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Abstract: When in orbit, spliced satellite optical cameras are affected by various factors that degrade
the actual image stitching precision and the accuracy of their data products. This is a major bottleneck
in the current remote sensing technology. Previous geometric calibration research has mostly focused
on stitched satellite images and has largely ignored the inter-chip relationship among original multi-
chip images, resulting in accuracy loss in geometric calibration and subsequent image products.
Therefore, in this paper, a novel geometric calibration method is proposed for spliced satellite
optical cameras. The integral geometric calibration model was developed on inter-chip geometry
constraints among multi-chip images, including the corresponding external and internal calibration
models. The proposed approach improves uncontrolled geopositioning accuracy and enhances
mosaic precision at the same time. For evaluation, images from the optical butting satellite ZiYuan-3
(ZY-3) and mechanical interleaving satellite Tianhui-1 (TH-1) were used for the experiments. Multiple
sets of satellite data of the Songshan Calibration field and other regions were used to evaluate
the reliability, stability, and applicability of the calibration parameters. The experiment results
found that the proposed method obtains reliable camera alignment angles and interior calibration
parameters and generates high-precision seamless mosaic images. The calibration scheme is not only
suitable for mechanical interleaving cameras with large geometric displacement among multi-chip
images but is also effective for optical butting cameras with minor chip offset. It also significantly
improves uncontrolled geopositioning accuracy for both types of spliced satellite images. Moreover,
the proposed calibration procedure results in multi-chip satellite images being seamlessly stitched
together and mosaic errors within one pixel.

Keywords: geometric calibration; inter-chip geometry constraints; optical butting camera; mechanical
interleaving camera; ZiYuan-3 (ZY-3) satellite; Tianhui-1 (TH-1) satellite

1. Introduction

Optical satellites are an important means for global and regional remote sensing,
surveying, and mapping. The larger the imaging swath of satellite-borne sensors, the higher
the imagery overlapping ratio and the shorter the satellite revisiting period. However,
due to limitations of the sensor manufacturing level, obtaining high-resolution imagery
with a large field view can be difficult using a single imaging chip. The satellite payload
development department combines several small optical imaging chips, such as the linear
charge couple device (CCD), complementary metal-oxide-semiconductor (CMOS), and
time delay integration CCD (TDI CCD), into a larger spliced chip in order to image a larger
ground area in one shot. Currently, the use of spliced satellite optical cameras has become
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mainstream. For example, IKONOS, WorldView-2, and Pleiades 1A/1B satellites are all
equipped with such types of cameras. The stitching accuracy of this camera type is a
critical factor and should be carefully considered during the engineering design. However,
due to the influence of the processing technology and various factors in satellite on-orbit
operations, the camera’s actual stitching accuracy often decreases, directly degrading the
subsequent image product accuracy. When the image resolution is low and the image
geometric positioning accuracy is ordinary, the influence of stitching errors is not obvious.
However, due to improvements in remote sensing technology, the spatial resolution of
numerous stereo optical surveying and mapping cameras (e.g., Gaofen-7 and Gaofen-14)
has reached sub-meter level. This means that the impact of mosaic errors can no longer be
ignored. Moreover, subsequent data processing necessitates stricter requirements on the
stitching precision, making it more difficult and costly in actual satellite projects, which
has become the main bottleneck of current remote sensing technology.

Geometric calibration of the satellite images is crucial in guaranteeing high image
geometric quality and positioning accuracy. A number of studies have been conducted to
improve satellite image geometric calibration. Jacobsen [1] adopted 15 additional parame-
ters in a series of on-orbit geometric calibration investigations for the Indian IRS-1C satellite.
For the German MOMS-2P camera, optimization and refinement for geometric calibration
parameters were achieved through the self-calibration block adjustment technique with
additional parameters [2]. The French Space Agency performed static and dynamic param-
eter geometric calibration on the SPOT-5 satellite camera and achieved high positioning
precision with worldwide distributed field calibration sites [3]. The IKONOS satellite
achieved the 12 m planar positioning accuracy and 10 m vertical positioning accuracy by
refining the camera geometric parameters [4,5]. Detailed studies were also conducted on
OrbView-3′s geometric model and geometric calibration process [6,7]. Satisfactory geomet-
ric positioning was achieved for the Japanese ALOS/PRISM camera by on-orbit geometric
calibration with multiple field calibration sites [8–10]. A detailed description was given for
the PRISM sensor geometric calibration work over the first 2.5 years of on-orbit operations,
and the generated DSM accuracies were consistent with sensor configurations [11].

Zhang Yan and Wang Tao made thorough investigations into self-calibration block
adjustment for Mapping Satellite-1 (TH-1) three-linear CCD images [12,13]. Their exper-
imental results showed that after self-calibration, the direct geopositioning accuracy of
TH-1 is greatly enhanced, and scare controls can help realize high-accuracy geopositioning
for island imagery. The uncontrolled positioning accuracy of TH-1 satellite images was im-
proved from 170 m to 11.8 m by utilizing the Equivalent Frame Photo geometric calibration
model [14]. The stereo intersection constraint of the ZY-3 three-line CCD optical camera
can reduce the dense planar dependence and vertical dependence during the geometric
calibration process [15]. The principle of on-orbit calibration and production processes for
the ZY-3 sensor was also fully investigated [16]. The study showed that ZY-3 could be used
to generate cartographic maps at the 1:50,000 scale and for revisions and updates of 1:25,000
scale maps after geometric calibration. A geometric calibration method has been proposed
utilizing the corresponding elevation constraints between two overlapped images and
sparse ground control points (GCPs). The results showed that geometric calibration of XY-3
nadir images could be achieved without calibration sites [17]. A piece point with a weight
polynomial trajectory model was proposed for ZY-3 sensor geometric calibration. The
experimental results proved that the model could reduce the correlation of the parameters
and improve the solved accuracy [18]. While these geometric calibration methods have
achieved remarkable progress, all the investigations used stitched satellite images, which
means that the geometric relationship between the original multi-chip images had not been
considered in the geometric calibration process.

