
at 166 GHz and usually even more at 89 GHz. In addition to these interesting findings,
previous studies have not considered the synergistic effect of atmospheric LWP and surface-
accumulated Snow Water Equivalent (SWE) on the snowfall signal.

The goal of this paper is to quantify the radiometric effects of snow cover and cloud
liquid water content on the microwave signatures of snowfall at high-frequency channels,
largely focusing on observations from the GPM core satellite. The findings of this paper
push the understanding of the land-atmospheric effects one step further, investigating the
conditions in which the passive radiometric signal of snowfall is affected by surface and
atmospheric components and thus cannot be detected without considering a priori data
about SWE and LWP and quantifying their contributions. In particular, the following main
questions are addressed:

• What are the scattering contributions of snowfall and snow cover on the observed Tbs
for different snowfall intensities and SWE?

• Why, when, where and to what extent can the liquid water content of clouds mask the
snowfall signals over snow-covered surfaces?

• Under which boundary conditions can the snow cover obscure the snowfall signatures?
• Are there any particular conditions that completely mask the snowfall PMW signal?

To answer the above questions, we extract and isolate the contributions of snowfall
scattering, snow cover scattering, and LWP emission in observed Tbs as a function of
snowfall rate (sr), LWP, and SWE. To that end, we rely on multi-year coincident GMI [7]
and DPR data [50], as well as ancillary information of SWE, LWP, and temperature. As
previously noted, we mostly focus on the high-frequency channels at 89 and 166 GHz that
are critical for snowfall retrieval.

Section 2 describes the products and data used for the analyses. Section 3 discusses
the observed climatology of SWE, LWP, surface, and atmospheric temperature using their
marginal and spatial distributions at different snowfall rates. By removing atmospheric
effects, Section 4 quantifies the clear-sky microwave emissivity of the snow-covered surfaces
as a function of SWE. In Section 5, we add the effects of LWP emissions, and finally, in
Section 6, we complete the radiative budget by adding the snowfall component. Discussion
and conclusions are presented in Sections 7 and 8.

2. Data and Products

The GPM core observatory, launched in 2014, carries the dual-frequency precipitation
radar (DPR) and the GPM GMI, allowing for active and passive, colocated in space and
time, observations [51,52]. Snowfall events and their radiometric signatures were extracted
using the level-2 precipitation phase data from the GPM DPR product (2ADPR-V06) at the
normal-sensitivity (NS) scan [53] and the calibrated GPM microwave imager (GMI) Tbs
(1C-R GMI V05) [7]. Total precipitable water (TPW) is also from the GPM active microwave
product (2ADPR-V06). The PMW measurements are from the GMI with 13 channels rang-
ing from 10 to 183 GHz. In the DPR product, both Ka- and Ku-band (35.5 and 13.6 GHz,
respectively) radar reflectivity values were used to estimate the precipitation rate to reduce
the uncertainty of single band retrievals. The combination of active and passive observa-
tions provides a unique opportunity to understand unknown radiometric properties of
solid precipitation [54] over snow-covered surfaces at frequencies above 100 GHz. The sur-
face temperature (Tskin), 2-m temperature (T2m), the cloud LWP, vapor water paths (VWP),
and ice water path (IWP) were all obtained from the Modern-Era Retrospective analysis
for Research and Applications version 2 (MERRA-2) [55]. The average air temperature,
also derived from the DPR atmospheric state environmental ancillary information (2AD-
PRENV), comes originally from the Japan Meteorological Agency (JMA) Global ANALysis



Remote Sens. 2021, 13, 2641 4 of 19

(GANAL). This temperature is the average air temperature from 0 to 20 km at a 250-m
resolution and will be called Tair, hereafter in this paper. The extent of snow-covered
surfaces was determined from the Interactive Multisensor Snow and Ice Mapping System
(IMS) at 1 km spatial resolution [56], while SWE was obtained from the hourly MERRA-2
product [57] [M2T1NXLND] at a 0.625° × 0.5° spatial resolution. All data and variables
used/calculated in this study, their units, and sources are listed in Table 1.

Table 1. Abbreviations, data, and products.

