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Abstract: The number of global precipitation datasets (PPs) is on the rise and they are commonly
used for hydrological applications. A comprehensive evaluation on their performance in hydrologi-
cal modeling is required to improve their performance. This study comprehensively evaluates the
performance of eight widely used PPs in hydrological modeling by comparing with gauge-observed
precipitation for a large number of catchments. These PPs include the Global Precipitation Climatol-
ogy Centre (GPCC), Climate Hazards Group Infrared Precipitation with Station dataset (CHIRPS)
V2.0, Climate Prediction Center Morphing Gauge Blended dataset (CMORPH BLD), Precipitation
Estimation from Remotely Sensed Information using Artificial Neural Networks Climate Data Record
(PERSIANN CDR), Tropical Rainfall Measuring Mission multi-satellite Precipitation Analysis 3B42RT
(TMPA 3B42RT), Multi-Source Weighted-Ensemble Precipitation (MSWEP V2.0), European Center
for Medium-range Weather Forecast Reanalysis 5 (ERA5) and WATCH Forcing Data methodology
applied to ERA-Interim Data (WFDEI). Specifically, the evaluation is conducted over 1382 catchments
in China, Europe and North America for the 1998-2015 period at a daily temporal scale. The reliabili-
ties of PPs in hydrological modeling are evaluated with a calibrated hydrological model using rain
gauge observations. The effectiveness of PPs-specific calibration and bias correction in hydrological
modeling performances are also investigated for all PPs. The results show that: (1) compared with
the rain gauge observations, GPCC provides the best performance overall, followed by MSWEP
V2.0; (2) among the eight PPs, the ones incorporating daily gauge data (MSWEP V2.0 and CMORPH
BLD) provide superior hydrological performance, followed by those incorporating 5-day (CHIRPS
V2.0) and monthly (TMPA 3B42RT, WFDEI, and PERSIANN CDR) gauge data. MSWEP V2.0 and
CMORPH BLD perform better than GPCC, underscoring the effectiveness of merging multiple satel-
lite and reanalysis datasets; (3) regionally, all PPs exhibit better performances in temperate regions
than in arid or topographically complex mountainous regions; and (4) PPs-specific calibration and
bias correction both can improve the streamflow simulations for all eight PPs in terms of the Nash
and Sutcliffe efficiency and the absolute bias. This study provides insights on the reliabilities of PPs
in hydrological modeling and the approaches to improve their performance, which is expected to
provide a reference for the applications of global precipitation datasets.

Keywords: global precipitation datasets (PPs); precipitation evaluation; hydrological modeling;
PPs-specific calibration; bias correction

1. Introduction

Precipitation is closely related to atmospheric circulation and is a critical compo-
nent of hydrological cycle [1–3]. Accurate precipitation records are not only essential
for meteorological and climatic analysis but also the keys for successful water resource
management [4,5]. However, acquiring reliable and consistent precipitation series is
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a challenging task throughout the world. The advent of global precipitation datasets (PPs)
including gauge-based, satellite-related, and reanalysis datasets, brings an unprecedented
opportunity for precipitation estimation and hydrological application.

However, these PPs differ in design objective, data sources, spatial resolution, spatial
coverage, temporal resolution, temporal span, and latency. Consequently, evaluations have
been carried out to understand the respective advantages and limitations of PPs [6,7].

There has been a plethora of literature addressing the evaluation of PPs through
ground truthing, referring to comparing PPs against rain gauge observations [8–11] or
gauge-adjusted radar fields [12,13]. For example, Bosilovich and Chen [14] evaluated
the strengths and weakness of five reanalysis precipitation datasets, compared with two
observed datasets. They found that the National Centers for Environmental Prediction–
National Center for Atmospheric Research (NCEP–NCAR) reanalysis [15], and the Hadley
circulation in the 40-yr European Centre for Medium-Range Weather Forecasts (ECMWF)
reanalysis (ERA-40) [16] could, respectively, well capture spatial patterns of observed
precipitation in some ocean regions and Northern Hemisphere continents. In addition,
the Japanese 25-year reanalysis (JRA-25) [17] showed good performances in the Northern
Hemisphere continents and the tropical oceans but contained distinct variation according
to the available observing systems. In addition, Beck and Pan [18] evaluated 26 daily
precipitation datasets using Stage-IV gauge-radar data across the CONUS for the 2008–2017
period. They found that Multi-Source Weighted-Ensemble Precipitation (MSWEP) V2.2 [19]
and European Centre for ECMWF Reanalysis 5 High Resolution (ERA5-HRES) [20], re-
spectively, showed better performances among the 11 gauge-corrected datasets and the
15 uncorrected datasets.

