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Abstract: The environmental trace gas monitoring instrument (EMI) is a space-borne imaging
spectrometer onboard GaoFen-5, which was launched in May 2018, covering wavelengths in the
range of 240–710 nm to measure NO2, O3, HCHO, and SO2. An advanced EMI-2 instrument with
a higher spatial resolution and sufficient signal-to-noise is currently planned for launch on the
GaoFen-5(02) satellite in 2021. The EMI-2 instrument bidirectional scattering distribution function
(BSDF) is obtained from the absolute irradiance and radiance calibration on-ground. Based on EMI-2
earth and sun optical paths, the key factors of BSDF parameters are introduced. An NIST-calibrated
1000 W FEL quartz tungsten halogen lamp and a 2D turntable are adopted for the absolute irradiance
calibration. A large aperture integrating sphere system is used for the absolute radiance calibration.
Based on absolute irradiance and radiance calibration functions, the BSDF parameters are obtained,
with accuracy of 4.9% for UV1, 4.3% for UV2, 4.1% for VIS1, and 4.2% for VIS2. The on-ground
measurement results show that the reflectance spectrum can be calculated from BSDF parameters.
On-orbit application of the EMI-2 instrument BSDF are also discussed.

Keywords: EMI-2; GaoFen-5; pre-launch; radiometric calibration; instrument BSDF

1. Introduction

The environmental trace gas monitoring instrument (EMI) onboard GaoFen-5 was
launched in May 2018, its on-orbit performance was discussed in [1], and the trace gas
products (NO2, O3, and SO2) were introduced in [2–5]. The Environmental trace gas
monitoring instrument-2 (EMI-2) is an improved version of EMI, which is a nadir-viewing
push-broom imaging spectrometer, and is currently planned for launch on GaoFen-5(02)
satellite in the time frame of 2021. EMI-2 and EMI have a descending node equator crossing
time of 10:30 and an ascending node equator crossing time of 13:30, respectively. These
two instruments have the same altitude of approximately 705 km and can be networked
for remote sensing.

EMI-2 is a kind of differential optical absorption spectroscopy instrument similar to
satellite instruments GOME-2 [6], OMI [7], and TROPOMI [8]. For retrieving atmospheric
trace gas, EMI-2 detects atmospheric radiance in Earth mode and measures solar irradiance
via onboard diffusers in Sun mode. The earth reflectance spectrum is obtained from
the ratio of atmospheric radiance to solar irradiance, which are used as input for trace
gas retrieval algorithms. The reflectance spectrum can be directly obtained from EMI-2
instrument bidirectional scattering distribution function (BSDF), which makes instrument
BSDF an important radiometric calibration parameter. Instrument BSDF equals the ratio
of EMI-2 radiance and irradiance calibration functions. For GOME, OMI, and TROPOMI,
instrument BSDF is determined on the ground. The optical components are common to
the radiance and irradiance optical paths; in principle, the GOME instrument BSDF is only
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determined by the diffuser BSDF [9]. The OMI instrument BSDF is measured using an
uncalibrated 300 W xenon high-pressure arc discharge lamp and an external spectralon
plate with known BRDF [10]. The TROPOMI instrument BSDF is calculated from the
calibration of absolute radiance and irradiance with absolutely calibrated FEL lamps
and external calibrated diffusers [11]. For EMI, DOAS (Differential Optical Absorption
Spectroscopy) technique [12] is adopted for trace gases retrieval, and the Sun mode is
mainly used for in-flight wavelength calibration and for monitoring the optical degradation;
therefore, EMI instrument BSDF has not been determined on ground. The EMI-2 instrument
BSDF calibration is introduced in this paper to improve the earth reflectance spectrum
calculated accuracy.