Variable Symbol Unit Source

89 GHz brightness temperature Tb89 K 1C-R GMI V05 satellite observation product
166 GHz brightness temperature Tb166 K 1C-R GMI V05 satellite observation product
183 ± 3 GHz brightness temperature Tb183±3 K 1C-R GMI V05 satellite observation product
183 ± 7 GHz brightness temperature Tb183±7 K 1C-R GMI V05 satellite observation product
Snowfall rate sr mm h−1 2ADPR-V06 satellite observation product
Total precipitable water vertically
integrated on 0–20 km TPW kg m−2 2ADPR-V06 satellite observation product

Skin temperature Tskin K MERRA-2 reanalysis
2-m temperature T2m K MERRA-2 reanalysis
Snow cover extent IMS Dimensionless United States National Ice Center
Snow water equivalent on the ground SWE kg m−2 MERRA-2 reanalysis
Cloud liquid water path LWP g m−2 MERRA-2 reanalysis
Ice water path IWP g m−2 MERRA-2 reanalysis
Water vapor path WVP g m−2 MERRA-2 reanalysis
Air temperature averaged on 0–20 km Tair K GANAL analysis
Clear sky land emissivity εs dimensionless εs =

Tbs

Tskin
Cloud liquid water emissivity εlwp dimensionless εlwp =

Tbobs − εs Tskin
Tair

Total atmospheric emissivity εa dimensionless εa = εsr + εlwp

In this paper, we only focus on events over dry snow cover, where both Tskin and
T2m are below 0 °C. Surface is considered as snow-covered when the IMS binary product
indicates snow cover and the SWE from MERRA-2 reanalysis is greater than zero. We
considered data from January 2015 to December 2020 over the Northern Hemisphere (NH)
land surfaces. MERRA-2 data were linearly interpolated onto the scanning time of the GPM
overpasses and re-gridded onto the DPR grid using the nearest neighbor interpolation.
In the explained methodology, no information is lost at the expense of some redundancy
in the coincident data. The binary snow-covered/no snow-covered IMS 1-km data was
converted to 4-km binary snow-cover data using nearest neighbor (to find the IMS pixels
in each 4 km by a 4-km 2ADPR grid) and the majority vote rule (>50%).

3. North Hemisphere Climatology of Snow Cover and Cloud Liquid Water

The radiometric signal of snowfall, snow cover, and cloud LWP are tightly intertwined
at high microwave frequencies (≥89 GHz). The snowflakes and snow cover grains both
scatter the upwelling surface emission (cooling effect), while the cloud LWP content adds to
this emission (warming effect). An increase in SWE leads to an increased scattering volume
of the snow cover and thus to a decrease of the surface emissivity and observed Tbs. An
increased scattering of snowing clouds should further decrease the Tbs, especially for high
snowfall rates. The snowfall scattering, however, becomes relatively less significant at larger
SWE values because of a reduced background emission, which adds to the complexities of
snowfall retrievals.

3.1. Marginal and Spatial Distribution of Snow Cover in Terms of Snow Water Equivalent

To unravel the effects of SWE and LWP on the quality of snowfall retrievals, we
first need to investigate the frequency distribution of these variables. Figure 1a shows
the positively skewed marginal probability distribution function (PDF) of SWE over the
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NH. The median and the mean are 41 and ∼74 kg m−2 , respectively. The histogram
is color coded to show the mean Tskin for each 25 kg m−2 SWE interval. SWE values
between 30–300 kg m−2 show colder temperatures than the tail segments, with the lowest
temperature occurring at about 75–100 kg m−2 . Figure 1a also shows that these SWE
values with the lowest temperature on average occur at latitudes 54–57°N. It is calculated
by averaging latitudes associated with the SWE data that fall into each of the SWE bins. To
understand the reasons for the Tskin behavior, we look into the maps of the SWE annual
probability of occurrence and the corresponding mean Tskin shown in Figure 1c–h. It is
worth noting that here the mean refers to the entire NH in the histogram in each SWE bin,
while it refers to the single grid box (1-deg resolution) in the maps.
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Figure 1. Marginal probability distribution function (PDF) of multi-year Snow Water Equivalent
(SWE in kg m−2) and Tskin (in degree K) dependency (a), NH topographic map (b), SWE spatial
probability of occurrence (p) (c–e), and Tskin (f–h) at 1 deg resolution for three SWE intervals in
kg m−2. Note the color scale in (a,b) indicates the average Tskin (K) for each SWE bin and the elevation
(m), respectively. Note that the y-axis in (a) is logarithmic.
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SWE values between 0–40 kg m−2 (Figure 1c) are consistently displayed over land
surfaces that are likely to receive snowfall (>30°N). The highest probability of occurrence is
over the High Mountain Asia and southern Siberian Plateau, where Tskin is visibly colder
than the surrounding areas (<265 K, Figure 1f). However, the area with colder Tskin (green
area in Figure 1f) with a high occurrence frequency of 0–40 kg m−2 SWE values (red area in
Figure 1c) is much smaller than the warmer Tskin regions (orange and red areas in Figure 1f).
Therefore, despite its higher probability of occurrence, the latter dominates the Tskin mean
values, and we see a relatively high Tskin in the SWE PDF for low SWE values (0–40 kg m−2)
in Figure 1a.