Further, the hydrological evaluation of PPs by assessing their capabilities to reproduce
the observed streamflow continues to gain popularity amongst researchers [21–23]. For
example, Li and Chen [24] analyzed the hydrological utility of the Integrated Multi-satellite
Retrievals for Global Precipitation Measurement (GPM IMERG) [25] precipitation datasets
in a mountainous region in southern China based on a semi-distributed hydrological model.
Their results showed the potential of the IMERG dataset for hydrological modeling in
tropical mountain watersheds where information is scarce. In addition, Beck and Ver-
gopolan [26] evaluated nine gauge-corrected PPs in hydrological modeling by calibrating a
conceptual hydrological model against streamflow records from 9053 catchments world-
wide, and found that the PPs incorporating daily gauge data generally provided better
calibrating scores, while the good performance was unlikely to translate to sparsely or
ungauged regions.

However, among the hydrological applications of PPs that have been conducted re-
cently, most show an equal or inferior performance compared with those using rain gauge
observations [26–28]. This might be due to the precipitation errors that exist in PPs, which
could be amplified or dampened in hydrological modeling [29,30]. Therefore, researchers
usually impose a bias correction of PPs to reduce the precipitation bias, or specifically
calibrate the hydrologic model to each PPs (PPs-specific calibration) against observed
streamflow to overcome the precipitation bias through the calibration process. For instance,
Hughes [31] reported a preliminary analysis of the potential for hydrological modeling
using satellite-related precipitation estimates over four catchments in the southern Africa
region. They found that the satellite data could not reflect the strong influences on precipi-
tation of topography in some of the catchments unless adjustments were applied to it. In
the study over four catchments in Italy, Ciabatta and Brocca [32] found that the Tropical
Rainfall Measurement Mission (TRMM) Multi-satellite Precipitation Analysis (TMPA) [33]
3B42RT dataset could improve the performance of a simple hydrological model after
bias correction. Behrangi and Khakbaz [21] conducted a hydrological modeling using
five satellite-based precipitation datasets in a mid-size catchment in South US, and found
that the streamflow pattern could be well captured at both 6 h and monthly time scales
when employing PPs-specific calibration.
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According to previous studies, the general finding is that there exist large uncer-
tainties in PPs and hydrological applications driving with different PPs, highlighting the
importance of evaluation and improvement of which for research and operational appli-
cations alike. However, most of these studies evaluated only a subset of the available
PPs, either focused on satellite [27,34,35] or reanalysis [14,36,37] within limited regions
and time periods [21,35,38], leading to a lack of comprehensive results. Although Beck
and Vergopolan [26] evaluated nine global precipitation datasets in hydrological modeling
over 9053 catchments worldwide and generated comprehensive results to a certain extent,
they did not include the bias correction approach which had been widely used to improve
hydrological performances. What is more, although there have been many studies applying
the PPs-specific calibration or bias correction method when using PPs for hydrological
modeling, few studies focus on the comparison between these two approaches.

Therefore, this study focuses on the evaluation of eight widely used PPs (see Table 1 for
overview) during the 1998–2015 period at a daily temporal scale. The specific objectives of
this study are: (1) to evaluate the eight PPs by comparing with gauge-observed precipitation
over 1382 catchments; (2) to evaluate the reliabilities of PPs for hydrological modeling
with calibrated hydrological model using rain gauge observations; and (3) to investigate
the effectiveness of bias correction and PPs-specific calibration in hydrological modeling
performances. The ultimate goal of this study is to put insight on the reliabilities of PPs as
well as their performances in hydrological modeling.

2. Datasets

Table 1 presents all datasets used in this study, including the eight PPs for precipitation
evaluation and the other meteorological datasets for hydrological modeling, i.e., gauge-
observed precipitation, temperature and the gridded potential evaporation data, as well as
the daily streamflow data used for hydrological model calibration. In this study, all the
gridded datasets were interpolated to catchment-averaged values by using the Thiessen
Polygon method [39] for hydrological modeling. The interpolation was executed on
a daily time step for the 17-year time period (1998–2015). Considering the data quality and
availability of ground observations, the evaluation was carried out over 1382 catchments
in China, Europe and North America.

Table 1. Overview of the datasets used in this study.

Type Name (Details) Category Temporal/Spatial
Resolution

Temporal
Coverage Reference or Link

Global Precipitation
Datasets

GPCC (Global Precipitation
Climatology Centre) G Daily/global 0.5◦ 1982–2016 Schneider, Fuchs [40]

CHIRPS V2.0 (Climate-Hazards
Group Infrared

Precipitation V2.0)
S/R/G Daily/50N-50S 0.25◦ 1981–now Peterson, Funk [41]

CMORPH BLD (Climate
Prediction Center Morphing

Technique, Gauge
Blended dataset)

S/G 30 min/global 0.25◦ 1998–now Joyce, Janowiak [42]

PERSIANN CDR (Precipitation
Estimation from Remotely
Sensed Information Using
Artificial Neural Networks

dataset, Climate Data Record)

S/G Daily/60N-60S 0.25◦ 2003–now Ashouri, Hsu [43]

TMPA 3B42RT (Tropical Rainfall
Measuring Mission multi-satellite

Precipitation Analysis 3B42RT)
S/G 3-hourly/50N-50S 0.25◦ 1998–now Huffman, Bolvin [33]

MSWEP V2.0 (Multi-Source
Weighted-Ensemble
Precipitation V2.0)

S/R/G 3-hourly/global 0.25◦ 1979–now Beck, Van Dijk [19]

ERA5 (European Center for
Medium-range Weather Forecast

Reanalysis 5)
R Hourly/global 0.5◦ 1979–now Hersbach, Bell [20]

WFDEI (WATCH Forcing Data
(WFD) methodology applied to

ERA-Interim Data)
R/G 3-hourly/global 0.5◦ 1979–2016 Weedon, Balsamo [44]
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Table 1. Cont.

