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Abstract: An accurate stand count is a prerequisite to determining the emergence rate, assessing
seedling vigor, and facilitating site-specific management for optimal crop production. Traditional
manual counting methods in stand assessment are labor intensive and time consuming for large-scale
breeding programs or production field operations. This study aimed to apply two deep learning
models, the MobileNet and CenterNet, to detect and count cotton plants at the seedling stage with
unmanned aerial system (UAS) images. These models were trained with two datasets containing 400
and 900 images with variations in plant size and soil background brightness. The performance of
these models was assessed with two testing datasets of different dimensions, testing dataset 1 with
300 by 400 pixels and testing dataset 2 with 250 by 1200 pixels. The model validation results showed
that the mean average precision (mAP) and average recall (AR) were 79% and 73% for the CenterNet
model, and 86% and 72% for the MobileNet model with 900 training images. The accuracy of cotton
plant detection and counting was higher with testing dataset 1 for both CenterNet and MobileNet
models. The results showed that the CenterNet model had a better overall performance for cotton
plant detection and counting with 900 training images. The results also indicated that more training
images are required when applying object detection models on images with different dimensions
from training datasets. The mean absolute percentage error (MAPE), coefficient of determination
(R2), and the root mean squared error (RMSE) values of the cotton plant counting were 0.07%, 0.98
and 0.37, respectively, with testing dataset 1 for the CenterNet model with 900 training images. Both
MobileNet and CenterNet models have the potential to accurately and timely detect and count cotton
plants based on high-resolution UAS images at the seedling stage. This study provides valuable
information for selecting the right deep learning tools and the appropriate number of training images
for object detection projects in agricultural applications.

Keywords: cotton stand count; unmanned aerial systems; deep learning; remote sensing; MobileNet;
CenterNet; Python; Tensorflow

1. Introduction

An accurate plant stand count is a prerequisite to evaluating emergence rate, assess-
ing seedling vigor and facilitating site-specific management. Stand count is required to
measure crop density and uniformity of seedlings for breeding programs [1–3]. Stand
count is critical for growers to make decisions for replanting and other site-specific man-
agement to avoid yield loss [4,5]. For example, cotton (Gossypium hirsutum L.) yield rapidly
decreases if plant density is below five plants per linear meter of a row in the Texas High
Plains [6]. The traditional method for determining plant stand count is typically by man-
ually counting the number of plants within a unit area, which is time consuming and
labor intensive with sampling bias. Efficient and accurate stand counting methods are
needed to expedite breeding pipelines or improve decision support in precision crop man-
agement. Technological innovations in unmanned aerial systems (UAS) and advances in
image processing provide opportunities to enhance high-throughput plant phenotyping,
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including stand count. UAS platforms facilitate more flexibility in image acquisition in
flight height, flight area and weather conditions compared to satellites and ground vehicles.
As a result, the UAS with various sensors has become an increasingly important tool to ac-
quire high-resolution imagery for plant phenotyping and evaluating within-field variations
in precision agriculture [7–9]. For example, RGB images have been applied to estimate
plant or fruit counts [10–14]. Feng et al. applied the normalized difference vegetation
index (NDVI) derived from a hyperspectral sensor to segment and count the number of
cotton plants [15]. However, it required the removal of false matches using the k-nearest
neighbors algorithm for feature detection and matching. Deep learning algorithms can
combine feature detection and matching in a more efficient way.