The intermediate SWE values (40–100 kg m−2, Figure 1d) are spread mostly over
higher latitudes (>45°N) that are likely to receive higher snowfall amounts throughout the
year. The most frequent values are over cold surfaces (Tskin < 250 K ), clustered over central
Canada in the vicinity of the southwest coasts of the Hudson Bay and eastern area of the
Central Siberian Plateau. Cold temperatures of these highly frequent regions in this case
dominate the climatology of the SWE values and explain the observed Tskin depressions
for SWE values of 40–100 kg m−2 in the marginal SWE distribution in Figure 1a.

Finally, SWE values greater than 100 kg m−2 are more frequent over latitudes above
56°N (Figure 1a), especially over the Pacific Coast Ranges of northern British Columbia,
North East Canada, Ural Mountains, Kjolen Mountains of Norway, and Verkhoyansk
Range in the Russian Far East (Figure 1e), where the mean Tskin varies between 250–260 K
(Figure 1h). High values of SWE usually occur during late winter/early spring due to
snow accumulation when the temperature begins to increase, justifying the slightly higher
mean Tskin compared to the 40–100 kg m−2 SWE interval. This higher mean temperature
concurrent with larger SWE values (>100 kg m−2) over Pacific Coast Ranges and the Ural
Mountains can weaken or mask the expected incremental increase in the scattering signal
of snow cover in these regions.

3.2. Marginal and Spatial Distribution of Cloud Liquid Water

The parameterization of the cloud liquid water content over the snow-covered land
surface requires an accurate characterization of the sub-grid distribution of thermodynamic
variables such as cloud phase, cloud type, cloud vertical structure, precipitation occurrence,
and geolocation. To this end, we investigate the marginal PDF and the spatial distribution
of the multi-year LWP with respect to the snowfall occurrence as well as snowfall rate (sr)
over dry snow-covered areas (defined as snow cover where both Tskin and T2m are below
zero). The distribution of LWP as a function of Tair and sr is presented in Figure 2. Similar
to Figure 1, the mean refers to the entire NH in the histograms in each LWP bin, while it
refers to the single grid box in the maps.

Figure 2a–c shows the histogram of the LWP values corresponding to the orbit-level
DPR observations using nearest-neighbor interpolation to match the 2ADPR-V06 resolution.
The colors in the histograms shown in Figure 2a,b represent the multi-year average of Tair
for each LWP bin size of 14.2 g m−2. For non-precipitating clouds (sr= 0, Figure 2a) and
over dry snow cover—when the cold weather regime usually dominates—the PDF of LWP
has a large positive skewness (γ = 1.91). This significantly skewed distribution indicates a
high probability of occurrence of supercooled liquid clouds containing low LWP values.
The mean and standard deviation are 36 g m−2 and 46 g m−2, respectively. In the snowing
atmosphere (sr > 0, Figure 2b), the PDF skewness decreases to γ = 0.08 and the mean
increases to ∼140 g m−2, indicating the existence of a larger amount of supercooled liquid
droplets in clouds.

During snowfall events, the most frequent values of LWP are around 140–160 g m−2,
while the occurrence probability of extremely low LWP values (<20 g m−2) is below 0.0015
(Figure 2b). Larger values of LWP occur more frequently at warmer air temperatures as the
moisture holding capacity of the atmosphere is higher and more ice water can turn into
liquid [58]. However, the increasing rate of LWP with temperature is not constant. This is
because different values of LWP occur at different vertical heights. The database developed
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by Kubota et al. [59] using the global cloud system resolving model for the GPM/DPR
algorithm revealed that over land, the LWP increases with precipitation. Our analysis
in Figure 2c confirms the evolution of the LWP probability distribution as a function of
the snowfall rate. The PDFs become less skewed and wider as the mean moves from
80 g m−2 (sr = 0–0.5 mm h−1, blue curve) to 200 g m−2 (sr = 4–8 mm h−1, black curve).
Furthermore, we observe that for sr > 2 mm h−1 , the LWP distribution does not change or
shift noticeably.

Figure 2. The effects of different overland snowfall rates (sr) on frequency and spatial distribution
of cloud LWP over the NH: probability distribution functions of LWP for sr = 0 (a), sr > 0 (b)
and 0 < sr < 8 mm h−1 (c); spatial distribution of the mean LWP (d–f), and the Tair (g–i) for non-
precipitating (d,g), 0 < sr ≤ 0.5 mm h−1 (e,h) and sr ≥ 1 (f,i). The histograms are color coded to
represent corresponding mean Tair temperatures. Note that the color represents the multi-year
average of Tair for each LWP bin (in the top row), the multi-year gridded average of LWP (second
row), and the multi-year gridded average of Tair (bottom row).

