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Abstract: We bring a practical and comprehensive GIS-based framework to utilize freely available
remotely sensed datasets to assess wildfire ignition probability and spreading capacities of vegetated
landscapes. The study area consists of the country-level scale of the Romanian territory, characterized
by a diversity of vegetated landscapes threatened by climate change. We utilize the Wildfire Ignition
Probability /Wildfire Spreading Capacity Index (WIPI/WSCI). WIPI/WSCI models rely on a multi-
criteria data mining procedure assessing the study area’s social, environmental, geophysical, and
fuel properties based on open access remotely sensed data. We utilized the Receiver Operating
Characteristic (ROC) analysis to weigh each indexing criterion’s impact factor and assess the model’s
overall sensitivity. Introducing ROC analysis at an earlier stage of the workflow elevated the final
Area Under the Curve (AUC) of WIPI from 0.705 to 0.778 and WSCI from 0.586 to 0.802. The modeling
results enable discussion on the vulnerability of protected areas and the exposure of man-made
structures to wildfire risk. Our study shows that within the wildland—urban interface of Bucharest’s
metropolitan area, there is a remarkable building stock of healthcare, residential and educational
functions, which are significantly exposed and vulnerable to wildfire spreading risk.

Keywords: climate change; disaster risk reduction; fuel; QGIS; remote sensing

1. Introduction

Climate change and global warming are expected to affect natural hazards like flood-
ing and wildfires worldwide. These may have multiplied domino effect consequences on
other natural and urban systems, leading to severe disasters at local scales [1-3]. While
the emergence of flooding events relies mainly on the weather conditions and the nat-
ural/artificial properties of the catchment area, wildfires implicate human behavioral
activities. The multifaceted character of the wildfire phenomena is acknowledged in the
literature. Chapin et al. [4] defined wildfire as a wicked problem. According to Levin
et al. [5], wildfires are multi-layered phenomena that implicate diverse interacting cycles
between causes and effects acting in certain territories. Identifying the relevant factors
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that significantly correlate with the wildfire regimes remains a critical challenge to scien-
tists [6-8].

In the classical wildfire assessment approach, the interaction of favorable hydrom-
eteorological conditions with the study area’s geophysical and vegetation properties is
considered the core prerequisite of the fire environment triangle, which consists of three
pillars: weather, topography, and fuel [9]. Lightning strikes are the primary natural ig-
niters [10]. However, most wildfires are reported to be caused by human activity, either
intentionally or accidentally [11]. Human activity patterns have become a determinant
during the wildfire ignition phase [12,13].

Mansuy et al. [14] contrast the anthropogenic factors to the macro-environmental
ones and report that the human footprint affects almost equal wildfire risk inside and
outside the North-American protected landscapes. The consequences of human activities
on fire regimes are reported to overshadow the effects of climate change significantly [15].
The effect of societal habits like the Daylight-Saving Time (DST) alterations have been
acknowledged to increase wildfire ignitions. For example, Kountouris [16] reports that DST
transition during the Spring season has increased the number of non-prescribed wildfire
ignitions by about 30% in the US, relying on around 2 million wildfire ignition of 23 years
records.

A more recent study presents also the impact of COVID-19 lockdown on the wildfire
regimes in a wildfire-prone region like the Mediterranean [3,17]. The authors report a
significant decrease in the total burned area during this period compared to the estimations
that counted for similar drought-related circumstances to previous years. The decrease
in social activities has resulted in a significant reduction of wildfire events. Thus, the
integration of anthropogenic factors within the wildfire risk assessment tools has become
indispensable to increase the models’ sensitivity [18].

The impact of anthropogenic factors on wildfire regimes has gained considerable atten-
tion in the literature. However, their combined usage alongside with hydrometeorological
and biophysical factors in wildfire spreading capacity models, is rarely present in the avail-
able published research. Unlike our previous studies [19,20], we introduced population
density as a new criterion within the wildfire ignition probability / wildfire spreading ca-
pacity index (WIPI/WSCI) model, considering that the current literature tightly correlates
to the population density and the wildfire ignition risk and frequency [21,22].

This study aims to develop a comprehensive and practical GIS-based model for as-
sessing the wildfire ignition and spread capacities based on freely available and remotely
sensed geospatial data. The proposed model is aimed to be reproducible to other vege-
tated surfaces where the remotely sensed data are available. Another goal is to test the
utility of the Receiver Operating Characteristic/ Area Under Curve (ROC/AUC) method in
weighting each criterion’s impact factor by comparing with the Analytic Hierarchy Process
(AHP), which is widely used in previous studies. Here we aim to deliver tangible graphical
(maps) and statistical results about the wildfire ignition and spread capacities in Romania,
supporting disaster risk reduction agendas nationwide.

2. Materials and Methods
2.1. Study Area

The study area is represented by Romania’s territory, a country located in the central-
eastern part of Europe with an area of 238,391 km? (Figure 1). Romania has a vast diversity
of landforms, each with representative forestry variation, including the Transylvanian
Depression located in the center of the Carpathian Mountains arc. This territory offers
proper conditions for the extension of various types of deciduous forests (i.e., with species
such as Carpinus betulus, Fagus sylvatica, Tillia tomentosa, Ulmus minor, Quercus petraea)
over large areas. The Romanian Carpathian Mountains (Carpathians) occupy 57% of the
country’s territory, where extensive forests are spread over large areas.