Deep learning with advanced image analysis has offered opportunities for high-
throughput plant phenotyping in recent years. Deep learning algorithms learn high-level
features in an incremental way, which eliminates the need for feature identification and
extraction [16]. In addition, multilayer deep learning models perform well for complicated
nonlinear tasks [17]. A number of popular pre-trained deep learning models have been
tested and validated with high accuracy and efficiency, which can be transferred to different
tasks as transform learning models [18,19]. Deep networks have been applied to generate
complex models to assess crop phenotypic attributes [20,21]. For example, Gao et al. [22]
used the faster R-CNN model to perform multiclass fruit-on-plant apple detection. Wu
et al. [23] combined image segmentation with the VGG-16 CNN model for counting
rice seedlings from UAS images. Lin and Guo [24] proposed the integration of image
segmentation and the U-Net CNN model using UAV images for sorghum panicle detection
and counting. Compared with studies on other plants and crops, cotton stand detection
and counting requires delineation of individual cotton plant with multiple leaves.

Cotton stand count has been assessed using machine learning and deep learning
algorithms with RGB and multispectral images in recent years. For example, Oh et al. [25]
developed a deep learning cotton stand count algorithm using the You Only Look Once
model (Version 3, YOLOv3), with excellent performance (R2 = 0.96). However, additional
photogrammetry procedures were required to separate, locate and count cotton plants
for more accurate results after YOLOv3 algorithm detection. Fend et al. [26] developed a
nearly real-time image processing method using UAV imagery and a convolutional neural
network (CNN) model for cotton stand counting (R2 = 0.95). Many challenges remain on
cotton stand count tasks using deep learning algorithms. For example, a large ground
truth and reference data are required for image preprocessing purposes [15,26]. High-
resolution imagery is also required for such tasks using deep learning algorithms, which
typically requires UAS images captured at altitudes of 10 m or lower. For object detection
models, most of the advanced models are based on the region proposal convolutional
neural networks (R-CNN) model, which is not very efficient [27]. Various improved and
customized models have been developed and tested to improve object detection precision
and accuracy. The MobileNet and CenterNet are such models applied in object detection
and classification tasks. The MobileNet model [28] is a low-latency convolution neural
network that can be applied on mobile phones with its embedded vision applications.
Compared with previous models, the CenterNet model is an anchor-free one-stage object
detection architecture that explores the visual patterns in each of the cropped regions with
minimal costs [29]. The CenterNet model detects objects based on key points instead of
anchor bounding boxes, which increases accuracy and speed by reducing the appearance of
detected wrong bounding boxes [30,31]. Limited studies have evaluated the performance
of these two models in agricultural applications. For example, the MobileNet model has
been applied to detect plant disease on rice [32] and apple [33]. The CenterNet model has
been applied to extract weeds from vegetable plants [34] and detect fruits from digital
images [35]. The assessment of these two models in plant phenotyping, such as cotton
stand counting, can provide valuable information about selecting the appropriate deep
learning tools for the right tasks. These two models can separate and count individual
cotton plants at the seedling stage. Therefore, the objective of this study was to assess the
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application of MobileNet and CenterNet models in cotton stand counting at the seedling
stage. These models were evaluated for their performance in terms of the number of
training images and dimensions of training and testing images.

2. Materials and Methods
2.1. Experimental Sites

This study was conducted in a research field (33◦35′50.53” N, 101◦54′27.30” W) in
Lubbock County, Texas, in 2020. The climate in this region is semiarid, with an average
annual rainfall of 487 mm, mostly falling between May and September, frequently as a
result of convective thunderstorms [36]. The dominant soil type at the study site is Pullman
clay loam (fine, mixed, superactive, thermic Torrertic Paleustolls), which has fine and
mixed textures, good drainage and moderately high saturated hydraulic conductivity [37].
Three cotton varieties, including FM 1911GLT, FM 1830GLT, and ST 4946GLB2 (BASF, Lud-
wigshafen, Germany), were planted on May 28, 2020. In total, there were 208 plots, each 8
m long and eight rows wide in a north-south direction. A 1.5-m alley was arranged between
plots. A subsurface drip system was used to irrigate the crop during the growing season.