Type Name (Details) Category Temporal/Spatial
Resolution

Temporal
Coverage Reference or Link

Gauge-observed
Precipitation,
Temperature

CGRD/CGTD (China Ground
Rainfall/temperature Daily

Value 0.5◦×0.5◦ Lattice Dataset)
— Daily/0.5◦ 1961–2015

http://data.cma.cn,
accessed on 16

July 2021

E-obs (European high-resolution
gridded dataset) — Daily/0.5◦ 1950–2017 Haylock, Hofstra [45]

CANOPEX (Canadian model
parameter experiment database);

Santa Clara database
— Daily/catchment averaged — Arsenault, Bazile [46];

Maurer, Wood [47]

Gridded Potential
Evaporation Data

GLEAM (Global Land
Evaporation Amsterdam Model) — Daily/global 0.5◦ 1980–2018 Martens, Miralles [48]

Observed Streamflow

Streamflow-gauging stations
in China — Daily/station — —

GRDC (Global Runoff
Data Centre) — Daily/station —

http://grdc.bafg.de,
accessed on 16

July 2021

CANOPEX; USGS (United States
Geological Survey database) — Daily/station — Arsenault, Bazile [46];

Falcone, Carlisle [49]

Note: abbreviations in the data source column defined as follows: G, gauge; S, satellite; R, reanalysis.

2.1. Global Precipitation Datasets

There are eight PPs evaluated in this study, including one gauge-based dataset: Global
Precipitation Climatology Centre (GPCC); five satellite-related datasets: Climate Hazards
Group Infrared Precipitation with Station dataset (CHIRPS) V2.0, Climate Prediction Center
Morphing (CMORPH) Gauge Blended dataset (CMORPH BLD), Precipitation Estimation
from Remotely Sensed Information using Artificial Neural Networks (PERSIANN) Climate
Data Record (PERSIANN CDR), TMPA 3B42RT, and MSWEP V2.0; and two reanalysis
datasets: ERA5, and WATCH Forcing Data methodology (WFD) applied to ERA-Interim
Data (WFDEI). The evaluation was conducted during the common period of the eight PPs,
which was 1998–2015.

GPCC is the largest gauge-based dataset, and was developed to collect, perform
quality control on, and analyze rain gauge data across the globe.

Satellite-related datasets use polar-orbiting passive microwave (PMW) sensors on
low-Earth-orbiting satellites and geosynchronous infrared (IR) sensors on geostationary
satellites to estimate precipitation [4,6], and usually blend rain gauge data to offset their
limited abilities [50]. In specific, PERSIANN CDR and TMPA 3B42RT mainly respectively
applied IR data and PMW data, while the other three integrated both IR and PMW data.
MSWEP V2.0 and CMORPH BLD directly incorporated daily gauge data, CHIRPS V2.0
incorporated 5-day gauge data, and TMPA 3B42RT and PERSIANN CDR incorporated
monthly gauge data.

Reanalysis-based datasets are designed to generate various meteorological variables
with a consistent spatial and temporal resolution by assimilating observations such as
weather stations, satellites, ships, and buoys based on different climate models. ERA5
is the fifth generation of atmospheric reanalysis data to replace ERA-Interim produced
by ECMWF, assimilating observations from over 200 satellite instruments or types of
conventional data and information on rain rate from ground-based radar-gauge composite
observations. WFDEI was generated by applying WFD to the ERA-Interim reanalysis data,
and used the monthly GPCC in bias correction.

2.2. Other Meteorological Datasets

In the study, we used the gauge-observed precipitation to evaluate the PPs, as well
as to calibrate the hydrological model together with the observed temperature. More
specifically, we used the gauge-observed precipitation and temperature in China, which
came from the China Ground Rainfall/temperature Daily Value 0.5◦ × 0.5◦ Lattice Dataset
(CGRD/CGTD) (http://data.cma.cn, accessed on 16 July 2021). The CGRD/CGTD was
generated by interpolating daily observed precipitation/temperature from more than

http://data.cma.cn
http://grdc.bafg.de
http://data.cma.cn
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2000 meteorological stations in China, the reliability of which has been proved by Zhao
and Zhu [51]. In addition, the gauge-observed precipitation and temperature used in Eu-
rope were the E-OBS [45], which was a European high-resolution gridded dataset derived
from the Europe Climate Assessment & Dataset (ECA&D). The ECA&D forms the strong
backbone of the E-OBS since it collects 66865 series of observations at 19087 meteorological
stations throughout Europe. Furthermore, the observations used in North America were
from a combination of Canadian and United States databases. For Canada, hydrometeo-
rological data and boundary data were from the Canadian model parameter experiment
(CANOPEX) database [46]. For US, precipitation and temperature were from the Santa
Clara database [47] and streamflow and boundary data were from the United States Geo-
logical Survey (USGS) database [49]. Those observed precipitation and temperature data
were catchment averaged.