To understand the spatial variations of LWP from non-snowing to snowing atmo-
spheres, we stratified our dataset based on different snowfall intensities. Figure 2 shows
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the spatial pattern of mean LWP (d–f) and Tair (g–i) for three different scenarios: sr = 0 (no
snowfall), 0 < sr ≤ 0.5 mm h−1 (about 40 percentile), and sr ≥ 1 mm h−1 (95 percentile)—
over dry snow cover. The average LWP and its corresponding Tair increase with the increase
of sr. This is because the predominant snowfall–temperature relationship is positive at
mid- to high-latitudinal regions during the cold-weather regime in winter [60]. The snow-
fall warming feedback significantly increases the Tair over North America, Siberia, and
East Asia where colder temperatures were observed in the absence of precipitation, while
temperatures at lower latitudes remain almost unchanged (Figure 2g–i). Figure 2 also
shows that the rate of increase in both LWP and Tair with snowfall rate is not uniform
over the entire NH. The increase of Tair specifically is observed over the Siberian plateau
and northern Canada. The increase of LWP over these regions concurrently occurs with
an increase of atmospheric temperature, both of which increase the emissivity and could
significantly mask the Tb response to the increase in snowfall scattering.

3.3. Radiometric Effects of Snow Cover and Cloud Liquid Water on GPM Brightness Temperature

To understand the effects of the observed complex climatology of snow cover, tem-
perature, LWP, and morphology of snow cover grain on GPM brightness temperatures,
the averages of high-frequency Tbs are calculated as a function of SWE at different LWP
values. Figure 3 shows the average NH Tbs as a function of SWE and cloud LWP in the
absence of precipitation. For brevity, we focus on the vertical polarization (V-pol) channels
as the response pattern is similar in the horizontally polarized (H-pol) ones (not shown
here). We would expect a monotone decrease in the snow cover emissivity pattern as the
SWE increases for frequencies below 100 GHz [23,24,48]. However, results show that Tb
values do not monotonically decrease and there is a clear inversion in the Tb spectra. As
shown in Figure 3, Tb values approach a minimum at around 70–100 kg m−2 and begin
to increase for SWE > 120 kg m−2 . This anomalous spectra was previously observed
in SSM/I frequency channels at 19, 37, and 85 GHz [30] and explained as a radiometric
response of the snowpack to its crystalline structure changes when the mean grain size
increases [27]. Among the GMI channels, both the 89 and 166 GHz ones are almost equally
sensitive to the increase of SWE, while the 183 GHz is the least sensitive, because of the
atmospheric water vapor emission. On average, for a 1 kg m−2 increase in SWE, the Tb
decreases about 0.5 K at 89 and 166 GHz, 0.2 K at 183 ± 3 GHz, and 0.4 K at 183 ± 7 GHz. It
is worth noting that the observed anomaly follows the climatology of Tskin for different
SWE values (Figure 3f). The snow cover metamorphic changes on grain size and the snow
cover temperature climatology are not independent; therefore, the observed scattering
signal is a response to both seasonal and spatial variations of snow cover emissivity and
Tskin, as shown in Figure 1.

Since the crystalline structure of the snow pack is a function of its metamorphic
changes, the observed anomaly shows a seasonal dependence. The Tb seasonal dependence
here is calculated by averaging the time stamp of Tb values at each SWE bin. Figure 3
shows that the maximum snow cover scattering occurs during the early winter. As the
Tskin and the snow mean grain size increase toward the late spring, the scattering signal
begins to decay even though the SWE continues to increase. It is important to note that this
seasonal pattern impacts the quality of snowfall microwave retrievals. In particular, since
strong snow cover scattering can weaken the snowfall signal, we expect larger uncertainties
on PMW snowfall retrievals on early winter when the snow cover is fresh and the SWE is
less than 100 kg m−2.

The analysis also shows warmer Tbs for increasing frequencies which is in contradic-
tion with the known surface emissivity spectra of snow cover [23]. Within the analyzed
range of SWE (0–400 kg m−2), the 166 GHz channel is more than 5 K warmer than the
89 GHz one, while the overall expectation is that the high-frequency channels must be
colder due to stronger snow cover scattering [23,24,48]. This inverted spectrum was ob-
served in lower frequency channels of the SSM/I sensor and is known to be due to the
formation of a dense layer of snow crust [30]. Hewison and English [61] also argue that this
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phenomenon could be due to the mean behavior of the snow cover temperature profile,
which is often colder at the bottom layers.