Figure 1 shows the general procedure of image acquisition, data processing and
the algorithms of cotton stand counting using CenterNet and MobileNet models. After
capturing UAS images, training images were randomly chosen from two flight dates.
Two training datasets containing 400 and 900 images were prepared and trained by the
CenterNet and MobileNet models separately. Trained models per training images were
saved separately after CenterNet and MobileNet training. Testing images in two datasets
went through each trained model to detect and count cotton plants. The final output
included bounding boxes of detected cotton plants, detection class and the corresponding
F1-score.
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The algorithms of these two models were implemented using the TensorFlow [38]
high-level application programming interface (API). TensorFlow is an end-to-end open-
source platform developed by Google (Google Inc., Mountain View, CA, USA) for machine
learning and deep learning applications. A Python (Version 3.7, Python Software Foun-
dation) script was developed to facilitate the algorithms on the Google Colaboratory [39]
platform, a web integrated development environment (IDE) in the Jupyter notebook plat-
form that runs in the cloud environment. The training process was performed using a
computer with 12 GB of GPU.

2.2. UAS Image Acquisition

A DJI Phantom 4 Pro (DJI, Shenzhen, China) with a 4K RGB camera was used for image
acquisition. The UAS has a two-axis gimbal that can maintain the orientation of the camera
independently from the movement. The UAS is controlled with a 2.4 GHz frequency
bidirectional transmission that receives data of the battery voltage, Global Positioning
System (GPS) reception, the distance, and the height differences from the home point. The
maximum flight duration of the UAS is about 30 min. The flight plan was created using
the DJI GSPro software (Version 2.0.15, DJI, Shenzhen, China). The flight plan included
80% front overlap and 80% side overlap. The angle of the camera was set at 90 degrees to
the land surface during flight. The UAS flew at an altitude of 20 m at a speed of 2.4 m s−1,
resulting in an image resolution of 3.3 mm. Images were acquired on 8 June and 14 June,
2020. All image acquisitions were conducted on clear days with light to moderate wind
conditions around the local solar noon. For each dataset, the raw images were stitched
into an orthomosaic image using the Pix4DMapper software (Version 4.6.4, Pix4D S.A.,
Prilly, Switzerland).

2.3. Training and Testing Images

The training images were prepared using randomly cropped raw UAS images (Figure 2).
The dimension of the training images was 300 by 400 pixels. For each training image,
the LabelImg tool [40], a free and open-source image labeling tool, was applied to label
individual cotton plants with two to four leaves with rectangular bounding boxes. Each
output training image had a corresponding xml file, containing the image filename, path,
coordinates of the bounding box of the top left and bottom right corners for each labeled
cotton plant, and the height and width of the image. Both training images and their
corresponding xml files were used in the model training process. Two training datasets
were prepared. The first training dataset including 400 images randomly selected from the
dataset acquired on 8 June and 14 June. The second training dataset including 900 images.
Lin and Guo [24] found that the CNN model’s performance was not stable with less than
500 training images, but its accuracy was high and similar with 900 and 1000 training
images. Oh et al. [25] used 200, 400, 600, and 800 manually labeled training images for
cotton stand count with YOLOv3 deep learning models. Therefore, we chose 400 and 900
training images to test the optimal requirement of training images for deep learning cotton
stand count. The number of cotton plants in the training images were manually counted.

To test the effect of testing image dimension on cotton stand counting accuracy, we
created two testing datasets, each containing 100 randomly selected images. The first
dataset, referred to as TD1, contained testing images with the same dimension as the
training images (300 × 400 pixels). The second dataset, referred to as TD2, contained
testing images with a dimension of 250 by 1200 pixels. Each testing image covered one row
of cotton plants, 1.2 m for TD1 and 3.6 m for TD2, in the field. Cotton plants in each testing
image were manually counted, and the number of cotton plants in TD1 and TD2 varied
from one to eight and eight to 23, respectively.
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2.4. MobileNet