This knowledge gap can result in image accuracy loss in image positioning and sub-
sequent data products. Studies on SPOT 5, QuickBird, ALOS/PRISM, and other satellite
images have confirmed the existence of residual systematic errors in the ALOS/PRISM
image positioning results [19,20]. They found that low accuracy in multi-chip stitching



Remote Sens. 2021, 13, 2832 3 of 22

decreases the accuracy of the generated DEM for IKONOS stereo pairs [21]. Only the
sub-pixel level stitching of multi-chip images can guarantee the accuracy of DEM produc-
tion [22]. For the Indian IRS-1C satellite panchromatic camera stitched by three linear array
CCDs, a simple translation method was used for image mosaic, and its highest accuracy
was 0.2–0.5 pixel [23,24]. For ZY-3 imagery, Zhang et al. [25] proposed a geometric calibra-
tion method that can correct sensor misalignment angles and CCD array alignment errors.
A total of 19 strips of ZY-3 TLC data were used in the geometric calibration process. The
results demonstrated that the CCD array alignment errors for the nadir view were greater
than for the forward and backward views and could not be neglected. Using the imaging
mode of the spliced satellite TDI CCD camera, Tang et al. [26] carried out a systematic anal-
ysis of various factors affecting the horizontal overlap and vertical misalignment between
adjacent TDI CCD chips. They then divided the multi-chip mosaic algorithms into image
space and ground object space and proposed various mosaic schemes. The image space
mosaic algorithm can only realize local stitching and fitting, which destroys the integral
geometric imaging relationship. In contrast, the ground object space mosaic algorithm can
fully realize the strict geometric mosaic of adjacent chips, with the corresponding points in
adjacent chips strictly meeting the same set of ground coordinates. High-precision satellite
geometric calibration processing based on the inter-chip geometric relationship can be
used to obtain high-precision multi-chip mosaics from the ground object space. The above
methods merely deal with the internal distortion errors of each chip independently and
fail to consider inter-chip geometry constraints during the geometric calibration process.

To address the current methodological limitations, we put forward a novel geometric
calibration method for the spliced satellite optical cameras based on inter-chip geometry
constraints. We first analyzed the imaging characteristics and main error sources of two
typical spliced cameras and built an integral rigorous geometric imaging model for spliced
satellite cameras. We then proposed an integral geometric calibration model based on
inter-chip geometry constraints for spliced satellite cameras, including the corresponding
external geometric calibration model and the internal geometric calibration model, and
designed the detailed geometric calibration scheme and implementation method. Finally,
images of the typical optical butting satellite ZY-3 and mechanical interleaving satellite
TH-1 were selected for the experiments.

The rest of this article is organized as follows. Section 2 discusses the imaging charac-
teristics and main error sources of two typical spliced cameras and presents the integral
rigorous geometric imaging model. Section 3 puts forward the integral geometric cali-
bration model based on inter-chip geometry constraints for spliced satellite cameras and
builds the corresponding external and internal geometric calibration models. Section 4
presents the experiments on the images of the typical optical butting satellite ZY-3 and
mechanical interleaving satellite TH-1, and Section 5 summarizes the study’s conclusions
based on detailed analysis.

2. Integral Imaging Model of Spliced Satellite Optical Camera

According to the current stitching scheme, spliced satellite optical cameras can be
divided into four categories: optical butting, mechanical interleaving stitching, prism
stitching, and special configuration stitching. This paper focuses on optical butting and
mechanical interleaving stitching, which are more popular than the other two categories.
We first analyze their imaging properties and geometric error characteristics and then
establish the integral geometric imaging model for the spliced satellite optical camera.

2.1. Imaging Properties

The optical butting scheme arranges multiple chips as an equivalent, long-line CCD
array through an optical mirror. Ideally, the misalignment of each chip along the orbit
direction is zero allowing the formation of a continuous straight line on the focal plane,
which results in few difficulties in the subsequent mosaic process. The main disadvantages
of this include light energy reduction and chromatic aberration from prism splitting and
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limitations of the stitching length due to the prism material and manufacturing technology.
One typical example is the three-line array camera in the ZY-3 satellite, whose nadir-view
camera is stitched by three TDI CCD chips, and the front-view and backward-view cameras
are stitched by four TDI CCD chips, as shown in Figure 1. Through use of the optical
mirror, the optical butting scheme divides the imaging space into the transmission area
and the reflectance area, which are separate in space. In the ZY-3 nadir-view camera, TDI
CCD chips CCD1 and CCD3 are arranged in the transmission area. TDI CCD chip CCD2
is arranged in the reflectance area. In the ZY-3 front-view and backward-view cameras,
TDI CCD chips CCD1 and CCD3 are arranged in the transmission area. TDI CCD chip
CCD2 is arranged in the reflectance area in both cameras. The TDI CCD chips in both the
transmission area and the reflectance area form an equivalent, long-line CCD array on the
focal plane through the optical mirror.

Figure 1. Optical butting diagram of ZY-3 three-line array camera.

The mechanical interleaving scheme installs multiple CCD, CMOS, or TDI CCD chips
into two staggered row configurations on the stitching plate mechanically. The advantage
of this is that no additional chromatic aberrations are introduced in imaging, while the
disadvantage is that a continuous straight line cannot be formed on the focal plane. The
larger the mechanical misalignment, the greater the imaging time delay and the greater
the difficulties involved in the subsequent geometric processing. IKONOS, QuickBird,
LandSat-8, WorldView-2, French SPOT 6/7, and Chinese TH-1 have all adopted this kind of
splicing scheme. Figure 2 shows the focal plane assembly diagram of a 2 m high-resolution
(HR) camera in TH-1, which has eight multi-chip CCDs. In Figure 2, each chip contains
4096 photosensitive detector units. The number of overlapping units between adjacent
CCDs is constant: 96 overlapping units. For example, the number of overlapping units
between CCD1 and CCD2 is 96 units, that of CCD2 and CCD3 is also 96 units, and it is the
same for CCD3 and CCD4, CCD5 and CCD6, and CCD7 and CCD8. Along the orbit flight
direction the staggering misalignment between two rows is 2114 pixels.