The Global Land Evaporation Amsterdam Model (GLEAM) is a set of algorithms
estimating different components of land evaporation [52], whose gridded potential evapo-
ration data was used as an input of the hydrological model for hydrological modeling in
this study. The reliability of GLEAM has been tested by Martens and Miralles [48].

2.3. Observed Streamflow

The observed streamflow and boundary data for Chinese catchments were collected
from different streamflow-gauging stations. For Europe, they came from the most complete
in-situ discharge dataset freely available to the global scientific community, the Global
Runoff Data Center (GRDC) dataset (http://grdc.bafg.de, accessed on 16 July 2021). The
GRDC is known as the most accurately measured component of the water cycle since it is
dedicated to collecting and archiving river discharge data globally [53]. For North America,
the observed streamflow and boundary data were from the CANOPEX database and the
USGS database mentioned above.

The following two criteria were used to select suitable catchments for hydrological
modeling: (1) the catchment area is >2500 km2 and <50,000 km2. The former is to pre-
vent catchments unrepresentative of the 0.5◦ grid cells (2500 km2 at 0◦ latitude) from
confounding the results and the latter is to reduce the error of catchment averaged values
extracted from gridded datasets. (2) The time series of streamflow has to be ≥5 years (can
be intermittent) during 1998–2015. Therefore, 232, 184 and 966 catchments were selected
from China, Europe and North America, respectively.

3. Methods

The workflow of this study is illustrated below, and more details of the hydrological
model (Xin’anjiang (XAJ) model) and the methods applied for evaluation of PPs are
described in Sections 3.1–3.3.

(1) PPs evaluation was conducted by comparison with the rain gauge observations
over the selected catchments. In addition, we applied a bias correction method
to PPs and obtained “bias corrected-PPs” (BC-PPs), which were also conducted in
the comparison.

(2) The hydrological model calibration was firstly performed driven by rain gauge obser-
vations, and the calibrated parameter set was referred to as the “Reference Parameter-
sets” (RP). The performance of hydrological model calibration served as a benchmark
value for later hydrological modeling driving by the eight PPs.

(3) The performances of hydrological modeling with the PPs were evaluated in the
following three steps: in step 1, the reliability of PPs for hydrological modeling
was investigated by running the model with RP in the calibration period; in step
2, a hydrological model was calibrated by each PPs, which was called PPs-specific
calibration, and then their performances were compared with the benchmark value; in
step 3, the BC-PPs were used to drive the hydrological model based on the RP in the
calibration period and their performances were compared with the benchmark value.

http://grdc.bafg.de
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3.1. XAJ Model

The XAJ model [54] is a conceptual rainfall-runoff model which has been widely used
in China and many other countries for streamflow simulations [55–57]. Figure 1 shows the
flowchart of this deterministic lumped model. The calculation process of the XAJ consists
of four parts: the evaporation module, the runoff yielding module, the runoff sources
partition module, and the runoff concentration module. The evaporation is calculated in
three soil layers, including an upper layer, a lower layer and a deep layer, based on the
watershed saturation-excess runoff theory. The storage curve calculates the total runoff
based on the concept of runoff formation on repletion of storage, which means that runoff
is not generated until soil moisture reaches the filled capacity. By using a free water
capacity distribution curve, the total runoff is divided into three components including
surface runoff, interflow and groundwater runoff. The surface runoff is routed by the
unit hydrograph, the interflow and groundwater flow are routed by the linear reservoir
method. There are 15 parameters within the XAJ model, four accounting for evaporation,
two accounting for runoff generation and nine accounting for runoff routing. More details
can be found in Zhao [54]. In addition, the CemaNeige module is added to the XAJ
model to simulate the snow accumulation and snowmelt processes since the lack of a snow
component in XAJ limits its applicability in snow-dominated watersheds. The CemaNeige
module separates precipitation into rainfall and snowfall and calculates the snowmelt
based on a degree-day method, which has two parameters to be calibrated [58]. Overall,
the XAJ model used in this study contains 17 parameters.

Figure 1. Flowchart of the XAJ model.

XAJ requires catchment averaged precipitation, temperature and potential evaporation
as inputs. For each catchment, the XAJ model was calibrated by the first 70% of observed
streamflow data (using the first year as warm-up) and validated by the last 30%. The
calibration was performed using the SCE-UA algorithm [59] to optimize model parameter-
sets based on the objective function of the Nash and Sutcliffe efficiency (NSE) [60].