According to Romanian legislation, a forest is considered an area of at least 0.25
hectares of land occupied by forest vegetation. The mature specimens reach 5 m in height
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under normal vegetation conditions and have a coverage index (consistency) of more than
10% (0.1). These territories are added to the areas covered with junipers (Juniperus) in the
high mountain area of over 1800-2000 m in altitude and forest protection curtains with
more than 0.5 hectares and a width of more than 20 m. Forest protection curtains are
accepted crucial interventions in forest protection policy. They are projected to have a
significant protective effect on Romanian forest cover on the brink of climate change [23].
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Figure 1. Romania within Europe (a), and Romanian territory including Tree Cover Density (TCD) and transportation

network distribution (b).

At the territorial level of Romania, 29.9% of the surface is covered by different forests,
covering 7.13 million hectares [24]. Romania is one of the countries with the highest
percentage of occupied forest areas, with the latest estimates having a significant growth
rate (i.e., 19.3 million m3/ year for conifers, 19 million m3/ year for beech, 8.1 m3/ year for
quercinea, 8.6 million m?/year for hardwoods, and 3.4 million m?/year for softwoods), to
which are added old forests and virgin forests in different stages of conservation. Large
forest areas are predominantly in the mountainous and hilly areas and areas with lower
altitudes. There is a higher density of human settlements, a crucial aspect considering
the present study’s objectives. We have included further details about Romania’s forest
structure in Table Al (see Appendix A).

Changes over time in the areas covered by forest are under the direct impact of
natural factors such as the influence of climate change on the consistency and composition
of forests, the migration of forest species beyond known ecological limits, the negative
influence of floods with short return periods, the degradation of physical and chemical
properties of soils due to soil erosion, and vegetation fires with natural causes. Anthropic
changes are also present due to deforestation caused by logging, legal and illegal, whose
rate increased after 2000 [25,26] and contamination of soils and groundwater supplies [27].
However, some territories showed a forest gain due to the afforestation of large areas
of abandoned pastures [26]. Furthermore, the spatio-temporal evolution of forest cover
in Romania is tightly correlated with the forest management regimes affected by socio-
political fluctuations from the early 19th century [28].

2.2. WIPI/WSCI Model and the Current Updates

This study methodologically relies on the Wildfire Ignition Probability /Wildfire
Spreading Capacity Index (WIPI/WSCI). Initially, the method defines criteria that have
proven relation with either the wildfire occurrence or behavior. The number of crite-
ria varies according to the available data and the specifics of the study area. In this
study, we shortlisted 16 criteria about the anthropogenic (S-social), hydrometeorological
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(E-environmental), geophysical (P-physical), and fuel (F) properties of the study area (Ro-
mania) following our earlier GIS-based method [19]. Through a literature review and
evaluating the available open access geospatial data, we considered the following criteria:
population density (S1), distance to settlements (52), distance to transportation network
(53), distance to main roads (54), agriculture distance (S5), solar radiation (E1), precipita-
tion (E2), maximum temperature (E3), wind speed (E4), slope (P1), aspect (P2), altitude
(P3), distance to water sources (P4), fuel type (F1), Tree Cover Density (TCD) (F2), and
Normalized Difference Vegetation Index (NDVI) (F3).

The method starts by defining a regular grid of points. According to the inventory
phase results, there are 70,410 reference point locations within Romania’s vegetated surfaces.
The distance between points is 1 km, and each point represents a vegetated surface of 1 km?.
Each reference point location within the vegetated surface is loaded with unique absolute
values through a multi-criteria inventory procedure [19]. Each criterion’s relative weighted
factor was initially assigned via AHP pairwise comparison method. The sensitivity of the
model has been assessed via ROC/AUC method in another study focusing on the case of
Montenegro [29].

Figure 2 presents the methodical workflow of this study. It includes the updates that
we push forward as improvements of WIPI/WSCI, applied in Romania’s case. At this stage,
the workflow consists of seven sequential stages. Besides the inventory procedure, the
first stage includes defining the vegetated surfaces within the study area and the reference
points that spatially represent the vegetation surfaces. The reference points serve as data
collecting pivots loaded with all 16 criteria” unique values, as shown in Figure 2. Among a
regular points grid with a spatial distance of 1 km, we selected by location the points that
overlapped with the vegetated surfaces derived from CORINE Land Cover (CLC) data.
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Figure 2. Workflow showing the seven stages of the method.
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Following the inventory phase, the unequal range of inventory values necessitates
a normalizing procedure before indexing calculations. This stage equalizes the range
of inventory values of each criterion into a gradient between 0 and 1. The max/min
normalizing procedure is selected as it is accepted as the most suitable and straightforward
method for well-known sets of records [30].

The third stage consists of subgrouping the criteria into two sets according to their
relationship with either wildfire ignition or spreading (see Figure 2, third stage). This
division is based on a literature review shown in our earlier work [19]. Moreover, a
relevancy indicator is given to each criterion according to their direct or indirect relationship
with wildfire regimes. This is explained in detail in Table 1. The first three methodical
stages are borrowed from our previous studies.

Table 1. The weighted impact factors (WIPI and WSCI) of each criterion via AHP and ROC/AUC methods.