The MobileNet is based on a streamlined architecture that uses depth-wise separable
convolutions followed by a pointwise convolution to build lightweight deep neural net-
works. The SSD-MobileNet V2 model was applied in this study. The single-shot detector
(SSD) architecture aims to predict bounding box locations and classify these boxes in a sin-
gle network. The SSD uses a modified VGG-16 [41] model pre-trained on the ImageNet [42]
as its backbone, with additional convolutional feature layers with progressively decreasing
sizes. VGG-16 is a commonly used base feature extractor with 16 layers weights. ImageNet
is a large visual database for visual object recognition software research. The MobileNetV2
uses only a single convolution network applied to all the channels of the input image and
slides the weighted sum to the next pixel. It involves two new features, including linear
bottlenecks between layers and short connections between bottlenecks, compared with
MobileNetV1 [43]. The MobileNetV2 has two types of blocks, one with a stride of two for
downsizing, and the other residual block with a stride of one.

The input image resolution was 320 × 320. The hyperparameters used for training the
MobileNet model were random normal initializer, momentum optimizer value = 0.9, cosine
decay learning rate base = 0.1, training batch size = 16 and total training steps = 30,000.

2.5. CenterNet

Another pre-trained model is the CenterNet Resnet50 from the Tensorflow Object
Detection API. The CenterNet is a state-of-the-art object model based on deep convolution
neural networks to detect each object as a triplet, rather than a pair, of keypoints [29]. It
focuses on the center region information of each target rather than the overlap with the
object, making this approach cost-efficient. Compared with the SSD MobileNet model,
CenterNet models an object as a single point at the center point of its bounding box. It uses
keypoints to find center points and regresses to all other object properties. The backbone
of this model is the ResNet50, a 50-layer Residual Network. Center pooling, which helps
to better detect center keypoints in both horizontal and vertical directions and aims to
capture richer and more recognizable visual patterns [29]. Cascade corner pooling focuses
on determining the corners of the bounding box by finding the maximum values on the
boundary. Both cascade corner pooling and center pooling can be computed by combining
corner pooling at different directions based on various situations [44].



Remote Sens. 2021, 13, 2822 6 of 16

The input image resolution was 320 × 320. The hyperparameters used for training the
MobileNet model were random normal initializer, adam optimizer, cosine decay learning
rate base = 0.001, training batch size = 8 and total training steps = 30,000.

2.6. Counting and Evaluations

The testing images were run through the models to detect and determine the number
of cotton plants. A bounding box was applied around each detected cotton plant. Therefore,
the number of bounding boxes represented the number of detected cotton plants in each
testing image.

A set of metrics, including the precision, recall, and F1-score, were applied to assess
the performance of cotton plant detection and counting. Precision and recall are the most
commonly used indicators to evaluate object detection methods. Precision indicates how
precise and accurate the trained model is out of the predicted positives and recall states
how many of the true positives the trained model captured [45]. The F1-score aims to
balance the two indicators [8]. Intersection over Union (IoU) measures how much of the
predicted cotton plants overlap with the ground truth manually labeled cotton plants. The
average recall (AR) is the recall averaged over all IoU ∈ [0.5, 1.0]. The interpolated average
precision (AP) summarizes the shape of the precision/recall curve and is defined as the
mean precision at a set of eleven equally spaced recall levels [0, 0.1, ..., 1] [46]. The precision,
recall, and F1-score are computed as follows:

Precision =
TP

TP + FP
(1)

Recall =
TP

TP + FN
(2)

F1 = 2× Precision× Recall
Precision + Recall

(3)

AP =
1

11 ∑
r∈{0,0.1,...,1}

Pinterp(r) (4)

Pinterp(r) = max
r̃:̃r≥r

p(̃r) (5)

where true positive (TP) denotes the number of pixels predicted as cotton plants when these
pixels are actually cotton plants; false positive (FP) denotes the number of pixels predicted
as cotton plants when these pixels are actually soil or other features; false negative (FN)
denotes the number of pixels predicted as other features when these pixels are cotton
plants; Pinterp(r) is the interpolated precision at the maximum precision and p(̃r) is the
measured precision at recall r̃.