3.2. Bias Correction Method

A distribution-based bias correction method called the Daily Bias Correction (DBC)
method [61] was applied to correct the catchment averaged precipitation for each PPs
in the study. The DBC is a hybrid method combining the Local Intensity Scaling (LOCI)
method [62] to correct the precipitation occurrence and the Daily Translation (DT)
method [63] to correct the frequency distribution of precipitation. Here are the two steps of
the DBC method used in this study:
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(1). The LOCI method was used to correct the precipitation occurrence, which ensured
that the frequency of the precipitation occurrence estimated by PPs equaled to that of
the observed data for a specific month.

(2). The DT method was then used to correct the empirical distribution of PPs-estimated
precipitation magnitudes in terms of 100 quantiles from 0.01 to 1 with an interval
of 0.01.

3.3. Performance Evaluation Indices

The evaluation of PPs was conducted using the gauge-observed precipitation over the
selected catchments based on three statistical indices as follows:

(1) The Pearson linear correlation coefficient (R) is used to assess the agreement between
3-day means of PPs and gauge-observed precipitation as follows:

R =
∑m

j−1 (oj − o)(pj − p)√
∑m

j−1 (oj − o)2
√

∑m
j−1 (pj − p)2

(1)

where oj and pj are the 3-day mean PPs and gauge-observed precipitation time series,
respectively. o and p are the average of all the 3-day means of PPs and gauge-observed
precipitation, respectively. m is the length of 3-day mean time series. The R ranges
from −∞ to 1 and a larger R represents a better performance. Note that the R is
calculated for 3-day mean rather than daily precipitation estimates, as Beck and
Vergopolan [26] did, which is done to reduce the impact of the issue with gauge
reporting times (i.e., the start and end times of the daily accumulations).

(2) The relative bias ratio (RB) is used to assess the systematic bias of precipitation
estimates of PPs and it is also used to assess the systematic bias of the simulated
discharge as follows:

RB =
∑n

i−1 (Pi − Oi)

∑n
i−1 Oi

× 100% (2)

where Oi and Pi are the daily values of the ith day for the gauge-observed precipitation
and the PPs, respectively. O and P are the average of all the daily values for the gauge-
observed precipitation and the PPs, respectively. n is the number of days. The RB
ranges from -∞ to ∞ and the best result is 0.

(3) The root mean square error (RMSE) is used to assess the difference between PPs and
gauge-observed precipitation as follows:

RMSE =

√
∑n

i−1 (Oi − Pi)
2

n
(3)

The RMSE ranges from 0 to ∞ and a smaller RMSE represents a better performance.

The hydrological performances of PPs are evaluated by calculating NSE index between
the observed and simulated discharge. The NSE is shown as follows:

NSE = 1 − ∑n
i−1 (Q

obs
i − Qsim

i )
2

∑n
i−1 (Q

obs
i − Qobs

)
2 (4)

where Qobs
i and Qsim

i are the daily values of the ith day for the observed and simulated

streamflow, respectively. Qobs is the average of all the daily values for the observedstream-
flow. The NSE ranges from −∞ to 1 and a larger NSE represents a better performance.
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4. Results and Discussion
4.1. Evaluation of Precipitation Estimates

In this Section, the PPs and BC-PPs are compared with the gauge-observed precipita-
tion over 1382 catchments for the 1998-2015 period. Figure 2 presents the performances
in terms of the R calculated for 3-day means (R3day), RB and RMSE. It shows that GPCC
is superior to other PPs in terms of both R3day (median: 0.83) and RMSE (median: 4.54),
and the absolute RB (median: 2.40) which is only larger than that of MSWEP V2.0 (median:
0.81). The good performance of GPCC is in line with the study of Schneider, Becker [64],
and is attributed to it is the largest gauge-based dataset, with data collected from more than
70,000 different stations worldwide [40]. Note that the use of R3day can only reduce but
cannot completely eliminate the impact of reporting time issues. Therefore, it is possible
that the good performance of GPCC is also attributed to the similar time shifts between
the reference observations and GPCC. The MSWEP V2.0 appears to perform better than
the remaining six PPs in terms of the median value of three indices (R3day of 0.82, absolute
RB of 0.81, RMSE of 5.21), underscoring the effectiveness of merging multiple satellite and
reanalysis datasets, which is in agreement with the finding of Beck and Vergopolan [26].
The ERA5 performs well in terms of R3day (median: 0.80) and RMSE (median: 4.92) but
attains the worst absolute RB (median: 7.89). The larger relative biases in precipitation
estimates from ERA5 are inconsistent with the findings of Jiang and Li [65]. The MSWEP
V2.0, GPCC and CHIRPS V2.0 attain better RB scores, which are attributed to the use of
gauge-based Climate Hazards Center’s Precipitation Climatology (CHPclim) dataset [66]
or Global Climate Data (WorldClim) [67] to determine their long-term mean. The me-
dian scores of R3day, absolute RB and RMSE for the eight BC-PPs are 0.67~0.83, 0.07~3.12,
and 4.84~5.63, respectively, which shows generally better performance than that from the
eight raw-PPs.