Figure 3. GMI high-frequency average Tb at channels 89V (a), 166V (b), 183 ± 3 (c), and 183 ± 7 GHz
(d) as well as the comparison between the Tb values at 89 and 166 GHz (e) and average Tskin (f). All
Tbs are for non-precipitating scenes. Furthermore, the time at the top of the TB curves is the average
time of the year corresponding to the average calculated SWE value.

Finally, an increase of cloud LWP can completely mask the scattering effects of snow
cover. This masking effect is shown in Figure 3 as we see the curves are flatter for higher
LWP (moving from blue to red lines). This is expected because of the climatology of LWP
and Tair observed in Figure 2, e.g., larger values of LWP occur at warmer Tair, on average.
Figure 3a–d shows that for LWP > 150 g m−2 , there is almost no response to changes on
SWE. Moreover, the SWE value associated with the maximum scattering (Tb minimum)
increases as the cloud LWP increases. The reason could be while the maximum snow cover
scattering occurs in early winter (Oct–Dec) over dry snow, the emission of cloud liquid
water is stronger from mid to late winter (Jan–Mar) [62]. This is attributed to the fact that the
temperature begins to gradually increase from mid to late winter. This masking effect is also
frequency-dependent. In particular, when the scattering signal of snow cover is maximum,
the Tb89 GHz increases about 5 K more than the Tb166 GHz in response to an increase of
200 g m−2 in cloud LWP. We also observe that the difference between the channel spectra
shrinks for high (200 kg m−2) and low (2.5 kg m−2) values of LWP (Figure 3e)—revealing
the nonlinear effects of LWP on snow cover high-frequency signatures.
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Now that we have discussed and showed the complex radiometric effects of SWE and
LWP climatology and snow-cover grain morphology on the GPM brightness temperatures,
the question is how we can isolate these correlated effects on the Tb signal of snowfall in
order to improve snowfall passive retrieval from GPM frequency channels. We approach
this by calculating emissivity in the following sections.

4. The Snow Cover Emissivity under Clear Sky

The microwave signal reaching the top of the atmosphere is the combination of the
surface signal and the atmospheric contributions. If the atmospheric contribution becomes
small enough to be ignored, we can easily calculate the surface emissivity (εs) as follows,
as also used by [63,64] and evaluated by [65]:

εs =
Tbs

Tskin
(1)

where Tbs is the brightness temperature observed at the top of the atmosphere in clear-sky
conditions, and thus, it accounts only for snow-cover land. To minimize the atmospheric
contribution, we only consider clear-sky observations with zero LWP, zero IWP, and zero
precipitation. The atmospheric WVP is still present and thus might affect εs in the 183.3 ± 3
and 183.3 ± 7 GHz channels [41] but can be ignored for other frequencies. Figure 4 shows
the emissivity of snow-covered surfaces calculated for clear-sky as a function (Equation (1))
of SWE for GMI high-frequency channels (89 V, H, 166 V, H, 183.3 ± 3, and 183.3 ± 7 GHz).
Overall, the clear-sky surface emissivity of H-pol is about 0.01 less than the V-pol one.
In addition, the calculated clear-sky emissivity of the low-frequency channels 10.6, 18.7,
23.8 and 36.5 GHz, shown in Figure A1 (Appendix A), are very similar to what previous
emissivity studies found [23,66].

Figure 4a,b shows that for SWE values smaller than ∼100 kg m−2 , the sensitivity of
the surface emissivity to the SWE increase is larger at 89 GHz compared to 166 GHz. This
trend is reversed for SWE ≥ 100 kg m−2 , with the 89 GHz emissivity reaching a plateau
at around 0.83 for H-Pol and 0.86 for V-Pol. This indicates that the emissivity at channel
166 GHz provides a better response to a full dynamic range of SWE with a consistent εs
decrease, while at 89 GHz, it saturates at SWE ∼100 kg m−2 thus almost becoming blind
to any further increase in SWE. We expect that this blindness of channel 89 GHz to SWE
mostly occurs over the Pacific Coast Ranges of northern British Columbia, North East
Canada, Ural Mountains, Kjolen Mountains of Norway, and Verkhoyansk range in Russian
Far East (Figure 1e) during Jan–May (Figure 3).

The variation of εs at water vapor channels (183.3 ± 3 and 183.3 ± 7 GHz) is very
small (∼0.015) and strongly anti-correlated with the variations of the atmospheric WVP
(Figure 4f). This is obviously due to the effects of the WVP in the atmosphere masking the
surface contribution. Therefore, hereafter in this paper, we only focus on the high-frequency
window channels (89 V, H and 166 V, H GHz).