The mean absolute error (MAE), mean absolute percentage error (MAPE), coefficient
of determination (R2), and the root mean squared error (RMSE) were used as evaluation
metrics to assess the performance of the models in cotton plant counting.

MAE =
1
n

n

∑
1
|mi − ci| (6)

MAPE =
1
n

n

∑
1

∣∣∣∣mi − ci

mi

∣∣∣∣× 100% (7)

R2 = 1− ∑n
1 (mi − ci)

2

∑n
1 (mi −mi)

2 (8)

RMSE =

√
∑n

1 (mi − ci)
2

n
(9)



Remote Sens. 2021, 13, 2822 7 of 16

where mi, mi, and ci represent the manually counted cotton plants for the ith image, the
mean manual counts, and the predicted count for the ith image, respectively. n is the
number of testing images.

3. Results
3.1. Model Validation

Table 1 shows the mAP and AR with IoU greater than 50% for the two models. The
mAP, AR, and mean F1-score were 71, 48 and 75% for the CenterNet model, and 67, 39 and
63% for the MobileNet model with 400 training images. These results are similar to a study
that reported an mAP of 86% using YOLOv3 with 200 labeled training images in predicting
cotton stand count using UAS images [25]. The values of mAP, AR and mean F1-score
increased by 8% and 19%, 25% and 33%, 12% and 18%, respectively, for the CenterNet
and MobileNet models with 900 training images. These results demonstrate that a greater
number of training images results in a more accurate model. The CenterNet model had
higher mAP, AR and F1 score values than the MobileNet model for both training datasets,
except for the mAP value with 900 training images. Therefore, the CenterNet model had a
relatively better performance in training than the MobileNet model. With training images
increasing from 400 to 900 images, the improvement of mAP, AR and F1-score values was
less obvious for the CenterNet model than the MobileNet model. The less improvement
of mAP, AR and F1-score for CenterNet model shows that the model had already had a
relatively stable and accurate performance with 400 training images. This indicated that
the MobileNet model requires a higher number of training images to achieve acceptable
mAP, AR and F1-score compared with the CenterNet model.

Table 1. Mean average precision (mAP), average recall (AR) and mean F1-score results for the MobileNet and CenterNet
models in cotton stand counting using UAS images.

Model Number of Training Images mAP (%) AR (%) F1-Score (%)

MobileNet 400 67 39 63
- 900 86 72 81

CenterNet 400 71 48 75
- 900 79 73 87

The average per-step training time was 1.03 s for the MobileNet model, and 0.84
s for the CenterNet model with 400 training images. For the dataset with 900 training
images, the mean per-step training time was 1.07 s for the MobileNet model, and 7.62 s for
the CenterNet model. The trained model size was ~30 MB for the MobileNet model and
~220 MB for the CenterNet model. Therefore, the MobileNet model was more efficient on
training time and disk space requirements.

3.2. Model Evaluation in Stand Counting

Table 2 shows the evaluation metrics for the performance of the MobileNet and
CenterNet models in detecting and counting cotton plants. For TD1, the R2 value of the
cotton plant count was 0.98 for the CenterNet model and 0.96 for the MobileNet model with
900 training images. The values of RMSE were 0.58 and 0.37 for the CenterNet model and
were 0.89 and 0.64 for MobileNet models with 400 and 900 training images, respectively.
For TD2, the value of R2 increased from 0.60 to 0.86 for the CenterNet model, and 0.48
to 0.87 for the MobileNet model, with the number of images increasing from 400 to 900.
The RMSE values dropped from 6.08 to 3.94 for CenterNet Model and 7.81 to 3.66 for the
MobileNet model with the number of training images increasing from 400 to 900.
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Table 2. Coefficient of determination (R2), root mean square error (RMSE), mean absolute error (MAE), and mean absolute
percentage error (MAPE) for cotton stand counting with the MobileNet and CenterNet models using unmanned aerial
system images.