Figure 2. Boxplots of (a) R calculated for 3-day means (R3day), (b) RB and (c) RMSE for the eight PPs using gauge-observed
precipitation from 1382 catchments as a reference. The circles represent the median value, and the left and right edges of the
box represent the 25th and 75th percentile values, respectively, while the “whiskers” represent the extreme values.
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Figure 3 presents the spatial patterns of R3day between eight PPs and rain gauge
observations (see the Appendix A for Spatial patterns of RB and RMSE). It shows that
GPCC and MSWEP V2.0 exhibit R3day scores higher than 0.8 over most of these catchments.
While PERSIANN CDR exhibits generally poor performances, which is consistent with the
finding of previous evaluations [11,68] that IR-based datasets perform worse than PMW-
based ones in precipitation estimation. The two reanalysis datasets, ERA5 and WFDEI,
exhibit very similar performance. Regionally, PERSIANN CDR, CHIRPS V2.0, and TMPA
3B42RT perform relatively worse in Europe with median R3day scores of 0.49, 0.58 and 0.59.
For China and North America, respectively, the worst performances for both are attained by
PERSIANN CDR with median R3day scores of 0.64 and 0.69. All these PPs show relatively
higher R3day scores over Western Europe, Eastern US and Southeastern China, where the
density of observations is relatively high. Conversely, all exhibit worse performances over
topographically complex regions such as the Balkan region, Southwestern China and the
Andes. In terms of R3day, RB and RMSE, there generally exist larger discrepancies among
the eight PPs over topographically complex mountainous regions, implying difficulties in
estimating precipitation in these regions [11].

Figure 3. Spatial patterns of the R calculated for 3-day means (R3day) for the eight PPs ((a) GPCC, (b) CHIRPS V2.0,
(c) CMORPH BLD, (d) MSWEP V2.0, (e) PERSIANN CDR, (f) TMPA 3B42RT, (g) ERA5, (h) WFDEI) using gauge-observed
precipitation from 1382 catchments as a reference. Each data point represents a catchment centroid.
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4.2. Evaluation of Hydrological Modeling
4.2.1. Benchmark Performance of Streamflow Simulation with Gauge-Observed Precipitation

In this Section, the XAJ model is calibrated by using rain gauge observations over
1382 catchments to test its performance and to provide the benchmark value for subsequent
hydrological modeling with eight PPs. Figure 4 presents the spatial patterns and Cumula-
tive Distribution Function (CDF) of NSE for both calibration and validation periods. The
CDF of NSE shows that the median NSE scores are 0.79 and 0.66 for the calibration and
validation periods, respectively. The spatial patterns of NSE show that the XAJ model
driven by rain gauge observations can achieve good performances over most catchments,
although there are relatively low NSE scores over the US Great Plains, which might be due
to the spatially-temporally highly intermittent rainfall regime combined with a strongly
nonlinear rainfall–runoff response, and over the Balkan region, which is presumably due
to the low E-OBS rain-gauge density. In general, the results demonstrate satisfactory per-
formance of the XAJ model based on the observations, which can be served as a benchmark
for the hydrological performance evaluation of PPs.

Figure 4. Spatial pattern and Cumulative Distribution Function (CDF) of NSE obtained by running XAJ with gauge-observed
precipitation over 1382 catchments. (a,b) are for the calibration period, (c,d) are for the validation period.

4.2.2. Evaluation of Streamflow Simulations with Eight PPs

In this Section, the evaluations of streamflow simulations with eight PPs are based
on three steps (see Section 3 for details). Table 2 presents the median NSE scores of eight
PPs in reproducing the observed streamflow over 1382 catchments for all three steps.
Figure 5 shows the CDF of NSE scores. It should be noted that CDF of steps 1~3 (solid line)
is derived for the calibration period, and CDF of ‘validation’ (dashed line) refers to the
performances for the validation period when applying PPs-specific calibration (in step 2).
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Table 2. Median NSE scores of the eight PPs for hydrological modeling based on three steps.

GPCC CHIRPSV2.0 CMORPH BLD MSWEPV2.0 PERSIANNCDR TMPA 3B42RT ERA5 WFDEI

Step 1 0.58 0.50 0.59 0.63 0.35 0.38 0.50 0.44
Step 2 0.71 0.67 0.72 0.76 0.58 0.63 0.67 0.61
Step 3 0.62 0.56 0.61 0.65 0.47 0.53 0.59 0.49
Step 2’ 0.13 0.17 0.13 0.12 0.24 0.25 0.17 0.17
Step 3’ 0.04 0.05 0.03 0.02 0.12 0.15 0.09 0.06

Step 2’ and step 3’ are the absolute improvements of NSE obtained by step 2 and step 3, respectively, compared with step 1.