Figure 2. TH-1 HR camera focal plane assembly diagram.
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2.2. Geometric Error Characteristics

Systematic errors of spliced satellite optical cameras can be categorized as either
external or internal. External errors mainly include errors in satellite attitude measurement,
satellite position measurement, camera installation angle, GPS antenna eccentricity, and
time synchronization. While the camera installation matrix, the star sensor installation
matrix, and the GPS antenna eccentricity are all calibrated in the laboratory before launch,
these parameters may deviate considerably during on-orbit operations.

Internal errors mainly include lens error and CCD array error. The sources for lens
error consist primarily of the principal point offset, focal length deviation, and optical
distortions. The CCD array error sources are composed of the CCD array translation,
scaling, and rotation. Internal errors for each chip are generally independent of each other.

2.3. Geometric Imaging Model

Due to the multi-chip placement position difference on the focal plane, the spliced
satellite optical camera does not instantaneously generate a continuous straight line on
the ground but instead obtains multiple discontinuous “short scanning lines”, as shown
in Figure 3a. The alignment difference in the discontinuous short scan lines along the
orbit flight direction depends on the degree of multi-chip misalignment on the focal plane.
Each chip acquires push broom images separately along the satellite platform flight and
forms multiple-segmented narrow strip images with certain horizontal overlap and vertical
misalignment, as in Figure 3b.

Figure 3. The ground coverage diagram of the spliced satellite optical camera at the imaging moment.
(a) The instantaneous imaging diagram; (b) Ground coverage of each chip.

For the image point p in the spliced satellite optical image and the ground object point
P(X, Y, Z), the rigorous geometric imaging model is set up as follows: the coordinates of
image point p in the camera system are

(
f tanϕx, f tanϕy,− f

)
: X

Y
Z

 =

 XS
YS
ZS

+ RWGS84
J2000 ·R

J2000
Body ·

RBody
Cam

 f tanϕx
f tanϕy
− f

+

 BX
BY
BZ

 (1)

where P(X,Y,Z) represents the ground object point coordinates in the WGS84 coordinate
system; RBody

Cam indicates the installation matrix from the camera system to the satellite
body system, predetermined in the laboratory; RJ2000

Body is the rotation matrix from the
satellite body system to space conventional inertial system (J2000) calculated using satellite
attitude data; RWGS84

J2000 indicates the rotation matrix from the J2000 system to the WGS84
coordinate system; (Xs, Ys, Zs) are the GPS antenna phase center coordinates obtained
from the satellite position measurement data;

(
f tanϕx, f tanϕy,− f

)
is the image space
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coordinates represented by the probe pointing angle
(

ϕx, ϕy
)
. The initial value of

(
ϕx, ϕy

)
is calculated from the preliminary installation angle of each imaging view and the CCD
detector unit size. (BX, BY, BZ) expresses the GPS antenna eccentricity error, which defines
the offset vector of the camera projection center relative to the GPS antenna phase center in
the satellite body coordinate system. The multi-chip images of the spliced satellite optical
camera share one set of satellite orbit and attitude measurement data in a unified camera
system. The GPS position and attitude data corresponding to each line in the separate chip
can be interpolated from the satellite orbit and attitude data according to the time stamp.

The external geometric calibration is responsible for the accurate determination of the
position of the camera’s projection center and the direction of its principal optical axis at
the imaging instance. In order to overcome the correlation among the external orientation
parameters, the GPS antenna eccentricity (BX, BY, BZ) can be ignored, and its influence
is absorbed into the camera alignment angle (ϕ, ω, κ), such that ϕ is the pitch angle, ω is
the roll angle, and κ is the yaw angle. The parameters (ϕ, ω, κ) indicate the misalignment
matrix Ro f f , as shown in Equation (2).

Ro f f =

 cosϕ 0 sinϕ
0 1 0

−sinϕ 0 cosϕ

 1 0 0
0 cosω −sinω
0 sinω cosω

 cosκ −sinκ 0
sinκ cosκ 0

0 0 1

 (2)

The misalignment matrix includes systematic errors in the satellite orbit and attitude
measurement data, the camera installation angle error, and the GPS antenna eccentricity.
The main goal of external geometric calibration is to determine the camera alignment angle
(ϕ, ω, κ).

Absorbing the misalignment matrix Ro f f into Equation (1), the rigorous imaging
model with the camera alignment angle is obtained as follows X

Y
Z

 =

 XS
YS
ZS

+ RWGS84
J2000 ·R

J2000
Body ·R

Body
Cam ·Ro f f

 f tanϕx
f tanϕy
− f

 (3)

The multi-chip images of the same view correspond to one misalignment matrix. If
the camera is a three-line array stereo CCD camera, such as the TH-1 and ZY-3 optical
cameras, three groups of Ro f f are utilized to represent the external error in each view.

Internal geometric calibration aims to determine the geometric sight vector for every
detector unit in each chip in the camera system and estimate the camera’s intrinsic errors.
This process includes the conversion from image point coordinates (r, c) in the image
system to the spatial coordinates (x, y,− f ) in the camera system.

(1) Calculating the chip number i. According to the column c of the image point (r, c) in
the original image system, calculate the point imaged on the i-th chip using Equation
(4), where n is the total number of chips in different views, fix indicates the truncating
operation, and Ns is the length of a single chip in detector units.

i = f ix
(

c
Ns

)
+ 1 (i = 1, 2, . . . , n) (4)

(2) Converting the original image system o-rc to the single-chip system oci-xciyci. Calculate
the image point coordinates (xci, yci) in the single-chip system based on chip number,
where ps is the size of the detector unit in millimeters.{

xci = 0
yci = (c− (i− 1) · Ns) · ps

(5)

In Figure 4, oci-xciyci is the single-chip system in the focal plane. Each single-chip
system takes the center of the left detector unit as the origin, the orbit flight direction as the
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xci axis, and the scanning direction as the yci axis. oc-xcyczc represents the camera system,
and o-xy represents the focal plane system.

(3) Transforming from the single-chip system oci-xciyci to the camera system oc-xcyczc.
Complete the conversion of the single-chip system to the focal plane system o-xy using
the placement parameters of each chip in the focal plane, as shown in Equation (6).{

x = xci + xci0
y = yci + yci0

(6)

Taking the focal length into consideration, the image point coordinates in the camera
system can then be determined, which is also the direction of the optical axis.