WIPI WSCI
rRoc/auc AV, amp Rroc  AYC L amp rRoc ~ AUC
Norm Norm Norm
El Solar radiation 0.823 0.110 + 0.032 0.823 0.110 + 0.011 0.823 0.103
E2 Precipitation 0.201 0.027 — 0.097 0.799 0.107 - 0.048 0.799 0.100
E3 Max. Temp. 0.811 0.109 + 0.032 0.811 0.108 + 0.022 0.811 0.101
E4 Wind speed 0.575 0.077 + 0.155 0.575 0.072
F1 Fuel type 0.593 0.080 + 0.056 0.593 0.079 + 0.033 0.593 0.074
F2 TCD 0.388 0.052 + 0.299 0.388 0.048
F3 NDVI 0.405 0.054 — 0.125 0.405 0.054 - 0.170 0.595 0.074
P1 Slope 0.278 0.037 + 0.033 0.278 0.035
P2 Aspect 0.511 0.069 + 0.049 0.511 0.068 + 0.013 0.511 0.064
P3 Altitude 0.192 0.026 - 0.016 0.808 0.108 - 0.006 0.808 0.101
P4 Dist. To water 0411 0.055 + 0.070 0.411 0.051
S1 Pop. density 0.501 0.067 + 0.026 0.501 0.067
S2 Dist. Settlements 0.381 0.051 - 0.076 0.619 0.083 + 0.017 0.381 0.048
S3 Dist. roads 0.551 0.074 - 0.140 0.449 0.060 + 0.006 0.551 0.069
5S4 Dist. main roads 0.477 0.064 - 0.045 0.523 0.070 + 0.047 0477 0.060
S5 Dist. agriculture 0.354 0.048 - 0.305 0.646 0.086

In the fourth stage, we propose ROC/AUC analysis (via SPSS software) as a weighting
method among criteria, besides the AHP pairwise comparison method. This relies on the
specific characteristics of the study area and historical data on fire regimes. Indexing values
are calculated as the sum of the products between inventory value and each criterion’s
impact factor, as shown in Equations (1) and (2). Inventory values of criteria are freely
accessible as explained in Data Availability Statement at the end of this article. Table 1
delivers the impact factors of criteria as calculated via AHP and ROC analysis.

WIPT=Y"" aC 1)

where WIPI is the normalized wildfire ignition probability index, C; is the inventory value
of criterion i, and a; is the weighted impact coefficient of criterion i.

WSCI =Y ", BiCj 2)

where WSCI is the normalized wildfire spreading capacity index, C; is the inventory value
of criterion j, and f; is the weighted impact coefficient of criterion j.

We compare the earlier model results (WIPI/WSCI) and the updated one (WIPI_ROC/
WSCI_ROC) as applied in Romania’s case. During the sixth stage, the ROC/AUC method
assesses both models’ accuracy, leading to a comparative discussion. At the final stage,
the WSCI_ROC model results are used in vulnerability assessment of protected areas and
exposure analysis of urbanized zones.
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2.3. Data Acquisition

This study depends on a variety of free access to remotely sensed geospatial data.
These data are acquired from various sources. We have included detailed information
in Table A2 (Appendix B), which presents the complete list of the data name, data type,
Minimum Mapping Unit (MMU), source, and utility within the method’s workflow. CLC
is a pan-European data provided by the European Environment Agency (EEA), which
delivers a hierarchical classification of 44 land cover types [31]. The original classification
method simultaneously relies on both the Sentinel-2 satellite imagery (i.e., the 1st dedicated
European satellite for land monitoring) and Landsat-8 images for gap-filling.

In this study, we rely on the CLC data of 2018 to gather geospatial information about
vegetation surfaces, settlements (52), fuel type (F1), and agricultural areas (S5). The precise
data extraction method regarding fuel type and the relative weighting is explained in our
previous work [20]. Land cover classes of vegetated surfaces were ranked according to
their relative implication with either wildfire ignition or spread. For example, broad-leaved
forests (CLC-311) lead the list of correlation with wildfire spreading capacity. EEA supplies
other data such as Digital Elevation Model (DEM) and Tree Cover Density (TCD). DEM is
delivering information about slope (P1), aspect (P2), and altitude (P3) in raster format of
25 m in resolution. The population density information is produced based on population
records at the smallest local administrative unit level, as shown in Figure A1 (Appendix B)
based on the data provided by the National Institute of Statistics of Romania. All maps
in this study are projected according to ETRS89/ETRS-LAEA (ESPG: 3035) projection
reference system in QGIS.

Normalized Difference Vegetation Index (NDVI) data is extracted from the Terra
Moderate Resolution Imaging Spectroradiometer (MODIS) Vegetation Indices (MOD13Q1)
Version 6. These data are produced in a resolution of 250 m by choosing the most reliable
pixel value among daily values within 16 days. The low percentage of cloud coverage, low
view angle, and the highest NDVI value are among the applied selection criteria [32,33].
In this study, we used the period between 28 July and 12 August within the fire season
of 2018.

Raster data about solar radiation (E1), precipitation (E2), maximum temperature (E3),
and wind speed (E4) are derived from WorldClim 2.0 database (http://www.worldclim.
com/version2, accessed on 3 June 2020). It consists of raster images of 30 s (1 km?)
resolution that provide monthly average values recorded between 1970 and 2000. These
products rely on an interpolation method using historical data collected by 60,000 weather
stations around the globe. Furthermore, remotely sensed data like maximum and minimum
land surface temperature and cloud cover, as obtained via the MODIS satellite platform,
were used as satellite-derived covariates for accuracy improvement [33]. Fick and Hijmans
provide further details about the production process of remotely sensed data via Google
Earth Engine in their previous work [34]. In this study, we use August’s average records as
the weather conditions for wildfire spread are highest. The remaining criteria, like distance
to water (P4) and transportation network (52 & S3), stand on Open Street map (OSM)
data enabled for free via the Geofabrik portal (https:/ /www.geofabrik.de, accessed on 27
December 2020).