Figure 5. Cumulative Distribution Function (CDF) of NSE obtained by running XAJ with the eight PPs ((a) GPCC,
(b) CHIRPS V2.0, (c) CMORPH BLD, (d) MSWEP V2.0, (e) PERSIANN CDR, (f) TMPA 3B42RT, (g) ERA5, (h) WFDEI)
over 1382 catchments based on 3 steps of hydrological modeling. The dash line refers to the validation when PPs-specific
calibration is used.

Table 2 shows that the overall performance ranking of the PPs in step 1 from best
to worst is MSWEP V2.0, CMORPH BLD, GPCC, CHIRPS V2.0, ERA5, WFDEI, TMPA
3B42RT and PERSIANN CDR. This indicates that the datasets incorporating daily gauge
data (i.e., MSWEP V2.0, and CMORPH BLD) overall outperform those incorporating 5-
day (i.e., CHIRPS V2.0) or monthly (i.e., TMPA 3B42RT, WFDEI, and PERSIANN CDR)
gauge data. In comparison with GPCC, the superior performances of MSWEP V2.0 and
CMORPH BLD also underscore the effectiveness of incorporating multiple satellite and
reanalysis datasets.

In step 2, the hydrological modeling performances of the eight PPs are overall im-
proved by PPs-specific calibration, with the highest NSE score for MSWEP V2.0 and the
lowest NSE score for PERSIANN CDR, which is consistent with the (highest and lowest)
performance ranking from step 1. Nevertheless, the absolute improvement is larger for the
PPs with poor performances (i.e., TMPA 3B42RT, and PERSIANN CDR) than those with
good performances (i.e., MSWEP V2.0, CMORPH BLD, and GPCC) in step 1. In addition,
the bias correction in step 3 also improves the hydrological modeling performance for all
PPs, with large improvement for those with large biases (i.e., TMPA 3B42RT, PERSIANN
CDR and ERA5), which can be seen in Figure 2b. However, the effect of bias correction is
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negligible for the PPs with good performances in step 1 (i.e., MSWEP V2.0, CMORPH BLD,
and GPCC). It can also be seen that the CDFs in steps 2 and 3 have consistently higher NSE
scores than that in step 1, i.e., the mean median values of NSE are 0.50, 0.67, and 0.56 from
steps 1,2 and 3, respectively. This demonstrates that the PPs used in this study can result in
better performances of hydrological modeling after applying a PPs-specific calibration or
bias correction method.

According to studies of Moriasi and Arnold [69] and Knoben and Freer [70], stream-
flow simulation can be considered to be satisfactory if NSE > 0.5. Based on that, the
XAJ driven by gauge-observed precipitation can provide satisfy performances over 90%
catchments in the calibration (Figure 4a) and 70% catchments in the validation period
(Figure 4c). As for the hydrological modeling performances of PPs, in step 1, there are
approximately 20% (PERSIANN CDR, blue line in Figure 5e) ~70% (MSWEP V2.0, blue
line in Figure 5d) catchments above the corresponding threshold for NSE. There are more
than 70% (PERSIANN CDR, red line in Figure 5e) ~90% (GPCC, red line in Figure 5a),
and 40% (PERSIANN CDR, green line in Figure 5e) ~75% (MSWEP V2.0, green line in
Figure 4d) catchments above the corresponding threshold in step 2 and step 3, respectively.
Figure 5 also shows the hydrological modeling performances during the validation period
when PPs-specific calibration is used. There are about 40% (PERSIANN CDR, dash line in
Figure 5e) ~70% (MSWEP V2.0, dash line in Figure 5d) catchments above the corresponding
threshold. The results above indicate that the PPs have good potential for hydrological
modeling, which is consistent with recent findings [71,72]. What is more, the best perfor-
mance of MSWEP V2.0 among the PPs shows that, to a certain extent, it can be used as an
alternative forcing to hydrological modeling of XAJ where a lack of gauge precipitation
observations exists.

Figure 6 presents the spatial patterns of NSE for the eight PPs obtained by running
XAJ with ‘RP’ (step 1). MSWEP V2.0, GPCC and CMORPH BLD generally exhibit good
performances in Eastern US, Southeastern China, Northern and Western Europe, even with
MSWEP V2.0 and GPCC outperforming the gauge-observed precipitation in Europe. All
the PPs provide low NSE scores over the US Great Plains, especially for GPCC, PERSIANN
CDR, TMPA 3B42RT, and WFDEI (<0.2), which is consistent with previous findings using
different hydrological models and precipitation datasets [26,71]. Low NSE scores are also
found for CHIRPS V2.0, TMPA 3B42RT and ERA5 in China, and for PERSIANN CDR in
both China and Europe. There are some PPs performing better than others regionally, but
there is no one outperforming everywhere. For instance, MSWEP V2.0 generally shows
better performances in most places, but it tends to perform worse than PERSIANN CDR in
the northern part of Rocky Mountains. For each PPs, the NSE scores are relatively higher
in temperate regions than in arid or topographically complex mountainous regions, due to
the sparse rain-gauge networks and the highly non-linear rainfall-runoff response.