→
u 1 =

 x
y
− f


Camera

(7)

The optical axis vector (x, y,− f )T
Camera in Equation (7) is consistent with(

f tanϕx, f tanϕy,− f
)

in the rigorous geometric imaging model (Equation (3)). The op-
tical axis vector can also be normalized into the unit vector

→
u 1 =

(
tanϕx, tanϕy,−1

)
,

tanϕx = x/ f , tanϕy = y/ f , as shown in Figure 4.

Figure 4. Optical butting diagram of ZY-3 three-line array camera.

The camera internal geometric calibration calibrates the probe pointing angle of each
detector unit in the camera system. The internal geometric calibration model can take the
physical or general model. Currently, the general probe pointing angle is more widely used
in airborne and spaceborne linear array camera calibration [27–29]. The general internal
geometric calibration model is the cubic or high-order polynomial of the column number S
on each chip.

S = c− (i− 1) · Ns

tanϕx = c0 + c1 · S + c2 · S2 + c3 · S3

tanϕy = r0 + r1 · S + r2 · S2 + r3 · S3

(8)

where c0, c1, c2, c3 are the interior calibration parameters along x axis for each chip, and r0,
r1, r2, r3 are the interior calibration parameters along y axis for each chip.

Equations (3) and (8) establish the integral rigorous geometric imaging model for the
spliced satellite optical camera. The multi-chip images in each view share the same set of
external geometric calibration parameters except for one independent set of interior geo-
metric calibration parameters for various intrinsic errors. The integral rigorous geometric
imaging model is the basis for the subsequent external and internal geometric calibration
processes.

3. Proposed Integral Geometric Calibration Method Investigation Based on Inter-Chip
Geometry Constraints

For a spliced satellite optical camera, the overlapped area of adjacent chips comprises
the same ground coverage, which means that one ground point has two corresponding
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image points in the adjacent overlapped chip area. This supposes that the ground point
P(X, Y, Z) forms image point p1(xp1, yp1) on the left chip and the corresponding image point
p2(xp2, yp2) on the right chip. For image points p1 and p2, the rigorous geometric imaging
models are generated using Equations (9) and (10), where the multiple rotation matrices in
Equation (3) can then be combined into Equation (11). X

Y
Z

 =

 XS1
YS1
ZS1

+ R1

 x1
y1
− f

 =

 XS1
YS1
ZS1

+ R1

 f tanϕx1
f tanϕy1
− f

 (9)

 X
Y
Z

 =

 XS2
YS2
ZS2

+ R2

 x2
y2
− f

 =

 XS2
YS2
ZS2

+ R2

 f tanϕx2
f tanϕy2
− f

 (10)

R = RWGS84
J2000 ·R

J2000
Body ·R

Body
Cam ·Ro f f =

 a11 a12 a13
a21 a22 a23
a31 a32 a33

 (11)

where (XS1, YS1, ZS1) and (XS2, YS2, ZS2) are the GPS antenna centers corresponding to
the left and right chips, respectively. Combining Equations (9) and (10), the geometry
constraint model between adjacent chips can be constructed, as presented in Equation (12). XS1

YS1
ZS1

+ R1

 x1
y1
− f

 =

 XS2
YS2
ZS2

+ R2

 x2
y2
− f

 (12)

The inter-chip geometry constraint model reflects the geometric restricting relationship
of the corresponding points in the overlapping chip area. Theoretically, the corresponding
image points on the left and right chips coincide on the same ground point. When Equation
(12) is met, the corresponding image points on the left and right CCD chips correspond to
the same ground point, resulting in seamless stitching of the original multi-chip images
and generating continuous and consistent mosaic images without geometric deformation.
However, the misalignment error of the adjacent chips, the external error in the imaging
process, and the internal error of different chips undermine the geometry constraint (Equa-
tion (12)), resulting in geometric mosaic misalignment and reduced positioning accuracy.
Therefore, an integral geometric calibration model that considers external and internal
errors must be established based on Equation (12). After linearization and expanding the
formula using first-order Taylor series, the integral geometric calibration model based on
inter-chip geometry constraints is obtained. XS1

YS1
ZS1

+R1

 x1
y1
− f

0

+A1

 ∆ϕ1
∆ω1
∆κ1

+R1

 ∆x1
∆y1

∆(− f )

 =

 XS2
YS2
ZS2

+R2

 x2
y2
− f

0

+A2

 ∆ϕ2
∆ω2
∆κ2

R2

 ∆x2
∆y2

∆(− f )

 (13)

where (∆ϕ1, ∆ω1, ∆κ1) and (∆ϕ2, ∆ω2, ∆κ2) are the camera alignment angles for the left and
right chips, respectively, and, A1 and A2 are the corresponding coefficient matrices. Since
all chips of the forward/nadir/backward view share the same set of attitude observation
equipment, all chips in each view take one set of camera alignment angles to describe the
external error (∆ϕ1, ∆ω1, ∆κ1) = (∆ϕ2, ∆ω2, ∆κ2) = (∆ϕ, ∆ω, ∆κ). (∆x1, ∆y1) is obtained
from the interior calibration parameters of the left chip and is the image point coordinate
error for p1 on the left chip. (∆x2, ∆y2) is calculated by the interior calibration parameters
of the right chip and is the image point coordinate error of p2 on the right chip. The interior
calibration parameters for each chip differ from each other. Equation (13) can then be
simplified to the expression
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 XS1
YS1
ZS1

+ R1

 x1
y1
− f

0

+ A1

 ∆ϕ
∆ω
∆κ

+ R1

 ∆x1
∆y1

∆(− f )

 =

 XS2
YS2
ZS2

+ R2

 x2
y2
− f

0

+ A2

 ∆ϕ
∆ω
∆κ

R2

 ∆x2
∆y2

∆(− f )

 (14)

Equation (14) presents the integral geometric calibration model for spliced satellite
optical cameras based on inter-chip geometry constraints proposed in this paper. The geo-
metric calibration operation is performed on spliced optical cameras, which can calibrate
the alignment angles and interior calibration parameters for each chip and generate seam-
less image mosaics and high-precision direct geopositioning. Given the strong correlation
between exterior and interior parameters, the external and internal geometric calibration
processes need to be implemented separately and iteratively.