The EMI-2 optical design is almost a copy of the EMI concept, and the EMI detailed
optical design was introduced in [13]. The major change between the two instruments
is the telescope mirrors. The EMI-2 telescope adopts off-axis high-order aspheric mirror
system instead of off-axis spherical mirror system to achieve a higher spatial resolution.
The spatial resolution in the swath and flight directions is 13 km × 48 km for EMI and
13 km × 24 km for EMI-2. The optical layout of the EMI-2 is illustrated in Figure 1.
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Figure 1. Optical layout of EMI-2.

EMI-2 has three observation ports: earth, sun, and white light source (WLS) port.
It consists of a telescope and four Offner imaging spectrometers (namely, UV1, UV2,
VI1, and VI2 channels), enabling an instantaneous field of view (IFOV) of 114◦ to realize
one-day global coverage, ranging from 240 nm to 710 nm with a spectral resolution of
0.3–0.6 nm. Each channel adopts a 2D charge-coupled device (CCD) detector. One (along-
track) dimension measures spectral information, and the other (across-track) dimension
detects spatial information. A polarization scrambler makes EMI-2 insensitive to the
polarization state of the incident light. Properties of EMI-2 are listed in Table 1.

The sun and earth have different optical paths: Solar radiation enters the telescope via
onboard diffuser and folding and secondary mirrors. Atmospheric scattering light enters
the telescope through primary and secondary mirrors. EMI-2 instrument BSDF represents
the radiometric response relationship between two optical paths.
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Table 1. EMI-2 instrument properties.

EMI EMI-2

Spectral range UV1: 240–315 nm, UV2: 311–403 nm;
VI1: 401–550 nm, VIS2: 545–710 nm;

UV1: 240–311 nm, UV2: 311–401 nm;
VI1: 401–550 nm, VIS2: 550–710 nm;

Spectral resolution 0.3–0.5 nm 0.3–0.6 nm
Telescope swath IFOV 114◦ (2600 km on the ground) 114◦ (2600 km on the ground)
Telescope flight IFOV 0.5◦ (6.5 km on the ground) 0.5◦ (6.5 km on the ground)

CCD detectors UV: 1072 × 1032 (spectral × spatial) pixels
VIS: 1286 × 576 (spectral × spatial) pixels

UV: 1072 × 1032 (spectral × spatial) pixels
VIS: 1286 × 576 (spectral × spatial) pixels

Spatial resolution 13 km × 48 km 13 km × 24 km

Orbit polar, sun-synchronous, ascending node
equator crossing time: 13:30

polar, sun-synchronous, descending node
equator crossing time: 10:30

2. Methodology

EMI-2 on-orbit atmospheric radiance LEarth-rad(λ)[uW/cm 2 /nm/sr] and solar irradi-
ance ESun-irrad(λ)[uW/cm 2 /nm] are obtained as follows:

LEarth-rad(λ) = fRad(λ) · SEarth(λ) (1)

ESun-irrad(λ) = f Irrad(λ) · SSun(λ) (2)

where λ[nm] is the wavelength of detector pixel; SEarth(λ)[DN] and SSun(λ)[DN] are
the output digital number of Earth and Sun modes, respectively, and corrected for dark
signal, nonlinearity, and pixel response nonuniformity; fRad(λ)[uW/cm2/nm/sr/DN]
and f Irrad(λ)[uW/cm2/nm/DN] are the radiance and irradiance calibration functions,
respectively; fRad(λ) and f Irrad(λ) also depend on viewing geometry and solar incident
angles, respectively, but those arguments are left out for brevity. The EMI-2 instrument
BSDF BSDF(λ)[sr−1] is defined as follows:

BSDF(λ) =
fRad(λ)

f Irrad(λ)
(3)

On-orbit earth reflectance spectrum R(λ) is the ratio of atmospheric radiance LEarth-rad(λ)
and solar irradiance ESun-irrad(λ):

R(λ) =
πLEarth-rad(λ)

µ · ESun-irrad(λ)
(4)

where µ = cos θ is the cosine of the solar zenith angle θ. From Equations (1)–(4), R(λ) can
be expressed as follows:

R(λ) =
π

µ
· SEarth

SSun
· BSDF(λ) (5)

Equation (5) shows that reflectance spectrum R(λ) can be directly obtained from the
EMI-2 instrument BSDFEMI-2(λ).