Figure 7 shows the PPs with the highest improvement in NSE by applying PPs-specific
calibration (step 2) and bias correction (step 3) relative to step 1. The spatial pattern of
the PPs with the largest improvement in NSE by using PPs-specific calibration (Figure 7a)
is similar with that by using bias correction (Figure 7b). There are higher improvements
for ERA5, WFDEI, PERSIANNCDR and TMPA 3B42RT over Southeastern US, Northern
Europe, Western Europe and most watersheds in China, respectively. This is in accordance
with the observation that these datasets show worse initial performances over these regions.
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Figure 6. Spatial patterns of NSE for the eight PPs ((a) GPCC, (b) CHIRPS V2.0, (c) CMORPH BLD, (d) MSWEP V2.0,
(e) PERSIANN CDR, (f) TMPA 3B42RT, (g) ERA5, (h) WFDEI) obtained by running XAJ with ‘RP’ over 1382 catchments
(step 1).

In addition, RB is used to further explore whether the PPs can be used to estimate
the annual streamflow and the results are shown in Figure 8. The RB derived from gauge-
observed precipitation (Obs) is also displayed, which provides a satisfied estimation for
the annual streamflow with a slight underestimation. The MSWEP V2.0 with the highest
NSE values (median: 0.63) has the lowest error in annual streamflow (median: −1.63). The
good performance of MSWEP V2.0 in terms of both NSE and RB indicate that we can use
MSWEP V2.0 as an alternative precipitation data source for hydrologic modeling when
facing a lack of gauge precipitation observations. For the eight PPs, the median values of
absolute RB in step 2 (mean: 4.57) and step 3 (mean: 6.94) are lower than that in step 1
(mean: 9.32). This demonstrates that specific calibration and bias correction can effectively
improve the abilities of the PPs in the annual streamflow estimates.
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Figure 7. For each catchment, the PPs with the highest improvement by applying (a) PPs-specific calibration (step 2) and
(b) bias correction (step 3), compared with the NSE obtained by running XAJ with ‘RP’ (step 1).

Figure 8. Boxplots of RB for annual streamflow volume simulated by gauge-observed precipitation (Obs) and the eight PPs,
with the observed streamflow over 1382 catchments as a reference. Boxplot representation is the same as Figure 1.

5. Conclusions

This study comprehensively evaluated eight widely used PPs including GPCC,
CHIRPS V2.0, CMORPH BLD, PERSIANN CDR, TMPA 3B42RT, MSWEP V2.0, ERA5
and WFDEI in hydrological modeling over 1382 catchments in China, Europe and North
America during the 1998-2015 period at a daily temporal scale. The PPs-specific calibration
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and bias correction method has also been included in the hydrological evaluation and
discussion. The following conclusions can be drawn:

(1) Compared with the gauge-observed precipitation, GPCC provides the best perfor-
mance overall, followed by MSWEP V2.0, which is merged based on multiple satellite
and reanalysis datasets.

(2) Among all the PPs, MSWEP V2.0 and CMORPH BLD, which incorporate daily gauge
data provide superior hydrological performance, followed by those incorporating
5-day (CHIRPS V2.0) and monthly (TMPA 3B42RT, WFDEI, and PERSIANN CDR)
gauge data. MSWEP V2.0 and CMORPH BLD perform better than GPCC, underscor-
ing the effectiveness of merging multiple satellite and reanalysis datasets.

(3) Regionally, all PPs exhibit better performances in temperate regions than in arid or
topographically complex mountainous regions, due to the sparse rain-gauge networks
and the highly non-linear rainfall-runoff response. Uncertainty exists in the regional
performances of all the PPs.

(4) PPs-specific calibration and bias correction both can improve the streamflow simula-
tions for all eight PPs in terms of the Nash and Sutcliffe efficiency and the absolute
bias. The improvements in hydrological modeling performances are larger for the
PPs with poor performances.

Overall, this study investigates the reliabilities of PPs in hydrological applications, as
well as the approaches to improve their hydrological modeling performances. There are
still some limitations. For example, the catchments are located in China, Europe and North
America with dense rain-gauge networks and these conclusions may not generalize to
regions with sparse rain-gauge networks. In addition, some different results may be derived
when using another hydrological model, calibration objective function or temperature or
evaporation forcing. These problems therefore should be investigated in future studies to
generalize the conclusions in this study.
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Appendix A

Figure A1. Spatial patterns of RB for the eight PPs using gauge-observed precipitation from 1382 catchments as a reference.
Each data point represents a catchment centroid.
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Figure A2. Spatial patterns of RMSE for the eight PPs using gauge-observed precipitation from 1382 catchments as
a reference. Each data point represents a catchment centroid.
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