The external and internal calibration models can be derived based on the inter-chip
geometry constraints. The external calibration model only considers the external errors,
i.e., the alignment angles of each view, and assumes the interior calibration parameters to
be unchanged. The external geometric calibration model is as follows

(A1 −A2)

 ∆ϕ
∆ω
∆κ

 = l1 (15)

where

l1 =

 XS2
YS2
ZS2

−
 XS1

YS1
ZS1

+ R2

 x2
y2
− f

0

−R1

 x1
y1
− f

0

The alignment angles (∆ϕ, ∆ω, ∆κ) can be acquired using least squares or linear
optimization algorithms. After determining the external calibration parameters and keep-
ing them fixed, the internal geometric calibration model based on inter-chip geometry
constraints is established

R1

 ∆x1
∆y1

∆(− f )

−R2

 ∆x2
∆y2

∆(− f )

 = l2 (16)

If the image point coordinates are represented by the normalized probe pointing angle
form, the following model is obtained

R1

 ∆(tanϕx1)
∆
(
tanϕy1

)
0

−R2

 ∆(tanϕx2)
∆
(
tanϕy2

)
0

 = l2 (17)

where
∆(tanϕx1) = dc0 + dc1 · S1 + dc2 · S1

2 + dc3 · S1
3

∆
(
tanϕy1

)
= dr0 + dr1 · S1 + dr2 · S1

2 + dr3 · S1
3

∆(tanϕx2) = dc0
′ + dc1

′ · S2 + dc2
′ · S2

2 + dc3
′ · S2

3

∆
(
tanϕy2

)
= dr0

′ + dr1
′ · S2 + dr2

′ · S2
2 + dr3

′ · S2
3

R1 =

 a11 a12 a13
a21 a22 a23
a31 a32 a33

, R2 =

 b11 b12 b13
b21 b22 b23
b31 b32 b33





Remote Sens. 2021, 13, 2832 10 of 22

The two items on the left side of Equation (17) can then be expanded to

R1

 ∆(tanϕx1)
∆
(
tanϕy1

)
0

 =

 a11 a12 a13
a21 a22 a23
a31 a32 a33

 dc0 + S1dc1 + S1
2dc2 + S1

3dc3
dr0 + S1dr1 + S1

2dr2 + dS1
3r3

0

 (18)

R2

 ∆(tanϕx2)
∆
(
tanϕy2

)
0

 =

 b11 b12 b13
b21 b22 b23
b31 b32 b33

 dc0
′ + S2dc1

′ + S2
2dc2

′ + dS2
3c3
′

dr0
′ + S2dr1

′ + S2
2dr2

′ + S2
3dr3

′

0

 (19)

Substituting Equations (18) and (19) into Equation (17), the interior calibration param-
eters c0, c1, c2, c3, r0, r1, r2, r3 for the left chip and c0

′, c1
′, c2
′, c3
′, r0
′, r1
′, r2
′, r3
′ for the right

chip can be obtained using least squares adjustment. The internal geometric calibration
process is accomplished by establishing Equations (17)–(19) for all chips of each view.

An integral geometric calibration implementation scheme for the spliced satellite
optical camera can then be developed according to the inter-chip geometry constraints.
The workflow diagram is shown in Figure 5. In order to improve the seamless stitching
accuracy for multi-chip images, the internal calibration processing is divided into two
steps: conventional processing and refined processing.

Figure 5. Workflow of the integral geometric calibration implementation scheme for the spliced
satellite optical camera based on inter-chip geometry constraints.

(1) Image matching

Image matching is implemented on each chip and every high-resolution digital or-
thophoto map (DOM) to automatically obtain DOM GCPs. Image matching is implemented
on the multi-chip images to obtain the corresponding image points in the overlap areas of
adjacent chips [27,28,30].

(2) External geometric calibration process
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The integral rigorous geometric imaging model is built following Equation (3). Using
the corresponding image points, the external calibration model based on inter-chip geome-
try constraints is formed following Equation (15). The geometric calibration values of the
alignment angles are obtained by linearizing and adjusting these two equations together.

(3) Conventional internal geometric calibration processing

The external calibration parameters are statically fixed, and conventional internal
geometric calibration is performed using DOM GCPs and the corresponding image points.
For DOM GCPs, the linearized internal calibration equations can be obtained from Equation
(3). For the corresponding image points, the internal calibration equations are derived
from Equation (17). Conventional geometric calibration is implemented, and the interior
calibration parameters for each chip are obtained by adjusting these two equations.

(4) Refined internal geometric calibration processing

Refined internal geometric calibration is performed by utilizing only corresponding
image points to establish the internal calibration error equations based on Equation (17).
This step optimizes the interior calibration parameters for each chip and improves the
geometric stitching accuracy.

(5) Iteration

Steps 2 to 4 are repeated iteratively until the generated values for the alignment angles
and interior geometric calibration parameters are less than the predefined threshold.

4. Results
4.1. Test Data

Two types of spliced satellite remote sensing data covering the Songshan remote
sensing calibration field were used for the experiments. The Songshan calibration field,
a national remote sensing calibration field, is located in Songshan District, Dengfeng city,
Henan province [27,28]. The Songshan remote sensing calibration field is composed of three
parts: the aerial calibration field, the photogrammetry and remote sensing calibration field,
and the aerospace calibration field. The aerospace calibration field is about 8000 square
kilometers and is mainly used for calibration and validation. Aside from 69 high-precision
natural and artificial GCPs, there are two permanent satellite marking sites with 55 GCPs
in 2 m, 3 m, and 5 m diameter panels distributed in Dengfeng city, Xinmi city, and Gongyi
city. These metal panel GCPs have 0.1 m planar accuracy and 0.2 m elevation accuracy. The
calibration field has 0.4 m resolution aerial image data, DSM, DEM, and DOM products.

The ZY-3 and TH-1 satellite image data covering the Songshan calibration field were
used for experiments. The nadir-view image resolution of the ZY-3 three-line array camera
is about 2.1 m, composed of three TDICCD chips, each containing 8192 TDICCD detector
units. The forward- and backward- view images have a ground resolution of about 3.6 m,
composed of four TDICCD chips, each containing 4096 TDICCD detector units. The TH-1
satellite high-resolution camera has eight 2 m resolution CCD chips, each with 4096 CCD
detector units.