The EMI-2 instrument forward model of Earth and Sun mode are described as follows:

SEarth(λ) = LEarth(λ) · τEarth(λ) · ηd(λ) (6)

SSun(λ) = ESun(λ) · BRDF(λ) · τSun(λ) · ηd(λ) (7)

where τEarth(λ) and τSun(λ) are the optical transmission of the earth and sun path, respec-
tively, and the differences between these two optical paths are determined by primary
mirror in Earth mode and solar mesh and folding mirror in Sun mode; BRDF(λ) is diffuser
bidirectional reflectance distribution function (BRDF) characterization, and ηd(λ) is the
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response parameter of the EMI-2 detector system. From Equations (1), (2), (7) and (8), the
following can be obtained:

fRad(λ) =
1

τEarth(λ) · ηd(λ)
(8)

f Irrad(λ) =
1

BRDF(λ) · τSun(λ) · ηd(λ)
(9)

From Equations (3), (6), and (7), EMI-2 instrument BSDF can be expressed as follows:

BSDFEMI-2(λ) = BRDF(λ) · τ(λ) (10)

where τ
(

λ) = τSun(λ)
τEarth(λ)

. Equation (10) shows that EMI-2 instrument BSDF is mainly deter-
mined by the primary telescope mirror in Earth mode and solar mesh, onboard diffuser,
and folding mirror in Sun mode. The most important contributor for EMI-2 instrument
BSDF is the onboard diffuser.

2.1. Absolute Irradiance Calibration

A 1000 W FEL quartz tungsten halogen lamp, which has been calibrated by NIST,
is used for EMI-2 absolute irradiance calibration. EMI-2 absolute irradiance calibration
function represents the conversion relationship between output digital number (DN) and
input irradiance (uW/cm2/nm). The lamp is moved on a rail to change the distance to the
onboard diffuser. The EMI-2 instrument is mounted on a 2D turntable to change the lamp
incident angles. The absolute irradiance calibration system is shown in Figure 2.
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The details of absolute irradiance calibration process are as follows:
A laser is used to align the center of the lamp and the onboard diffuser, the lamp is

moved to three positions on a rail at 30, 40, and 50 cm from the diffuser, which are labelled
as d1, d2, and d3, respectively.

The turntable drives the EMI-2 to rotate in the horizontal and vertical directions, which
can cover the on-orbit solar incident angles. At each rotation angle, 20 lamp images SSun(λ)
are continuously collected. All measurements are performed at three lamp positions.

Irradiance calibration functions, calculated from the three distances, are averaged to
obtain the final result. Irradiance calibration function f Irrad(λ) is calculated by as follows:

f Irrad(λ) =
EDi f f (λ)

SSun(λ)
(11)

In Equation (11), lamp images SSun(λ) are corrected by the background measurement,
EDi f f (λ) is the irradiance on the diffuser. The EMI-2 diffusers are 46 mm in length and
16 mm in width, the imaging area is 44 mm × 2 mm, and the nominal angle between the
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incident light and the diffuser normal is 22◦. Here the lamp is considered a point source, the
distances between the lamp and spots on the diffuser are different, and the irradiance on
one diffuser spot is different from others due to the distance offset and inverse-squared law.
Distance offset ∆d(θi, d0, θv) is determined by lamp incident angle θi, distance from lamp
to diffuser center (corresponding to the center row) d0, and viewing angle (−57◦ ∼ 57◦) θv.
EDi f f (λ) in Equation (11) is obtained by the following:

EDi f f (λ) = (
d0 + ∆d

50
)

2
· ENIST-50cm(λ) (12)

where ENIST-50cm(λ) is the lamp irradiance, which has been calibrated by NIST at a distance
of 50 cm.