Another crucial data set used in this study is the Burned Area (BA) products acquired
from Copernicus Climate Change Service (2019). They provide information about the total
BA at the pixel level (250 m). The results are prepared via reflectance change analysis of
medium resolution sensors like Terra MODIS, Sentinel-3 OLCI combined with the thermal
data by MODIS. These products are vital raw data for research that focus on themes
like climate change, land use and land cover dynamics, wildfire risk assessment, among
others [35]. MODIS products are the most widely used global dataset by the scientific
community [36-38].

According to the Burned Area Fraction (BAF) maps reported by Copernicus Climate
Change Service during the fire season between 2015 and 2019 (Figure 3), 1980 points
overlap with surfaces marking a cumulative BAF above 100%. In this study, this threshold
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is assigned considering that a cumulative BAF value above 100% (the sum of 5 years
records) is considered a high probability that a particular location experienced a fire during
the 5 years. Apart from BAF, we utilized the recorded large fires as derived from the EFFIS
database. The wildfire occurrence and size are recorded based on the MODIS burned area
product (MCD64A1) following the Globfire method [39]. MCD64A1 products use Terra
and Aqua satellite imagery, resulting in dependable identification of large fires in different
locations [40—42]. Nevertheless, Moreno-Ruiz et al. [43] conclude that there is still space
for further improvement in the MODIS sensor-based burned area detection algorithms.
Further details about the data used in this study are included in Table A2 (Appendix B).
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Figure 3. The burned surfaces in Romania (EFFIS, 2018-2019) and the burned area fraction (%). (Copernicus Climate
Change Service, 2015-2019).

3. Results
3.1. Multi-Criteria Inventory of Wildfire-Related Factors in Romania

First, the method delivers inventory results on an individual level per each criterion.
Figure 4 presents the relative wildfire proneness map of vegetated surfaces (Figure 4q) in
Romania based on each criterion. The color palette is set as the gradient of red-yellow-green,
where red shows the highest risk areas while green the least risk. The range of inventory
values are reclassified into 10 classes following Jenks natural break normalizing procedure.
The gradient direction is assigned according to the relative indicator, as explained in
Table 1. For example, criteria like solar radiation (E1) and precipitation (E2) are shown
under reversed color gradient. In other words, the highest solar radiation values indicate
the highest risk. In contrast, the highest precipitation records correlate with the lowest risk.



Remote Sens. 2021, 13,2737 8 of 25

Romanian Borders (] 1 [l

23

3@

4 [

s

6 [J

73

s [

0 100 200km o
B 10 B

Figure 4. The relative risk of each criterion: (a) solar radiation, (b) precipitation, (¢) maximum temperature, (d) wind speed,
(e) fuel type, (f) tree cover density, (g) NDVI, (h) slope, (i) aspect, (j) altitude, (k) distance to water, (1) distance to urban
centers, (m) distance to settlements, (n) distance to any road, (o) distance to main roads, (p) distance to agriculture, and

vegetated surfaces (q) in Romania.
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According to Figure 4, the Carpathians that cross the Romanian territory in the central
region from north to south-west direction stand as a determinant of the spatial distribution
of the relative risk for the majority of the criteria. First, the hydrometeorological criteria
visually correlate with the topography of the study area. Figure 4a shows that solar
radiation (E1) is higher at lower altitudes, especially in Carpathians” southeast, and lower
at high altitudes. Similarly, the recorded maximum temperatures (E3) are on the same line
as the altitude (P3) values presented in Figure 4j.

Wind speed (E4) is the only environmental criterion that is not tightly correlated
with altitude (Figure 4d). The slopes of Carpathians face south and southeast and remain
an exposed area to winds flowing from the Black Sea and the Mediterranean. Similarly,
the remaining plain territories in Romania’s south-eastern region facing the Black Sea
are exposed to considerable average wind speeds compared to the north-western plains
(Figure 4d). Among geophysical criteria, slope (P1) is the only criterion that correlates
with the altitude values (Figure 4h). Most of the sloped surfaces are found along with the
Carpathian’s layout; whereas the aspect (P2) values are more uniformly dispersed in the
territory (Figure 4i) and distance to water surfaces (P4) follows the spatial distribution of
water elements in the landscape (Figure 4k), independently to the altitude values.

The visual results discussed earlier are on the same line as the correlogram presented
in Figure 5. We performed a correlation analysis among all 16 criteria and BAF values for
70,410 point locations to determine which criteria correlate more with wildfire records of
2015-2019. We used the “corrplot” package in RStudio [44], to produce the correlogram. The
default calculation is based on the Pearson correlation method. The following correlogram
delivers both visual plotting and numerical evidence of the correlation coefficient of each
pair of criteria. The larger the circle and the darker the blue color, the higher the positive
correlation among criteria. Similarly, the larger the circle and the darker the red color, the
higher the inverse correlation among the two variables.
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Figure 5. Correlogram representing the correlation matrix analysis among 16 criteria and BAF for 70,410 points.
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On the other hand, the smaller the circle, the less the correlation between the two
variables. For example, there exists a significant positive correlation between precipitation
(E2) and altitude (P3) (0.84). Similarly, there exist significant negative correlations between
solar radiation/maximum temperature (E1/E3) and altitude (P3) (—0.81/—0.96). Cumula-
tive BAF values (monthly, 2015-2019) positively correlate highest to solar radiation (E1)
and maximum temperature (E3), respectively, 0.43 and 0.47; while they inversely correlate
highest to precipitation (E2) and altitude (P3), respectively, —0.43 and —0.44.