4.2. Experiment Results of ZY-3 Satellite Three-Line Array Images

A set of ZY-3 three-line array satellite images covering the Songshan calibration field,
acquired in June 2018, was used for calibration experiments. Figure 6 lists the overview
images.
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Figure 6. ZY-3 satellite three-line array test data. (a) 4 TDICCD overview images of the forward view;
(b) 3 TDICCD overview images of the nadir view; (c) 4 TDICCD overview images of the backward
view.
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4.2.1. Initial Positioning Accuracy Analysis of ZY-3 Satellite Three-Line Array Images

Using the initial orbit and attitude data of the ZY-3 satellite image, the rotation matrix
from the satellite body system to the J2000 system and the matrix from the J2000 system to
the WGS84 coordinate system were established. A total of 821 DOM GCPs were obtained,
with ground resolution accuracy of 5 cm, to verify and validate the rigorous imaging model
and initial geometric positioning accuracy of the ZY-3 three-line array satellite camera.
The statistics for the DOM GCP position accuracy are listed in Table 1. Table 1 shows the
mean error (Mean), root mean squares error (RMS), maximum error (Max), and minimum
error (Min) of all DOM GCPs in the X-, Y-, and Z-directions. In Figure 7, some DOM GCP
positioning residuals were plotted at an equal sampling rate. The image shows obvious
systematic positioning residuals in both planar and elevation directions.

Table 1. Initial positioning accuracy of ZY-3 three-line array camera. (Unit: meter).

Index Mean RMS Max Min

X −455.26 474.79 −464.70 −479.25
Y −722.65 735.01 −729.97 −751.30
Z 420.39 430.07 433.23 413.82

After obtaining 195 pairs of corresponding image points, two groups of stereo images
were formed utilizing the corresponding image points on two adjacent chips. Two sets of
ground coordinates were then calculated using space forward intersection. The difference
between these two sets of ground coordinates reflects the stitching accuracy of the ZY-3
camera, and the summary of results is presented in Table 2.

Figure 7. Initial positioning residuals distribution of ZY-3 three-line array camera. (a) Positioning
residuals in XY planar direction; (b) Positioning residuals in the elevation direction.

Table 2. Ground coordinates differences statistics of ZY-3 three-line array camera corresponding
image points. (Unit: meter).

Index Mean RMS Max Min

X −0.227 0.187 0.285 −0.604
Y −0.064 0.064 0.420 −0.177
Z −0.144 0.172 0.152 −0.560

In Table 2, since the ZY-3 three-line array camera adopts the optical butting imaging
mode, the offset of the corresponding image point in the orbit flight direction between
adjacent chips is within one pixel. This suggests that the coordinate differences between
two sets of ground coordinates are considerably lower than one meter. Due to the camera
internal error and the alignment angle error, the initial geometric positioning accuracy of
the corresponding image point is poor. The positioning error can be inversely calculated by
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averaging the two sets of ground coordinates for each pair of corresponding image points.
The statistical results are summarized in Table 3.

Table 3. Initial positioning accuracy of the corresponding image points on the ZY-3 three-line array
camera.

Index Mean RMS Max Min

X (meter) −572.601 593.430 −551.473 −614.118
Y (meter) −821.815 849.581 −837.429 −862.278

x (pixel) −197.890 206.185 −189.706 −214.176
y (pixel) −273.990 279.313 −265.265 −286.139

4.2.2. Geometric Calibration Accuracy Analysis of ZY-3 Satellite Three-Line Array Images

After the ZY-3 satellite images had been calibrated, the calibrated alignment angles
and the interior parameters were obtained. The interior calibration parameters can be
used to calculate the probe pointing angle of each detector unit on all chips of every view,
forming the calibration pointing angle files. Using the alignment angles and the pointing
angle files, the geometric accuracy of the calibrated camera was evaluated using the 821
DOM GCPs, and the statistical values are shown in Table 4. In Figure 8, some DOM GCP’s
positioning residuals were plotted at an equal sampling rate. The results suggest that only
accidental positioning residuals were left in the planar and elevation directions and that
systematic positioning errors had been effectively eliminated.

Table 4. Geometric calibration accuracy of ZY-3 three-line array camera. (Unit: meter).

Index Mean RMS Max Min

X 0.003 0.331 0.642 −0.600
Y −0.008 0.369 0.563 −0.992
Z −0.026 0.464 0.571 −0.290

After geometric calibration, the difference in ground coordinates and the geometric
positioning accuracy of 195 pairs of the corresponding image points were evaluated and
are summarized in Tables 5 and 6.

Figure 8. The positioning residuals distribution of ZY-3 three-line array camera after geometric
calibration. (a) Positioning residuals in XY planar direction; (b) Positioning residuals in the elevation
direction.
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Table 5. Ground coordinates differences statistics of ZY-3 three-line array camera corresponding
image points after geometric calibration. (Unit: meter).

Index Mean RMS Max Min

X 0.023 0.064 0.095 −0.089
Y −0.014 0.032 0.040 −0.078
Z −0.012 0.052 0.106 −0.096

Table 6. Positioning accuracy of the corresponding image points after geometric calibration.

Index Mean RMS Max Min

X (meter) 0.009 0.219 0.446 −0.444
Y (meter) −0.005 0.240 0.425 −0.661

x (pixel) 0.003 0.077 0.167 −0.159
y (pixel) 0.001 0.089 0.135 −0.297

In Tables 2 and 5, while the original geometric splicing relationship of the ZY-3
satellite is already satisfactory (ground coordinate difference below one meter), geometric
calibration was still able to effectively improve the geometric stitching accuracy in all three
directions. The geometric positioning accuracy was also enhanced significantly, as shown
in Tables 3 and 6. The geometric calibration experiment confirms that the alignment angles
and pointing angle files can effectively compensate for the systematic errors in the satellite
imaging process. Using calibrated camera alignment angles and pointing angle files, high
positioning accuracy can be achieved.