2.2. Absolute Radiance Calibration

A large aperture integrating sphere system with eight 200 W tungsten halogen lamps is
used for EMI-2 absolute radiance calibration, and the output radiance levels are measured
by a spectroradiometer with absolute accuracy traceable to the NIST. The EMI-2 absolute
radiance calibration function represents the conversion relationship between output DN
and input radiance (uW/cm2/sr/nm). EMI-2 has to be rotated in six steps to complete
the total viewing field of 114◦ because approximately 20◦ can be illuminated once. The
absolute radiance calibration system for EMI-2 is shown in Figure 3.
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The details of absolute radiance calibration are as follows:
EMI-2 is placed facing the integrating sphere exit aperture, and its position is adjusted

such that the center of the exit aperture can be imaged in the central field of view of EMI-2.
By moving the EMI-2 with a rotational device, all swath angles can be calibrated one by one.

Different output radiance levels for EMI-2 calibration are selected. One hundred
response images are measured by EMI-2 at each illuminated angle, and background
measurements of each channel are collected.

The response images after deduction of background are averaged to obtain mean
value SEarth(λ). Output radiance L(λ) is measured by the spectroradiometer. Radiance
calibration function fRad(λ) is derived.

fRad(λ) =
L(λ)

SEarth(λ)
(13)
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2.3. On-Ground Measurement

In order to evaluate the pre-launch radiometric characterization of EMI-2, an on-
ground measurement is performed. EMI-2 is placed in clean room with a quartz window
inlayed in the wall, and receives the scattered sunlight passing through the window. The
sun port observes the direct sunlight through a plane mirror, the precise value of the
reflectivity is not known, see Figure 4.
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The absolute irradiance calibration functions f Irrad(λ), radiance calibration functions
fRad(λ) and instrument BSDF are applied to the on-ground measurements. Observation
target radiance L(λ) and direct solar irradiance ISun(λ) are calculated by

L(λ) = fRad(λ) · DNEarth(λ), (14)

ISun(λ) = f Irrad(λ) · DNSun(λ), (15)

where DNEarth(λ) and DNSun(λ) are output digital number of Earth and Sun ports, respectively.

3. Results

Based on Equation (10), the BSDF parameters can be calculated theoretically. For
EMI-2, two onboard solar diffusers (SD), one F4 diffuser and one quartz volume diffuser
(QVD) diffuser, are adopted for solar measurement. QVD is used frequently to provide a
solar reference spectrum, and F4 is used on a long-time basis to monitor QVD degradation.

F4 and QVD diffuser BRDF are characterized during on-ground calibration. BRDF cal-
ibration angles are determined by in-orbit solar incident angles on diffusers and installation
position of diffusers. Diffuser BRDF results are shown in Figure 5.
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Figure 5. Onboard diffuser BRDF at 355 nm: (a) F4 and (b) QVD with the zenith angle and azimuth
angle of incident light varying from 22◦–44◦ and 118◦–150◦, respectively.

An NIST-calibrated 1000 W FEL quartz tungsten halogen lamp and an external spec-
tralon plate (ESP) with known BRDF are selected to determine τ(λ) parameters. The ESP
and internal F4 diffusers are illuminated by the FEL lamp with the same distance between
the FEL lamp and the diffusers. The τ(λ) parameters are shown in Figure 6.
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The results in Figure 4 show that τ(λ) is approximately 0.35. Based on solar diffuser
BRDF and τ(λ) parameters, EMI-2 BSDF is approximately 0.11[sr−1]. The exact value of
EMI-2 BSDF is obtained from absolute irradiance and radiance calibration.

3.1. EMI-2 Wavelength

Spectral calibration sources are used to illuminate a diffuser in Sun mode, which can
achieve wavelength calibration of the full field of view. Wavelength maps for EMI-2 are
shown in Figure 7.
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directions are spectral and spatial dimensions, respectively. The spectral smile (the wavelengths at
the center pixels of imaging spectrometer detector array are different from the marginal pixels) is
visible in wavelength maps.

