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Abstract: The high accuracy radio Doppler frequency is critical for navigating a deep space probe
and for planetary radio science experiments. In this paper, we propose a novel method based on the
local correlation of segmented modeling to retrieve Doppler frequency by processing an open-loop
radio link signal from one single ground station. Simulations are implemented, which prove the
validity of this method. Mars Express (MEX) and Tianwen-1 observation experiments were carried
out by Chinese Deep Space Stations (CDSS). X-band Doppler frequency observables were retrieved
by the proposed method to participate in orbit determination. The results show that the accuracy
of velocity residuals of orbit determination in open-loop mode is from 0.043 mm/s to 0.061 mm/s
in 1 s integration; the average accuracy of Doppler frequency is about 3.3 mHz in 1 s integration
and about 0.73 mHz in 60 s integration. The Doppler accuracy here is better than that of the digital
baseband receiver at CDSS. The algorithm is efficient and flexible when the deep space probe is in
a high dynamic mode and in low signal to noise ratio (SNR). This will benefit Chinese deep space
exploration missions and planetary radio science experiments.

Keywords: Doppler; frequency retrieving; local correlation; open-loop; Mars exploration

1. Introduction

High accuracy radio Doppler frequency, being retrieved from a carrier wave of space
probe detected at a deep space station, is important for deep space probe navigation and for
planetary radio science applications. Dedicated deep space tracking systems, for instance,
NASA’s Deep Space Network (DSN), ESA’s tracking station network (Estrack), and Chinese
Deep Space Network (CDSN), normally utilize the closed-loop mode to obtain the real-time
Doppler observables to carry out navigation and telemetry measurements missions [1–5].
The precise Doppler measurements could be derived with the digital phase-lock loop (PLL)
technique by using the closed-loop tracking receiver. Low signal-to-noise ratio (SNR) or large
frequency dynamic range would lead to the phase loss-of-lock on the desired signal [6–8].
Specifically, some abrupt changes of frequency would cause the phase loss-of-lock in closed-
loop tracking measurement mode, for instance, in planetary atmospheric occultation and ring
occultation [9,10] an open-loop Doppler measurement is preferable [11–15]. In this case, no
real-time signal detection mechanism is typically present; the carrier signal or tone signal of
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the deep space probe is down converted, digitized, recorded, and analyzed to extract high
accuracy open-loop Doppler observables.

Many post-processing algorithms have been used to retrieve the ground-space link
open-loop Doppler for both deep space navigation and planetary radio science experiments.
Each open-loop algorithm has its own characteristic technique for obtaining Doppler
observables for special applications. For instance, the Planetary Radio Interferometry and
Doppler Experiment (PRIDE) technique could simultaneously provide Doppler and VLBI
observables [9,10,16–18]. PRIDE contains three packages, SWSpec, SCtracker, and digital
PLL to extract the carrier frequency of the deep space probe; direct Fourier transform
(DFT), frequency band filtering, and PLL method are utilized. Although PRIDE has been
successfully and effectively utilized in several radio science experiments, the algorithm
requires massive scale computing, due to PRIDE being designed to process the large
wideband VLBI signal received by VLBI telescope. Currently, among the existing open-loop
algorithms, some have the disadvantages of complicated algorithms and a huge amount
of calculation [6,8], some require special hardware platforms for signal processing [19,20],
and others utilize the PLL technique such as real-time PLL in closed-loop mode [10,12],
in which the risk of loss-of-lock exists. The post-processing techniques of the open-loop
Doppler may differ because different radio science or engineer teams develop their own
software for signal processing and application. In these low SNR and large frequency
dynamics range circumstances, whether the precise Doppler frequency can be derived is
the most important objective in the open-loop algorithm.

In this paper, we propose an improved method which utilizes the algorithm of lo-
cal correlation with segmentation modeling. Compared with traditional methods, this
improved method is realizable and effective, which has been successfully applied to the
received signal based on one single ground station to provide high accuracy open-loop
Doppler observables. Fast Fourier transform (FFT) and chirp-Z transform (CZT) algorithms
are initially utilized to construct the preliminary carrier frequency fitting model of the
received signal, and then the algorithm of local correlation with segmentation modeling
is utilized to reconstruct the residual frequency. The final estimated carrier frequency is
obtained by adding the fitting model frequency with the residual frequency. The PLL tech-
nique is not utilized in this method to avoid the loss-of-lock condition frequently occurring
under high dynamics and low SNR conditions. This innovative method could provide high
accuracy Doppler observables for deep space navigation and radio science applications.