Model Testing Dataset Number of Training Images R2 RMSE MAE MAPE (%)

MobileNet 1 400 0.86 0.89 0.54 0.26
- - 900 0.96 0.64 0.33 0.11
- 2 400 0.48 7.81 7.48 7.83
- - 900 0.87 3.66 6.22 5.61

CenterNet 1 400 0.89 0.58 0.25 0.10
- - 900 0.98 0.37 0.27 0.07
- 2 400 0.60 6.08 8.03 6.57
- - 900 0.86 3.94 5.39 4.73

The overall performance of cotton plant counting for the CenterNet model was better
than the MobileNet model. The values of MAE and MAPE for the CenterNet model were
lower than those for the MobileNet model in all the testing datasets, except for the case with
TD2 and 400 training images (MAE = 8.03). For TD1, that both MobileNet and CenterNet
models performed adequately with 400 and 900 training images. The MAE values were
0.25 and 0.27, and the MAPE values were 0.10% and 0.07% for the CenterNet model with
400 and 900 training images, respectively. For the MobileNet model, the MAE values were
0.54 and 0.33, and the MAPE values were 0.26% and 0.11% with 400 and 900 training
images, respectively. For TD2, both models performed adequately, although the accuracies
were substantially lower than those for the corresponding models for TD1. The MAE
value decreased from 9.03 to 5.39 for the CenterNet model, and from 7.48 to 6.22 for the
MobileNet model, with the number of training images increasing from 400 and 900. The
MAPE value dropped from 6.57% to 4.73% for the CenterNet model, and from 7.83% to
5.61% for the MobileNet model, with the number of training images increasing from 400 to
900. These results were similar to previous studies that reported MAPE ranging from 9.8%
to 4.3% [8,9,12,26,33,47]. Therefore, The MAPE results indicate that these two models had
better performance in accuracy on cotton plant detection and counting for testing images
with the same dimension as the training images. For TD2, the MAPE results suggest that
both models had similar accuracy compared with previous similar studies.

Figure 3 shows an example of cotton plant detection and counting based on an image
acquired on 8 June using these two models for TD2 with a testing image with a larger
dimension. Both CenterNet and MobileNet models underestimated the number of cotton
plants in the scene with 400 training images. The CenterNet model provided more accurate
plant detection results for small cotton plants. With 900 training images, the CenterNet
model detected 11 cotton plants as compared to eight detected by the MobileNet model.
The MobileNet model also had two false-positive counts, predicting two cotton plants
that did not exist in the scene. Figure 4 shows an example of cotton plant detection and
counting using the image data acquired on 14 June. Both CenterNet and MobileNet models
underestimated cotton plants in TD2 as well. But the underestimation of cotton plants
for the CenterNet model was less significant compared with the MobileNet model. With
400 training images, the CenterNet model detected 13 cotton plants as compared to eight
detected by the MobileNet model. With 900 training images, the CenterNet model also
detected 13 cotton plants, but the MobileNet model only detected 11 cotton plants. The red
box shown in Figure 4 demonstrates a false-positive detection and overestimated errors.
The bright soil near the cotton plants was detected as a single cotton plant.
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image acquired on 14 June 2020. Percentage labels around bounding boxes represent F1-scores for
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Figure 5 shows an example of using the two models with images on 8 June 2020, to
detect cotton plants, the dimensions of the testing images being the same as the training
images. The CenterNet model accurately detected eight cotton plants with 900 training
images and six cotton plants with 400 training images. The MobileNet model underesti-
mated cotton plants by three and two with 400 and 900 training images, respectively. Both
models had higher accuracy for the testing images acquired on 14 June compared to those
on 8 June (data not shown), because the cotton plants were relatively larger and easier
to detect. However, the CenterNet model had a better performance with smaller cotton
plants. As shown in Figure 5, the blue arrows show that the CenterNet model could detect
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and separate smaller cotton plants while the MobileNet model failed to detect them. The
red arrow represents that both models could not completely detect overlapping cotton
plants in high-density situations with 400 training images, but both models successfully
separated and detected the overlapping pieces of cotton with 900 training images.