Our key observations on emissivity change rates in response to the increase in snow
depth are summarized over the dry snow-covered surfaces after removing atmospheric
contributions: (1) for SWE less than 10 kg m−2 , the decreasing rate of emissivity at 89 GHz
exceeds that at 166 GHz and on the contrary, (2) for SWE greater than 100 kg m−2 , the snow
cover emissivity decays at a much higher rate at 166 GHz compared to 89 GHz. Although
the 89 GHz emissivity of the surface covered with dry snowpack reaches a plateau for
SWE ≥ 100 kg m−2 , it remains significantly lower than the non-plateaued emissivity at
166 GHz. This low emissivity can better capture the emission signal of snowfall, which we
analyze in the next two sections.
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Figure 4. Clear-sky emissivity with snow water equivalent at GPM high-frequency channels (89 H
and 166 H (a), 89 V and 166 V (b), 183 ± 3 (d), and 183 ± 7 (e)), the emissivity differences of V-pol
and H-pol at 89 and 166 GHz frequencies (c), and the corresponding WVP (f). Note that the total
cloud liquid water path, integrated total precipitable water, and ice water path in the column of
atmosphere and the near-surface precipitation are all zeros based on the data from both MERRA-2
model simulations and the DPR ancillary database (2ADPR-ENV).

5. Effects of Cloud Liquid Water Emission on Snow Cover Emissivity

Tb values at high-frequency channels may increase during snowfall events if clouds
contain some liquid or supercooled water, which could completely mute the scattering
contribution of snowfall [6,22,38,67,68]. Therefore, it is crucial to quantify the mixing effects
of SWE scattering and thermal emission of LWP on the snowfall signal. We calculate the
emissivity for different combinations of SWE and LWP in the absence of precipitation. We
compute the emissivity due to the LWP emission, assuming that the observed Tb (Tbobs)
is the sum of the clear-sky Tb (Tbs = εs·Tskin from Equation (1)) and the Tb due to the
atmospheric LWP (Tblwp) as:

Tbobs = Tbs + Tblwp

Tbobs = εsTskin + εlwpTair
(2)

where εlwp is the emissivity due to the cloud liquid water, εs is the snow-cover emissivity
under clear sky, and Tair is the air temperature. Therefore, the emissivity due to the LWP
emission can be calculated as follows, according to Equation (2):

εlwp =
Tbobs − εs Tskin

Tair
(3)
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The calculated εlwp by Equation (3) are presented in Figure 5. Here, εs is calculated
for each SWE value using the regressed relationships shown in Figure 4 computed from
Equation (1).
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Figure 5. The atmosphere emissivity due to the cloud liquid water path (εlwp) against the snow cover
water equivalent (SWE) at GPM high-frequency channels 89 V GHz (a) and 166 V GHz (b). The lines
represent the best fit for each LWP interval shown in the colorbar.

The increase of LWP (from bottom to top curves) increases the atmospheric emissivity,
and this variation can be significantly better captured at 89 than 166 GHz (Figure 5). This
is because the 89 GHz clear sky emissivity (Figure 4a,b) is lower than the 166 GHz one,
which allows the 89 GHz channel to have a more pronounced response when adding
the emission contribution of LWP over SWE compared to channel 166 GHz. However,
Figure 5a shows that this contribution progressively decreases and becomes very small
(∼0.005) for LWP ≥ 200 g m−2. These large values of LWP as observed in Figure 2d occur
mostly over the Appalachian Mountains, the west coast of British Columbia, Alaska, and
Northern Europe. On the contrary, at channel 166 GHz, the LWP emissivity contribution
shows a noticeable increase (∼0.03) only for LWP values up to about 100 g m−2, while for
higher values, LWP needs to increase significantly to show a similar emissivity response
(Figure 5b). This observation is very critical for snowfall detection since the LWP, as
observed in Figure 2c, largely increases during snowfall events. Moreover, larger emission
contributions from clouds could mask the variations of surface emissivity caused by
different snow cover scattering, particularly at the 166 GHz channel. We see both channels
respond better to the scattering of snow cover for SWE values less than 100 kg m−2. This
is obvious in Figure 5 as lines are steeper for LWP when SWE is less than ∼100 kg m−2.
Similar findings for WVP were also revealed by [18] about the water vapor increase in
the column of the atmosphere that could mask the variations of radiometric response to
surface temperature at frequencies ≥ 89 GHz.

6. The Interactions of Snowfall Scattering with Snow Cover and Cloud Liquid Water

Now that the SWE and LWP emissivities are quantified, the snowfall scattering signal
can be isolated as follows:
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Tbobs = Tbs + Tba

Tbobs = εsTskin + εaTair

εa = εsr + εlwp

(4)

where Tba and εa are the atmospheric brightness temperature and atmospheric emissivity,
respectively. Furthermore, recall that Tbs from Equation (1) is the Tb at the top of the
atmosphere at clear-sky, which only accounts for snow-cover emissivity.