The EMI-2 spectral response can be described by a Gaussian-type function. The full
width at half maximum (FWHM) is obtained by Gaussian fitting (see Table 2).
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Table 2. FWHM of EMI-2 spectral response.

FOV UV1/nm UV2/nm VIS1/nm VIS2/nm

50◦ 0.39 0.45 0.47 0.48
40◦ 0.37 0.46 0.42 0.48
30◦ 0.38 0.47 0.41 0.49
20◦ 0.38 0.48 0.40 0.50
10◦ 0.39 0.48 0.40 0.50
0◦ 0.40 0.49 0.41 0.49

−10◦ 0.41 0.49 0.42 0.48
−20◦ 0.40 0.49 0.44 0.46
−30◦ 0.40 0.48 0.46 0.44
−40◦ 0.39 0.47 0.50 0.41
−50◦ 0.43 0.48 0.58 0.39

3.2. EMI-2 Instrument BSDF

For absolute irradiance calibration, the calculated distance offsets are shown in Figure 8.
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The results in Figure 8 show that lamp incident angle θi is the major influencing factor.
The lamp images via F4 and QVD diffuser are shown in Figure 9.
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Figure 12. EMI-2 instrument BSDF.

The EMI-2 instrument BSDF is a function of wavelength (spectral dimension), viewing
direction (spatial dimension), and incident angles of the onboard diffuser.

3.3. Uncertainty

The uncertainty of EMI-2 instrument BSDF is mainly determined by irradiance cal-
ibration system accuracy, radiance calibration system accuracy, and nonlinearity and
nonstability response of EMI-2. Irradiance calibration system uncertainty µi depends
mainly on the lamp calibrated by NIST. Radiance calibration system uncertainty µr refers
to spectroradiometer and integrating sphere system. The spectroradiometer has been
calibrated by a standard diffuser plate and an NIST-calibrated lamp. The nonlinearity µl of
the EMI-2 can be expressed as follows:

µl =
δ

S
(16)

where δ is the standard deviation of linear fit residuals, and S is the mean value of the pixel
response. The linear fitting results of EMI-2 are shown in Figure 13.
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Figure 13. Linear fitting results of EMI-2 response.

The nonstability µs of the EMI-2 can be expressed as follows:

µs =

√
n
∑

i=1
(Ss−Ss)

2

n−1

Ss
(17)

where n is the total number of measurements, Ss is the ith response of the pixel, and
Ss is the mean response of the total measurements. Irradiance and radiance calibration
function uncertainty depend on nonlinearity and nonstability. The uncertainty µ of EMI-2
instrument BSDF can be calculated by the following:

µ =
√

µ2
i + µ2

r + 2µ2
l + 2µ2

s (18)

The results of EMI-2 instrument BSDF uncertainty are shown in Table 3. EMI-2 adopts
DOAS retrieval technique, DOAS is sensitive to the spectral calibration, the spectral stability
and spectrally dependent features of the instrument [7]. The EMI calibration uncertainty
is about 5%, the NO2 and total ozone columns retrieval results show that a 5% error of
calibration is enough for the application.

Table 3. EMI-2 instrument BSDF uncertainty.

Uncertainty Factor
Channels

UV1 UV2 VIS1 VIS2

Irradiance calibration system (%) 2.8 2.1 1.7 1.7
Radiance calibration system (%) 4.0 3.6 3.6 3.6

Nonlinearity (%) 0.4 0.7 0.8 1.0
Nonstability (%) 0.3 0.3 0.1 0.1

Combined uncertainty (%) 4.9 4.3 4.1 4.2

3.4. On-Ground Measurement

The scattered sunlight radiance and direct sunlight irradiance spectra measured by
EMI-2 are shown in Figure 14.
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Figure 14. Radiance (a) and irradiance (b) measured by EMI-2. Note that quartz window transmittance and plane mirror
reflectivity are involved in the measurements.