3.2. Calibrated Weighting of Criteria

We adopted the weighted factors as assigned via an AHP pairwise comparison method
from our previous study [20], as listed in Table 1. AHP was applied in two different levels
and was based on experts’ evaluation. First, we compared four major categories of criteria
(anthropogenic, hydrometeorological, geophysical, and fuel). Then we assigned a second
level coefficient to each criterion by comparing within each category. The current coefficient
is shown in Table 1 (AHP) and is the product of two coefficients. According to our previous
results, distance to agriculture (S5) is the criterion that has the highest impact on wildfire
ignition probability, almost one-third of all wildfire ignition coefficient distribution. On
the other hand, the criterion that affects the most wildfire spreading capacity of vegetated
surfaces is tree cover density (F2). Our previous study suggested that sensitivity analysis
via ROC/AUC method should be tested in assigning weights of the impact factors.

According to each criterion’s sensitivity analysis concerning the historical fire regimes,
the revised weighted impact factors are assigned. Figure 6 presents the ROC analysis
values per each criterion under four groups; hydro meteorological-environmental (E), fuel
(F), geophysical (P), and anthropogenic-social (S). The sensitivity analysis is performed in
SPSS software via the ROC analysis tool. One-thousand-nine-hundred-and-fifty-six points
out of 70,410 have a 5-year cumulative burned area fraction (2015-2019) value above 100%.
These points are considered positive samples in the ROC analysis procedure in finding
each criterion’s sensitivity. On the other hand, there are 41,683 points (about 60%) that
have a BAF value of 0, indicating the areas that have been safest during the fire season of
2015-2019.

The results presented in Figure 6 reveal the hypothetical models” sensitivity that has
a single determinant, being each criterion. It is a way to find the sensitivity of the model
to each criterion based on the burned area fraction in Romania (see Figure 3). According
to Figure 6, the highest AUC value belongs to E1 (solar radiation) and E3 (maximum
temperature), respectively, 0.823 and 0.811. While the lowest AUC values are recorded
for E2 (precipitation), P1 (slope), and P3 (altitude), respectively, 0.201, 0.278, and 0.192. In
principle, the lower the AUC value, the higher the inverse correlation between the criterion
and the wildfire recorded burned area fraction. The criteria that score an AUC value less
than 0.5 have an inverse correlation with the wildfire records. These results converge with
the correlation matrix analysis presented in Figure 5.
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Figure 6. ROC curve analyses for (a) hydrometeorological (E1l—solar radiation, E2—precipitation,
E3—maximum temperature, E4—wind speed), (b) fuel (F1—fuel type, F2—tree cover density, F3—
ndvi), (c) geophysical (P1—slope, P2—aspect, P3—altitude, P4—distance to water), and (d) an-
thropogenic/social (S1—population density, S2—distance to settlements, S3—distance to any road,
S4—distance to main roads) factors were relying on burned regime values.

The first two columns of Table 1 present the absolute and normalized AUC values
of all criteria. The following columns deliver each criterion’s relative impact factors as
calculated via AHP pairwise comparison and ROC/AUC analysis. Besides, each criterion
is assigned an indicator for either direct (+) or inverse (—) relation with the wildfire risk.
This indicator is assigned based on assumptions inferred from the literature review on the
relationship between wildfire regimes and driving factors [20]. For example, the higher the
solar radiation, maximum temperature, fuel type, and aspect values, the higher wildfire
ignition and spread probability. On the other side, the lower the precipitation, NDVI,
and altitude values, the higher the wildfire risk. Simultaneously, anthropogenic criteria
like distance to settlements and transportation networks are unevenly related to wildfire
ignition and spreading phases.

3.3. Comparing between WIPI/WSCI and WIPI_ROC/WSCI_ROC Results

We calculated the WIPI and WSCI index values of each reference point according to
Equations (1) and (2) using the weighted values via the AHP method. The results of the
ROC/AUC analysis show the relatively low sensitivity of the model. An accumulative BAF
record point higher than 100% (see Figure 3) was accepted as a positive case in the model.
According to Figure 7, the AUC of WIPI is 0.705 and has an overall model quality of 0.69.
It is significantly higher than the WSCI model sensitivity marking an AUC value of 0.587
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and an overall model quality of 0.57. It can be inferred that the model, which relies on the
weighted values calculated via AHP, is more accurate for predicting wildfire occurrence
events rather than the wildfire spreading process.

ROC Curve
Area Under the ROC Curve
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Figure 7. Sensitivity analysis of the WIPI and WSCI models based on burned surfaces (2015-2019) as
positive cases (1956 out of 70,410-point locations).

Later, we recalculated each reference point’s index values as the sum of the products
between normalized inventory value and the weighted factor via the ROC/AUC method
(Figure 2). The revised weights, as presented in Table 1, led to improved model sensitivity.
Figure 8 presents a comparative ROC/AUC analysis between the former WIPI/WSCI and
the revised WIPI_ROC/WSCI_ROC models.
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Figure 8. Comparative Sensitivity analysis: (a) between WIPI and WIPI_ROC models, and (b) between WSCI and
WSCI_ROC models.



Remote Sens. 2021, 13, 2737

13 of 25

48° N

46° N

22°E

The updated models’ curves are shown in green, while the previous versions are
red. According to Figure 8a, the AUC value of WIPI_ROC increased to 0.778, marking a
sensitivity increase of 0.073. The overall model quality of the WIPI model was improved
by 12% (from 0.69 to 0.77). The improvement is more visible in the case of the WSCI model
(Figure 8b). The revised model (WSCI_ROC) recorded an AUC value of 0.802, 37% higher
than the earlier version. A similar escalation is recognized in the overall model quality.
We rely on the WSCI_ROC results during the final stage of vulnerability and exposure
analysis.