The calculated εa from Equation (4) is shown in Figure 6. It is worth noting that when
sr = 0, εa and εlwp are equal. The difference between emissivities in Figure 6 for sr = 0 and
sr > 0 shows the snowfall scattering contribution reducing the εa as all of the curves have
almost equal amount of liquid water content (150–200 g m−2). This LWP interval is selected
based on its high probability of occurrence shown in Figure 2 to ensure an adequate sample
size in each SWE interval (20 kg m−2) and snowfall rate interval of 0 < sr ≤ 0.5, 0.5 < sr ≤ 1,
and 1 < sr ≤ 4 mm h−1. The reason we did not go beyond sr = 4 mm h−1 is that the sample
size significantly reduced due to the lack of enough heavy snowfall events in each LWP
and SWE interval.

0 100 200 300 400
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0.15
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Figure 6. Atmospheric emissivity, (εa) for different snowfall rate intervals over dry snow cover for
LWP = 150–200 g m−2 at GPM high-frequency channels 89 GHz (a) and 166 GHz (b). Note that the
dark gray curve is associated with sr = 0 mm h−1, which is the exact same curve (solid dark gray
with yellow markers) in Figure 5. It is shown here again for making easier comparisons of εa when
sr > 0 and εlwp.

The results in Figure 6 show that for SWE values close to zero and the same amount
of LWP, the snowfall signal with intensity 0–0.5 mm h−1 reduces the εa at 89 GHz by about
27% (from 0.11, grey line to 0.08, red line—Figure 6a) and at 166 GHz by ∼38% (from 0.09,
grey curve to 0.055, red curve—Figure 6b). At 89 GHz, this decrease in emissivity due
to snowfall scattering decreases with SWE, with a gap of about 0.015 (∼18%) for SWE
∼200 kg m−2 and less than 0.005 (∼3%) for SWE greater than 400 kg m−2 (Figure 6a). As
illustrated in Figure 4, for the clear sky emissivity at the 89 GHz channel when the snow
depth increases on the ground, the land surface emissivity becomes relatively small (0.83)
and reaches a plateau. Therefore, the small snowfall scattering cannot reduce the emissivity
any further. However, the snowfall with sr 1 < sr ≤ 4 mm h−1 can further decrease the
emissivity by about 0.018 from 0.078 to 0.06 for SWE values of <40 kg m−2and from 0.03
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to about 0.01 at SWE values larger than 400 kg m−2 (the difference between red and blue
curves, Figure 6a).

For channel 166 GHz, Figure 6b shows that the snowfall scattering contribution (refers
to the emissivity decreases due to snowfall scattering) is almost the same as that of 89 GHz
when the intensity is small (27%, sr ≤ 0.5 mm h−1). However, channel 166 GHz responds
more strongly to the increase in snowfall rate showing clearly separated curves for different
sr intervals. The snowfall scattering contribution when 1 < sr ≤ 4 mm h−1 can further
decrease the emissivity by about 0.06 (difference between the red and blue curves ∼96%)
at channel 166 GHz compared with only 0.018 at channel 89 GHz (∼23%).

7. Discussion

By integrating the findings from Figures 5 and 6, we conclude that for small snowfall
intensities (≤0.5 mm h−1) over shallow snow cover (SWE < 100 kg m−2), LWP values
even as small as 0–50 g m−2 could increase the emissivity by 0.02–0.05 and thus, could
completely mask the scattering contribution of snowfall (∼0.05 as a difference between
εlwp and εa) at channel 89 GHz. Larger snowfall rates might only be captured at small
LWP values. The 166 GHz channel could still capture some snowfall scattering at SWE
values less than 100 kg m−2, defeating the emissivity increase of small liquid water content.
However, the snowfall scattering contribution is also masked at this channel when the
LWP becomes larger than 100–150 g m−2, which increases the emissivity by almost more
than about 0.07.

Over deeper snow cover with SWE larger than 100 kg m−2, the snow cover scat-
tering contribution becomes very significant and thus, alleviates the contribution from
the small intensities of snowfall scattering, making them no longer distinguishable from
the background emissivity at both 89 and 166 GHz channels. Larger snowfall intensities
(1–4 mm h−1 ) still decrease the background surface emissivity even over deep snow cover
with SWE ≥ 100 kg m−2 at the 89 GHz channel for LWP values up to 50–100 g m−2 but
are masked for larger LWP values. This is because the decrease in emissivity due to the
increased snowfall rate (Figure 6a) is lower than the increase in emissivity because of
the increased emission of LWP (Figure 5a). At 166 GHz, both SWE scattering and LWP
emission over deep snow-covered surfaces are relatively smaller than those at 89 GHz.
Therefore, the 166 GHz channel is more capable of capturing the snowfall scattering signal
with large intensities (sr > 1 mm h−1) for LWP values up to 100–150 g m−2.