Assuming observation target is Lambertian scattering, EMI-2 instrument BSDF pa-
rameters are used to calculate the target reflectance spectrum by Equation (5). The results
are shown in Figure 15.
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Note that quartz window transmittance and plane mirror reflectivity are involved in the measurements.

The on-ground measurement results show that EMI-2 instrument BSDF parameters
can be used to calculate the reflectance spectrum, the on-orbit application method is
discussed in next section.

4. Discussion

Pre-Launch EMI-2 instrument BSDF parameters are obtained on-ground, the on-orbit
application are as follows:

QVD and F4 are planned to be used weekly and monthly, respectively. The EMI-2
instrument BSDF parameters need to be interpolated to match the on-orbit solar incident
angle intervals. The F4 diffuser is mainly used as reference solar diffuser to monitor the
QVD degradation.

The solar images SSun(λ, θi, ϕi) observed via QVD during a solar observation sequence
are selected, solar incident azimuth ϕi and zenith θi angles are calculated, and then the
EMI-2 instrument BSDF BSDF(λ, θi, ϕi) at the corresponding angles is determined. Ap-
proximately 95 solar images are collected during a solar observation sequence of 150 s,
solar zenith angle θi varies from +5◦ to −5◦, and the zenith angles are corrected to normal
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angle θi = 0 by the goniometry correction factor. Moreover, the averaged solar images
SSun(λ, θi = 0, ϕi) are obtained to improve the signal-to-noise ratio, and the corrected
and averaged instrument BSDF is BSDF(λ, θi = 0, ϕi). Based on Equation (5), earth re-
flectance spectrum R(λ) can be calculated from digital number SEarth(λ) of the earth path
by the following:

R(λ) =
π

µ
· SEarth(λ)

SSun(λ, θi = 0, ϕi)
· BSDF(λ, θi = 0, ϕi) (19)

Instrument BSDF degradation is calculated. On-orbit signals of earth and sun optical
paths are time dependent, and the two paths’ degradation are different. As discussed above
in the EMI-2 instrument BSDF, most of the optical components are common to the earth and
sun optical paths, and the optical sensitivity of these common components cancels in the
ratio of absolute irradiance and radiance calibration. The material of the primary telescope
mirror is the same as that of the folding mirror. Therefore, instrument BSDF degradation
is mainly caused by the degradation of solar mesh and diffuser. This degradation can be
monitored by F4 diffuser, and the ratio γ(λ, t) of QVD and F4 instrument BSDF can be
expressed as follows:

γ(λ, t) =
BSDFQVD(λ, t)
BSDFF4(λ, t)

(20)

F4 is used on a long-time basis and well protected; hence, BSDFF4(λ, t) does not
change with time t. From Equations (2) and (3), the following can be obtained:

γ(λ, t) =
SSun-F4(λ, t)

SSun-QVD(λ, t)
(21)

where SSun-QVD(λ, t), SSun-F4(λ, t) are output digital number of Sun mode via QVD and
F4 at on-orbit time t, respectively. The QVD instrument BSDF degradation α(λ, t) can be
calculated as follows:

α(λ, t) = γ∗(λ, t)− γ(λ, t) (22)

where γ∗(λ, t) is the ratio of output digital number via F4 and QVD at the first time of
on-orbit solar observations.

5. Conclusions

EMI-2 instrument BSDF is obtained by preflight calibration and mainly used to calcu-
late earth reflectance spectrum. Based on EMI-2 on-orbit solar incident angles, the instru-
ment F4 and QVD BSDF look-up tables are established. F4 is much less frequently used to
minimize potential degradation and exposure time, which is adopted to update the on-orbit
QVD BSDF look-up tables. EMI-2 instrument BSDF is used as key input parameter for the
L1b data processor to produce on-orbit earth reflectance spectrum products because most
of the optical components’ on-orbit degradation can be cancelled, and the earth reflectance
spectrum calculated accuracy of EMI-2 is improved compared with EMI. Moreover, EMI-2
instrument BSDF can improve the knowledge of instrument radiometric response.
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