Beyond statistical analysis about the model accuracy, the results of the WSCI_ROC
model deliver essential findings of the spatial distribution of the wildfire, spreading the
capacity risk of vegetated surfaces in Romania. According to Figure 9, the highest wildfire
spreading risk is concentrated in its eastern and southern regions. A secondary area
under wildfire spreading capacity risk is along the western borders. Simultaneously, the
central and the northern regions appear to be safer from wildfire, spreading the risk. These
regions coincide with the surfaces that are high in elevation and located away from human
activities. Among them, the sub-regions that record the lowest WSCI_ROC values are
surfaces that are oriented towards the northern direction and gaining a minimum of solar
radiation. The gradient of green color indicates these surfaces.
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Figure 9. Wildfire spreading capacity map of vegetated surfaces in Romania (WSCI_ROC) with the highlighted metropolitan

area of Ilfov.

Furthermore, Figure 9 includes the administrative boundaries of the third level (Clas-
sification of Territorial Units for Statistics, NUTS-L3) of Romania. Referring to the Eurostat
data, Romania has 42 local administrative units at the third level. According to the results
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presented in Figure 9, 41 units consist of at least 1 km? of vegetated surface that has been
indexed here. The only unit that has no wildland vegetated surface is the capital city of
Romania. As highlighted in Figure 9, Bucharest is the smallest in surface area compared
to the other units. However, it does not mean that it is safer. On the contrary, when
jointly considered with the metropolitan area of Ilfov, which envelopes the urban area of
Bucharest, the wildfire ignition and spreading risk in the wildland-urban interface (WUI)
is critical and worth investigating. We further discuss this issue in the following sections
while assessing human-made structures’ exposure to wildfire spreading risk.

The overlapping of wildfire spreading capacity risk and the local administrative
units highlight the municipalities that need to enhance their wildfire prevention measures.
Figure A2 (Appendix C) presents the box plots that show the WIPI_ROC and WSCI_ROC
values distribution by local administrative units. According to the results plotted in
Figure A2a, the administrative units with the highest WIPI_ROC index values are located
in the country’s south-eastern and southern regions.

4. Discussion on the Vulnerability of Protected Areas and Exposure of Settlements

Wildfires are native events on earth estimated to have happened during the last
350 million years [45]. They are accepted to significantly contribute to vegetation recovery
with their natural schedule, the biogeochemical cycles of carbon and nitrogen, and the
atmosphere’s chemical properties [46-48]. However, they are also reported to have consid-
erable consequences on the territory’s ecological and social systems. Protected areas are
among the land surfaces where the ecological and socio-cultural interests converge with
each other. Uncontrolled fires in the vegetated protected areas may cause unrecoverable
consequences on the native vegetation structure. On the other side, the WUI zone is boldly
highlighted in scientific reports. Wildfire events threaten human activities. We expand our
findings by discussing further concerning protected areas’ vulnerability and exposure to
human-made structures.

4.1. The Vulnerability of the Romanian Protected Areas to Wildfires

Globally speaking, the protected areas are under consistent threat caused by climate
change processes, land-use alterations, provisioning of raw materials, socio-cultural ac-
tivities, and flourishing of invasive species [49,50]. Jones et al. [51] conclude that only
two-thirds of the protected areas are safe from globally intensive human activities. While
Schulze et al. [52] list fire and fire suppression activities as the third out of 36 threats that
protected areas usually face according to the list of level two threats included in the IUCN-
CMP Threats Classification Scheme. Forest fires can lead to an invasive plant expansion in
disturbed sites [53]. The native species in Romania’s protected areas have been at risk of
several natural and human-induced hazards [54]. Thus, assessing the vulnerability of the
protected areas to wildfires is of great concern in Romania.

This assessment relies on the European inventory of nationally designated protected
areas, as acquired from the EEA open-source datasets. According to these data, Romania
has 946 protected sites, covering a total area of 13,985 km?. Figure 10 presents the protected
areas overlapping the WIPI_ROC results. Most of these areas are found in the alpine lands
along with the Carpathians. About 13% of the 70,410 reference points within the vegetated
surfaces we analyzed are located within the protected areas. Consequently, we may infer
that 65% of Romania’s protected surfaces are vegetated and potentially vulnerable to
wildfire risk.

According to the box plot in Figure 10a, the protected areas have lower WIPI_ROC
and WSCI_ROC values than unprotected surfaces. Furthermore, referring to Figure 10b,
most vegetated surfaces within the protected patches are greenish, implying a relatively
low wildfire spreading capacity (WSCI_ROC). These values’ main reasons are the high
elevation and remote location of protected surfaces to human activities (settlement and
transportation network). However, some cases consist of a gradient of WSCI_ROC values
within the same protected surface (see the enlarged protected patch in Figure 10).
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The relation between vegetated landscape patches and wildfire spreading risk has
been a questionable literature topic [55]. O’Donnell et al. [56] report that the fragmentation
among vegetated landscapes in unmanaged Australian semi-arid shrublands and wood-
lands directly impacted the reduction of wildfire intervals between 1940 and 2006. Thus,
the connectivity among vegetated surfaces within the same protected area may boost the
wildfire, spreading greenish areas’ risk. Future studies must focus on protected patches to
assess the vulnerability to wildfire spreading risk at a finer spatial scale.
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Figure 10. Wildfire spreading risk exposure map of protected areas in Romania, and comparative box plot of WIPI_ROC (a)
and WSCI_ROC (b) value distribution between protected and unprotected vegetated surfaces in Romania.
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4.2. Wildfire Exposure of Populated Areas within the Metropolitan Area of Bucharest

The urban fringes are critical hybrid areas where the human-made structures are
exposed to different environmental hazards [57]. Studies from developing countries report
that uncontrolled urban expansion increases inhabited surfaces” exposure to natural haz-
ards like floods, landslides, fire, and sinkholes, among others [58]. Sestras et al. [58] report
landslide assessment at a local scale as an inherent threat in Romania’s newly developed
suburban zones. The wildland-urban interface represents an area of contradiction where
both the settling interest and wildfire risk are significantly high [59-61].