For larger LWP values (∼>150 g m−2) over regions with SWE ≥ 100 kg m−2, it is
revealed that the snowfall signal could be captured by its emission signature—LWP increase
during snowfall events—instead of its scattering signature at channel 89 GHz. This is
because the surface emissivity at channel 89 GHz reaches a plateau value and remains
unchanged to further increases in SWE. Therefore, over regions with deep snow cover,
the 89 GHz channel could capture this emission signal of the snowy clouds for snowfall
detection. The challenging land-atmospheric situations for snowfall retrieval particularly
occur if there is not any scattering nor emission signal, which is when LWP > 100–150 g m−2

and SWE < 100 kg m−2.
In the present article, the relations between Tbs, snowfall, cloud liquid water with

emphasis on snow-covered regions were established as multi-year averages from four
years of colocated GPM and MERRA-2 reanalysis data. The immediate goal here was to in-
vestigate the challenging zones of snowfall retrieval over the snow cover at high-frequency
GPM channels regarding the confounding effects of these atmospheric constituents over
the snow-covered regions. However, at the daily or sub-daily time scales, large variability
around these multi-year averages is expected. When seeking to establish relationships at
these finer time scales, the temporal variability needs to be either handled as a stochastic
process or analyzed in relation to additional physical parameters, which have not been
taken into account in the present study (e.g., snow density and wetness, particle shape and
size distribution). Additionally, at fine time scales, significant variability is expected to be



Remote Sens. 2021, 13, 2641 15 of 19

related to errors and inaccuracies in the measured/estimated variables in both satellite
observations and reanalysis products.

For instantaneous precipitation retrievals, one should consider the use of the dynamic
surface emissivity database developed by [69] and evaluated in GPM retrieval by [70],
which implements the optimal estimation method with a forward model error covariance
matrix. Future research would benefit from using this dynamic land surface emissivity
database for further investigation of the findings of the present paper and for establishing
relationships between LWP, SWE, and snowfall at finer temporal scales.

The fact that GMI and the DPR are flying onboard the same platform allows for a
high number of colocated observations at all latitudes; however, we acknowledge potential
errors and inaccuracies in DPR measurements regarding light precipitation intensities. An
additional investigation, if it does not require high space-time coverage, should consider
measurements from CloudSat Cloud Profiling Radar (CPR), which is known to more
accurately capture low-intensity snowfall [71,72].

In this study, we only used total precipitable water to screen the clear-sky Tbs. This can
add some uncertainties regarding the calculated emissivities of LWP and snowfall. Future
research needs to investigate the effects of total precipitable water on the radiometric signal
during the snowfall events [73].

8. Conclusions

We analyzed snow cover effects on the snowfall radiometric signal under different
snow water equivalent and liquid water content of clouds, by considering the effect
of surface temperature variations, as well. To isolate the surface temperature thermal
emissivity, we first calculated the clear-sky emissivity. Then, we computed the contribution
of scattering and emission from the other mentioned land-atmospheric constituents directly
by comparing their emissivity with clear-sky snow cover emissivity. We found that the
channel 166 GHz could better capture the scattering signature of light snowfall events
because it responds less strongly to the increase of the cloud liquid water than the 89 GHz
channel. Larger snowfall events could be captured better at 89 GHz when both LWP and
SWE are small, while 166 GHz becomes more advantageous at capturing this scattering
when LWP increases up to about 100–150 g m−2. Over deeper snow-cover regions, and
particularly larger LWP values (≥100–150 g m−2), the scattering of snowfall, even with large
intensity, is masked by the comparable scattering contribution from the large accumulation
of snow cover and the emission from liquid water at both 89 and 166 GHz channels. At this
land-atmospheric condition, the snowfall dominant signature becomes its emission that can
be distinguished from the very low plateaued emissivity of the surface at channel 89 GHz.
We believe that a quantitative climatological assessment such as this presented herein can
provide useful information for improving passive microwave retrieval of snowfall and also
serve as diagnostics for interpreting the bias and uncertainty of current products.
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Figure A1. Clear-sky emissivity with snow water equivalent at GPM low-frequency channels (10.6,
18.7, and 36.5 GHz V, H) and the emissivity differences of V-pol and H-pol. Note that the total
cloud liquid water path, integrated total precipitable water, and ice water path in the column of the
atmosphere, and the near-surface precipitation are all zeros based on the data from both MERRA-2
model simulations and the DPR ancillary database (2ADPR-ENV).
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