The results also demonstrated that the accuracy for cotton plant detection and counting
was higher when the soil was relatively dark. Figure 6 showed an example of testing images
acquired on 8 June 2020, trained with 900 same dimension training images. The algorithm
successfully detected and counted cotton plants with darker and wetter soil background.
The mean F1-score for this scene was 100%. For cotton plants with a dry and brighter soil
background, the algorithm underestimated two cotton plants. The mean F1-score value was
54.5% for this scene. Previous studies had similar findings; images with darker soil color
and less soil crusting had higher accuracy on cotton plant detection and counting [25,26].
The dataset in this study was limited to facilitate a systematic evaluation to determine
the effects of soil background on cotton plant detection. Further studies on cotton stand
counting need to incorporate soil moisture, soil color, soil texture and soil roughness
conditions that directly affect soil reflectance.
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4. Discussion

The results on training validation and testing showed that the CenterNet model had
an overall superior performance. The size of the cotton plants in our study were small, with
an average plant diameter of 2.4 cm and 3.5 for cotton plants on 8 June and 14 June. All
object detection models have similar challenges when the target object is too small [8,21,22].
The CenterNet model is more sensitive to small objects [48,49]. The CenterNet model uses
keypoints estimation to locate the center of each bounding box and other object properties
such as orientation, location, and size, are regressed from image features at the center
location [29,44]. This explains the superior performance of the CenterNet models on cotton
stand counting in this study. On the other hand, the backbone of the MobileNet was VGG-
16, which had much fewer convolutional layers causing lower detection accuracy [50,51].
However, the MobileNet model is simpler, faster and more accurate than the two-stage
detector models [48,49,52]. Some real-time object detection tasks have been tested using
MobileNet models with smartphone applications [53,54]. Since the model is small and
has low latency, the cost of data transfer among UAS sensors, cloud databases, and deep
learning inference could be minimized. In this study, the trained model size was only about
30 MB and an average of 0.2 s predicting time per image, which is promising to achieve
on-site real-time cotton phenotyping with the MobileNet model using images acquired
using UAS platforms or smartphones in the future.

Few studies have assessed the performance of deep learning object detection models
with limited training images in agricultural studies. The mAP values in this study appeared
relatively low (67–86% for the MobileNet model and 71–79% for the CenterNet model), but
they are higher than the mAP values of many previous studies on object detection. For
example, CoupleNet, Faster R-CNN, mask R-CNN, RetinaNet, and CornerNet algorithms
reported mAP values ranging from 28% to 62% [29,43,55,56]. It should be noted that mAP
and AR are applied to evaluate the object detection performance in the training process,
but not a measure of object detection accuracy. Deep learning tasks require abundant
training images [16,57], especially for complex object detection tasks such as cotton plant
detection and counting. Lin and Guo [24] provided useful information regarding the
required number of training images for sorghum panicle detection. They found a deep
learning algorithm had poor performance with low and inconsistent accuracies with fewer
than 500 training images, but had accurate results with 1000 training images. The results
on TD1 and TD2 showed a similar trend for both CenterNet and MobileNet models, in
that the overall accuracy increased with the number of training images. In addition, the
dimension of testing images and consistency with training images played a role in this
study. Previous studies proved that agricultural-related object detection tasks could be
achieved successfully and accurately with limited training images when the dimensions of
testing and training images were the same [9,25]. However, robust and practical models are
needed to detect objects with different image dimensions for training and testing datasets.