We performed an exposure assessment of built structures to the wildfire spreading ca-
pacity of vegetated surfaces within the Romanian capital city’s metropolitan area (Figure 9).
The wildfire exposure analysis relies on the juxtaposition between the WSCI_ROC results
and existing building stock, as shown in Figure 11. We bring a demonstrative example
from Ilfov metropolitan area, which includes the capital city, Bucharest. The hazard map
of wildfire spreading capacity relies on the results reported in this article (see Figure 9).
The WSCI_ROC point’s layer is utilized for preparing the hazard heatmap (kernel density
estimation) with a selection radius of 1 km.

OSM data provide the building stock within the focal study area. Nevertheless,
OSM data accuracy is still debatable due to the lack of professional backgrounds [62]. A
substantial number of building features do not include building-use information. However,
we bring this discussion forward as an exposure analysis method that can deliver critical
information about the human-made structures under wildfire risk within WUI areas at a
metropolitan scale if further improved by introducing validated building stock data.

According to Figure 11b, 9596 structures overlap with the WSCI_ROC heatmap,
exposing the minimum wildfire spreading capacity. Furthermore, 1734 out of the total
exposed structures are building types of significant socio-economic. This building stock’s
exposure to wildfire spreading risk may have critical consequences on socio-economical
processes and their users’ life security. Figure 11c presents the box plot of WSCI_ROC
heatmap values distribution per building type. We included just the most critical building
types like hospitals, industrial, residential, religious, leisure, and educational use. While
other buildings like warehouses, greenhouses, and abandoned structures were ignored at
this stage.

According to the box plot, just one hospital is located within the critical wildfire
spreading capacity heatmap. Nevertheless, it has a WSCI_ROC heatmap value of 2.37,
which indicates a significant exposure of its users to wildfire spreading risk. According to
the outlier values (dots) shown in Figure 11c, there are four industrial, one house, and one
school building highly exposed to wildfire, which can spread the risk.
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Figure 11. The vegetated metropolitan area of Ilfov and Bucharest (a) including the wildfire exposure map of existing urban
fabric (b) and the box plot of WSCI distribution per building type (c).

5. Conclusions

This study presented the indexing of vegetated surfaces in Romania by Wildfire Ig-

nition Probability and Spreading Capacity Index (WIPI/WSCI). The method offered here
relies on open-source and available remotely sensed data, which supplies the analytical
process with geospatial information about the anthropogenic, hydrometeorological, geo-
physical, and fuel properties of the study area. We identified 16 criteria that significantly
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impact either the wildfire ignition or spreading phase of the wildfire event in Romania.
The impact of each criterion on wildfire is weighted via ROC/AUC analysis. During the
analysis, the positive cases rely on the burned area fraction records between 2015 and 2019
(5 years).

According to our results, solar radiation (E1), precipitation (E2), and maximum tem-
perature (E3) have the highest correlation to the cumulative burned area fraction reported
for the 2015-2019 fire season. The vegetated surfaces in Romania’s eastern and southern
regions face the highest wildfire spreading capacity index values. Considering that these
regions make home to urbanized lands of high population density, the high WSCI records
indicate an elevated risk. We performed the wildfire spreading risk exposure analysis of
the building stock within the Bucharest metropolitan area, Ilfov. These results imply that
critical structures like hospitals and residential and educational units are found at locations
of significant risk.

On the other side, Romania’s central areas scattered along the Carpathians have the
lowest index values. This is generally driven by high altitude values, which are directly
correlated with other climatic criteria such as solar radiation, precipitation, and maximum
temperature. These regions include most protected areas. According to our results, some
protected vegetated surfaces in Romania hold a gradient of wildfire spreading risk within
the same protected area geometry. In such cases, the whole area within the protection
borders must be considered under risk, as the connectivity among vegetated surfaces in
wildfire risk analysis is considered a weakness.

The method we presented in this study is reproducible in other wildfire-prone geogra-
phies. It is also flexible enough to integrate the most up-to-date and most reliable remotely
sensed geospatial data available to the community in the future. The results presented in
this study can help the institutions at the national and local levels responsible for wildfire
risk reduction in Romania.
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Appendix A
Vegetation Structure of Romania and Wildfire Regimes

The forests on the Romanian Carpathian Mountains consist of 2.13 million hectares
of Pannonian mixed deciduous and coniferous forests, 0.87 million hectares of central
European mixed forest, 0.53 million hectares of Balkan mixed forest coniferous forests, 3.31
million hectares with species such as Abies alba, Picea abies, Pinus sylvestris, Pinus nigra);
the plains area represents the forest-steppe floor in which predominates Quercus petraea,
Quercus cerris, Quercus frainetto, Quercus pedunculiferra; along the large watercourses (i.e.,
such as Crisuri and Mures Rivers in western Romania, Olt, Jiu, Buzau Rivers in the south
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and Siret, Prut Rivers in the east of the country) hydrophytic vegetation develops, as well
as mixed riparian forests (Quercus robur, Ulmus laevis, Fraxinus excelsior, Fraxinus angustifolia,
Salix alba, Populus alba).

Analyzing Romania’s central relief units, the distribution of forested areas by cate-
gories of consistency highlights the Eastern Carpathians region, which covers 4128 km?
(representing 14.6% of their territory). It has a full consistency of forests and extended areas
of 12,664 km? (44.8% of the surface) with almost full consistency (Table A1).