4.2.3. Validity Assessment of Geometric Calibration Parameters

Three sets of ZY-3 satellite images in Jincheng city, Shanxi Province; Tianjin city, and
Shiyan city, Hubei Province were selected to verify the calibrated alignment angles and
pointing angle files. Seventeen, fifteen, and sixteen GCPs were taken for verification
through field surveying, respectively. Direct uncontrolled geometric positioning was
performed based on the alignment angles and pointing angle files, and the positioning
accuracy statistics are summarized in Table 7. The ground resolution of the ZY-3 forward-
view and backward-view images was 3.6 m, and the RMS errors of uncontrolled positioning
in three directions were mostly below two pixels. Only the elevation error for Shiyan city
was slightly over two pixels.

Through matching, 121 pairs, 143 pairs, and 168 pairs of the corresponding image
points were obtained for Jincheng, Tianjin, and Shiyan, respectively. The ground coordinate
differences for the corresponding image points were calculated and are summarized
in Table 8. When compared with the RMS errors in Tables 2, 5 and 8, the positioning
consistency of the corresponding points improved in all three directions.

Table 7. Direct uncontrolled positioning accuracy based on calibrated alignment angles and pointing angle files. (Unit:
meter).

Data
X Y Z

Mean RMS Max Min Mean RMS Max Min Mean RMS Max Min

Jincheng 0.205 5.327 8.341 −6.749 −0.195 6.824 9.486 −5.904 −0.214 6.936 6.628 −5.420
Tianjin 0.182 5.208 8.012 −7.012 −0.177 6.578 9.103 −6.976 −0.189 6.812 7.019 −6.971
Shiyan 0.198 5.311 9.154 −7.423 −0.186 6.960 8.999 −7.012 −0.197 7.126 7.238 −6.899
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Table 8. Ground coordinates differences statistics based on calibrated alignment angles and pointing angle files. (Unit:
meter).

Data
X Y Z

Mean RMS Max Min Mean RMS Max Min Mean RMS Max Min

Jincheng 0.023 0.068 0.112 −0.188 −0.019 0.039 0.103 −0.077 −0.021 0.053 0.106 −0.146
Tianjin 0.019 0.041 0.103 −0.113 −0.012 0.041 0.089 −0.072 −0.018 0.058 0.116 −0.089
Shiyan 0.024 0.063 0.107 −0.109 −0.021 0.033 0.097 −0.080 −0.019 0.059 0.118 −0.112

4.2.4. Mosaic Effect Verification of ZY-3 Image

Using the calibration parameters, the multi-chip ZY-3 images in the Songshan area
were mosaiced with an object stitching algorithm based on the virtual field of view. The
mosaic image for the forward view (Figure 6a) is shown in Figure 9, and the inter-chip
regions selected from the forward/nadir/backward-view mosaic images are presented
in Figure 10. The mosaic image was not feathered, and so, the first and second chips
(in Figure 9) are not well-differentiated in close image tone, while the other chips are
distinguishable. The red circles in the image (Figure 9) marking road intersections show
that the multi-chip images are seamlessly stitched together after geometric calibration.

Figure 9. Mosaic image for the 4 TDICCD chips in the forward view.

Figure 10. Zoomed views of forward/nadir/backward mosaic images.

4.3. Experiment Results of TH-1 HR Image

The TH-1 HR satellite image used in the experiment was taken in 2019 and is shown
in Figure 11. The TH-1 high-resolution satellite camera uses the mechanical interleaving
imaging scheme, with about 2114 pixels displacement in the orbit flight direction among
different chips. Noticeable dislocation can be observed at the junctions of roads and rivers
in the image.
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Figure 11. TH-1 HR camera image.

4.3.1. Initial Positioning Accuracy Analysis of TH-1 Satellite HR Images

Using the initial orbit and attitude data of the TH-1 satellite HR image, the rotation
matrix from the satellite body system to the J2000 system and the matrix from the J2000
system to the WGS84 coordinate system were constructed. A total of 1946 DOM GCPs
were obtained through matching with 5 cm resolution DOM image to evaluate the rigorous
imaging model and initial geometric positioning accuracy. The statistical results on the
DOM GCP position accuracy are summarized in Table 9. In Figure 12, some DOM GCP
positioning residuals were plotted at equal sampling rate. The resulting image shows
obvious systematic positioning residuals in both planar and elevation directions for DOM
GCPs on each chip.

Figure 12. Initial positioning residuals distribution of TH-1 HR camera. (a) Positioning residuals in
XY planar direction; (b) Positioning residuals in the elevation direction.

Table 9. Initial positioning accuracy of TH-1 HR camera. (Unit: meter).

Index Mean RMS Max Min

X 646.785 663.282 750.659 639.328
Y 144.638 217.744 147.680 −740.844
Z 118.620 231.315 308.698 −527.600

After obtaining 875 pairs of corresponding image points through matching, two
groups of ground coordinates were calculated using a mono-image iteration positioning
approach based on global 30 m grid SRTM DEM data. The results are summarized in
Table 10. The difference between these two sets of ground coordinates reflects the stitching
accuracy of the TH-1 HR camera.
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Table 10. Ground coordinates differences statistics of the corresponding image points. (Unit: meter).

Index Mean RMS Max Min

X −2.849 3.620 5.441 −6.813
Y −1.125 1.587 2.876 −4.857
Z −0.131 1.825 5.387 −5.336

For the TH-1 HR camera that uses the mechanical interleaving mode, there were
2114 pixels displacements between adjacent chips along the orbit flight direction. In
Table 10, the displacement produced non-negligible impacts on ground coordinates, even if
the imaging conditions (e.g., imaging time delay) were precisely controlled. The average for
the two groups of ground coordinates was taken, and the resulting values were inversely
projected onto the images. The geometric positioning residuals were then calculated, and
the summary statistics are presented in Table 11.

Table 11. Initial positioning accuracy of TH-1 HR camera.

Index Mean RMS Max Min

X −0.000 2.412 6.139 −6.142
Y 0.004 1.628 4.313 −4.257
Z −0.000 1.206 3.069 −3.071

Since the TH-1 HR camera has only one imaging view and does not have stereo
surveying and mapping capabilities, the ground coordinates used in Table 11 are the
intersection points between the optical axis vectors and the earth’s ellipsoid surface, whose
positioning accuracy is not as reliable as that of space forward intersection by stereo
surveying and mapping camera. This means stereo surveying and mapping camera
provides a more reasonable solution.