Based on the small plant size, most plant phenotyping tasks required high-resolution
UAS images acquired at a low altitude [25,58,59]. This study applied a 4k RGB sensor to
acquire images at a relatively low altitude to detect and count cotton plants at the seedling
stage. Because plant seedlings are relatively small, a fine ground sample distance (GSD) is
required to detect cotton plants from UAS images. This, in turn, requires image acquisition
at low altitudes, possibly below 10 m. UAS platforms typically do not fly automatically
at such a low altitude. Therefore, researchers have to manually fly the UAS, which may
cause many errors during image collections. To overcome this challenge, various sensors
and post-processing procedures were evaluated in recent studies. For example, Feng
et al. [15] applied multispectral sensors to capture additional image datasets for cotton
plant detection and counting. Another study improved the overall quality of RGB images
acquired at a relatively high altitude (50 m) by combining high-resolution RGB images,
relatively low-resolution multispectral images, different vegetation indices and a digital
surface model (DSM) [52]. It is practical and reasonable to use only the 4K RGB sensor
flying at an optimal altitude to capture high-quality images for agricultural object detection
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tasks in commercial fields. More studies and observations are required to examine the
optimal image resolutions and corresponding flight altitudes for cotton stand count in
future work.

Various environmental factors, such as wind, cloud and light conditions, have effects
on UAS image quality, which can influence the execution and performance of deep learning
algorithms. In this study, the UAS images were acquired around local solar noon on clear
days. As a result, the cotton plants and soil surface were relatively bright and had low
contrast in strong sunlight. Both models performed better on cotton plant detection and
counting with images having darker soil background. Similar results were found in other
studies in crop monitoring and analyses [8,47]. The effects of field conditions, such as
soil color, and brightness on the accuracy of cotton plant detection and counting, were
similar to previous studies [25,26,60,61]. In future studies, one may consider acquiring
UAS images under relatively soft light conditions, such as late afternoon or early morning,
to facilitate better contrast between cotton plants and soil background for accurate plant
stand counting results. In addition, the images were captured on two dates during the
seedling stage in this study. The differences in cotton plant size and canopy cover might
have resulted in different results for the two models. Therefore, more studies are required
to examine plant size on stand counting accuracy by acquiring images on different dates in
the early growing season.

5. Conclusions

Two deep learning models, the MobileNet and CenterNet, were applied to detect and
count cotton plants at the seedling stage from UAS images. These models were trained with
two datasets containing 400 and 900 images. The performance of these models was assessed
with two testing datasets of different dimensions, 300 by 400 pixels and 250 by 1200 pixels.
The CenterNet model had a better overall performance on cotton plant detection and
counting, indicated by greater values of mAP and recall, R2, and lower RMSE, MAE and
MAPE values. The MobileNet model was more efficient on training time and had less
requirement for disk space. When the training and testing image dimensions were the same,
the accuracy of cotton stand counting was acceptable (R2 = 0.86 and MAPE = 0.26% for the
CenterNet model; R2 = 0.89 and MAPE = 0.10% for the MobileNet model) with 400 training
images. With 900 training images, the cotton plant counting had better performance
for both models (R2 = 0.96 and MAPE = 0.11% for the CenterNet model; R2 = 0.98 and
MAPE = 0.07% the MobileNet model). Cotton stand counting for testing images with larger
dimensions required more training images to achieve high accuracy. Therefore, this study
helps to determine the right deep learning tools and an appropriate number of training
images under certain conditions for object detection in agricultural applications.

Both the CenterNet and MobileNet models have the potential to accurately detect and
count cotton plants at the seedling stage. However, there are challenges in detecting small
cotton plants under high brightness and low contrast conditions. Therefore, further studies
need to investigate cotton plant detection accuracy as influenced by environmental factors,
including image resolution, soil background and illumination levels. Further studies are
also needed to evaluate the optimal image resolutions and corresponding flight altitudes
for accurate cotton stand counting.
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