Large areas of the arboretum with full consistency are also present in the significant
relief units such as the Curvature Carpathians, the Apuseni Mountains, followed by the
Southern Carpathians, were due to higher altitudes and their massiveness, arboretum
develops on larger areas compared to the rest of the relief units with alpine vegetation area.
At the opposite pole, there are relief units such as the Danube Delta, the Western Plain,
the Romanian Plain, which have 90% of the area occupied by forest vegetation included
in trees with degraded consistency. These are most often part of the category of forest
vegetation outside the national forest fund, consisting of alignments of trees located along
the transport and communication routes, along watercourses, forest vegetation developed
on pastures with small consistency, forest plateaus, and trees located within the areas of
protection of hydraulic works and land improvements.

Table A1l. Distribution of forests in Romania by consistency categories at the level of significant relief units.

Major Relief Unit

Consistency Categories

Arboretum with Arboretum with

Arbo.retum with Full Almost Full Arboretum wit}1 Sparse, Lighted, or Braced Deg.raded
Consistency (C = 100) Consistency (C = 70-90) Consistency (C = 40-60) C(gr;s;sgf;g)y
Km? % Km? % Km? % Km? %

Romanian Plain 45,459.89 92.9 881.28 1.8 1874.65 3.8 703.66 14

Getic Plateau 8358.95 60.5 1647.01 11.9 3580.86 259 234.7 1.7

Western Hills south of Mures 2458.28 54.3 394.81 8.7 1559.46 34.4 115.32 2.5

Banat Mountains 1429.78 20.4 612.92 8.7 4568.48 65.2 399.24 5.7

Transylvanian Depression 18,164.37 71.8 1970.75 7.8 4593.99 18.2 568.38 22

Apuseni Mountains 2319.16 21.7 1102.65 10.3 5275.04 494 1973.78 18.5

Moldavian Plateau 19,059.32 83.1 802.81 35 2766.84 12.1 300.88 13

Subcarpathian 8206.62 49.5 1941.2 11.7 4867.73 29.3 1574.77 9.5

Dobrogea Plateau 9136.14 60.5 160.5 11.9 765.5 259 90.79 1.7
Danube Delta 4289.01 72.52 87.99 10.18

Mehedinti Plateau 333.11 41.6 112.58 14.1 350.02 43.7 5.46 0.7

Western Plain 15,337.49 97.8 236.43 15 504.67 3.1 99.38 0.6

Eastern Carpathians 8753.47 30.9 2738.64 9.7 12,664.1 44.8 4128.64 14.6

Curvature Carpathians 954.29 15.6 429.88 7.0 2605.22 425 2141.88 349

Southern Carpathians 3852.61 27.2 1092.47 7.7 7488.87 52.8 1741.48 12.3

Western hills north of Mures 5258.13 63.3 649.76 7.8 2090.52 25.2 305.84 3.7

Total (km?) 15,3370.62 14,846.21 55,643.94 14,394.38

Forest fires primarily represent vegetation fires in Romania. These are part of the
category of hazards that cause economic damage and losses in vegetation. In case of forest
fires that the Inspectorates of Emergency Situations report at each county’s level, firefighters,
gendarmerie service, managers, and staff of each forest district intervene to extinguish them.
The leading cause of vegetation fires is due to the negligence of the population, combined
with unfavorable weather conditions (successive days with temperatures over 30 °C),
fires left unattended by tourists, and even rudimentary agricultural practice involving the
burning of vegetation on land they own, the so-called prescribed burns of pastures. Our
study has counted all anthropogenic, hydrometeorological, geophysical, and fuel factors
that significantly correlate with Romania’s fire regimes.
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Appendix B
Data Sources and Their Acquisition
Table A2. The open-source raw data utilized in this study.
Data Type MMU Utility within the Method Source
Vegetated surfaces; Settlements (S2);
1 CORINE land Vector 25 ha Fuel type (F1); Distance to agriculture ~ Copernicus/EEA
cover (S5)
2 DEM Raster 25 m Slope (P1); Aspect (P2); Altitude (P3)  Copernicus/EEA
3 NDVI Raster 250 m NDVI (F3) Earth data/NASA
4 TCD Raster TCD (F2) Copernicus/EEA
Solar radiation (E1); Precipitation
5 Weather data Raster 30s (E2); Maximum Temperature (E3); Worldclim 2.0
Wind speed (E4)
6 Burnec% area Raster ROC/AUC analysis Climate Change
fraction Service
7 Burned areas Vector ROC/AUC analysis EFFIS/JRC
Distance to water (P4); Distance to
8 OsM Vector any road (S3); Distance to the main OSM Geofabrik
road (54); Exposure analysis

. . Population density (S1); Exposure National Institute
9 Population Density Raster analysis of Statistics (RO)
10 Administrative/NUTS ~ Vector Exposure analysis EUROSTAT
11 Protected areas Vector Vulnerability analysis Eionet/EEA

The population density information is produced based on population records at
the smallest local administrative unit level, as shown in Figure Al based on the data
provided by the National Institute of Statistics of Romania. Initially, the map consisted of
a polygon layer showing each local administration subdivisions, i.e., 3181 units in total
within Romania. The capital city, Bucharest, has the highest mean population density of
8975 inhabitants /km?2. Each polygon’s centroid points generate the heatmap (i.e., kernel
density estimation) of density distribution in a 50 m pixel raster. The searching radius is
set as 20 km considering the upper bound of the Euclidean distance between centroids of
adjacent local administrative units.
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