4.3.2. Geometric Calibration Accuracy Analysis of TH-1 HR Images

After calibrating the TH-1 HR satellite images, the calibrated alignment angles and
pointing angle files were obtained. Then, these values were used to reevaluate the geometric
positioning accuracy of the DOM GCPs, and the assessment results are in Table 12. In
Figure 13, the positioning residuals after geometric calibration were plotted at an equal
sampling rate. The resulting plot suggests that only accidental positioning residuals were
left in the planar and elevation directions and that systematic positioning errors were
effectively removed.

Table 12. Geometric calibration accuracy of TH-1 HR camera. (Unit: meter).

Index Mean RMS Max Min

X −0.013 0.834 1.120 −1.019
Y 0.032 0.977 1.092 −1.159
Z 0.027 0.858 1.101 −1.012

After geometric calibration, the coordinate differences and geometric positioning
accuracy for the 875 pairs were calculated, and the summary statistics are presented in
Tables 13 and 14.

Comparing Tables 10 and 13, the ground coordinate differences for the corresponding
image points significantly decreased in three directions after geometric calibration. The
geometric stitching accuracy of the TH-1 HR camera was also effectively enhanced, with
RMS values all falling within 0.5 m in the X-, Y-, and Z-directions.
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Figure 13. Positioning residuals distribution of TH-1 HR camera after geometric calibration. (a)
Positioning residuals in the XY planar direction; (b) Positioning residuals in the elevation direction.

Table 13. Ground coordinate differences statistics of the corresponding image points after geometric
calibration. (Unit: meter).

Index Mean RMS Max Min

X −0.032 0.104 0.230 −0.311
Y −0.097 0.182 0.164 −0.288
Z 0.023 0.117 0.456 −0.276

Table 14. Positioning accuracy of the corresponding image points after geometric calibration.

Index Mean RMS Max Min

X (meter) 0.011 0.289 0.654 −0.527
Y (meter) 0.006 0.298 0.725 −0.786

x (pixel) 0.004 0.147 0.329 −0.259
y (pixel) 0.002 0.149 0.365 −0.337

4.3.3. Validity Assessment of Geometric Calibration Parameters

Three sets of TH-1 satellite images from Luoyang, Dalian, and Kunming were selected
for the direct uncontrolled geometric positioning experiments. Using 21, 19, and 23 GCPs
verified by field surveying, the positioning accuracy was evaluated, and the results are
summarized in Table 15. The ground resolution of the TH-1 HR image was 2 m, and the
RMS errors for uncontrolled positioning were under two pixels in all directions for the three
data sets. Through matching, 1123, 1209, and 1147 pairs of corresponding image points
were obtained in the overlapping area, and the calculated ground coordinate differences
are summarized in Table 16. Comparing Tables 10, 13 and 16, the positioning consistency
had considerably improved in the X-, Y- and Z-directions.

Table 15. Direct uncontrolled positioning accuracy based on calibrated alignment angles and pointing angle files. (Unit:
meter).

Data
X Y Z

Mean RMS Max Min Mean RMS Max Min Mean RMS Max Min

Luoyang 0.089 3.738 5.355 −4.596 0.025 3.160 5.253 −4.704 0.084 3.564 5.145 −4.891
Dalian 0.078 3.812 5.049 −5.017 0.019 3.352 5.140 −5.104 0.101 3.572 5.212 −5.089

Kunming 0.086 3.415 4.883 −4.066 0.017 3.201 4.953 −4.672 0.041 3.364 4.887 −4.678
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Table 16. Ground coordinates differences statistics based on calibrated alignment angles and pointing angle files. (Unit:
meter).

Data
X Y Z

Mean RMS Max Min Mean RMS Max Min Mean RMS Max Min

Luoyang −0.047 0.137 0.777 −0.387 −0.025 0.280 0.405 −0.139 0.088 0.168 0.212 −0.418
Dalian −0.051 0.148 0.890 −0.481 −0.031 0.197 0.414 −0.142 0.079 0.173 0.232 −0.389

Kunming −0.039 0.152 0.695 −0.492 −0.029 0.128 0.501 −0.152 0.076 0.182 0.240 −0.392

4.3.4. Mosaic Effect Verification of TH-1 Image

Using the calibrated alignment angles and pointing angle files, the spliced TH-1
images were mosaiced with an object stitching algorithm based on the virtual field of
view. The mosaic image is shown in Figure 14, and the local images between adjacent
chips are shown in Figure 15. As shown in the figures, the geometric calibration based
on inter-chip geometry constraints significantly improved geopositioning accuracy and
resulted in sub-pixel seamless stitching of multi-chip images.

Figure 14. Mosaic Image for TH-1 HR Camera.

Figure 15. Zoomed Views of Mosaic Image.

5. Conclusions

A novel geometric calibration method based on inter-chip geometry constraints is pro-
posed for spliced satellite optical cameras. The proposed geometric calibration effectively
rectifies the camera’s internal and external errors, enhances geometric imaging consistency,
and improves ground geometric accuracy among multi-chip images. The proposed method
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obtains reliable camera alignment angles and interior calibration parameters and generates
high-precision seamless mosaic images. The calibration scheme is not only suitable for
mechanical interleaving cameras with large geometric displacement among multi-chip
images but is also effective for optical butting cameras with minor chip offset. In this
paper, the Songshan remote sensing calibration field was used for calibration experiments.
Multiple sets of satellite data in other regions were also used to evaluate the reliability,
stability, and applicability of the calibration parameters. The experimental results show
that the proposed geometric calibration is effective in seamless geometric stitching for
both types of spliced satellite images, having calibration error within half a pixel and
uncontrolled geometric positioning error less than two pixels.

Recently, China’s Gaofen-7 and Gaofen-14 satellites were launched into space and
are at the on-orbit geometric calibration stage. Spliced satellite optical cameras have
reached sub-meter spatial resolution, which makes the impact of mosaic errors much more
significant. For future studies, we will analyze the applicability and usefulness of our
proposed geometric calibration on the Gaofen-7 and Gaofen-14 spliced satellite optical
cameras.

6. Patents

There is a Chinese National Knowledge Patent 202010887236.6 resulting from the
work reported in this manuscript. The Patent has gone through the material inspection.
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