2. Methods

This section describes the algorithm flow of the local correlation method of segmented
modeling to estimate the Doppler frequency of the deep space probe. All the physical
quantities utilize international standard units in this paper. For example, the unit of
frequency is Hz, the unit of phase is rad, the unit of time is s, the unit of distance is m, and
the unit of velocity is m/s. The probe’s downlink carrier signal y(t) could be expressed as:

y(t) = exp−j[2π( fsky+ fdop)t+ϕ0] (1)

where fsky denotes sky frequency of the probe, ϕ0 denotes initial phase, t denotes time
scale, and fdop denotes Doppler frequency between the probe and the ground station.

The downlink signal of the probe propagates through interplanetary space, which is
received by ground telescope and converted to intermediate frequency, then sampled and
recorded by the acquisition equipment of the ground station.

In order to conveniently describe the procedure of signal processing, the following
equation utilizes the discrete format of the signal. Thus, the probe’s carrier digital signal
y(ti) sampled by acquisition equipment could be expressed as:

y(ti) = exp−j[2π fsky(ti−
Li
c )+2π fdopti−2π flocti+ϕ0], i = 1, 2, · · · , N (2)
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where ti denotes discrete time scale, N denotes the number of the analyzed signal points, Li
denotes the distance between the probe and ground station at ti, c denotes the speed of the
light in vacuum, which is 299,792,458 m/s, fdop denotes Doppler frequency between the
probe and ground station at ti, and floc denotes local oscillator frequency at ground station.
The sampling frequency is written as fs; thus, the time scale interval of the sampling is
∆t = 1

fs
.

Then, the signal processing procedure is introduced as follows.
Firstly, the carrier frequency of the probe is preliminarily estimated by FFT. The

estimated results of the probe’s carrier frequency are expressed as f f f t_i , i = 1, 2, . . . , P,
where P denotes the discrete number, P = N

n f f t , and n f f t denotes the number of FFT

calculation points. The frequency resolution of FFT is expressed as d f =
fs

n f f t .
Secondly, the carrier frequency is further estimated by CZT [21]. The CZT is applied

to the peak value of each discrete point estimated by FFT in step one. The purpose of CZT
is to zoom in on the narrow-band in the frequency domain to obtain the higher- frequency
resolution of the analyzed signal. The algorithm of CZT is mature. The parameter settings
of using CZT include the narrow frequency bandwidth, the starting frequency, the length
of the CZT transform, and the sampling frequency. The narrow frequency bandwidth
is recommended to be

[
f f f t_i − d f , f f f t_i + d f

]
in each CZT calculation, which means the

bandwidth is 2d f . The starting frequency is f f f t_i − d f . The length of the CZT transform is
recommended to be 2000d f , and thus the frequency resolution of CZT will be improved
by 1000 times than that of FFT. The CZT method improves frequency resolution of the
analyzed signal to obtain more accurate carrier frequency written as fczt_i , i = 1, 2, . . . , P.

Thirdly, the segmented modeling method is introduced into the post signal processing
procedure, and the signal of the probe is reprocessed via the local correlation method of
segmented modeling.

The estimated frequencies fczt_i , i = 1, 2, . . . , P are divided into several segments with
the same fixed length K, where K denotes the settings length number in one segmented
modeling, and Q denotes the total segmented number, P = K × Q. The parameters
including N, n f f t, P, K, and Q are positive integers in this paper. The relationship of these
parameters is described as N = n f f t× P = n f f t× K×Q.

In this local correlation method of segmented modeling, K and n f f t are two of the
important parameters which are required to be set. The setting of K and n f f t will sensitively
affect the accuracy of the retrieving Doppler frequency. There are two influencing factors
for selection of K and n f f t as follows: one is the SNR of the received signal and the other
is the dynamic variation feature of the received signal. In general, when the SNR is low, K
is recommended to be large; when frequency dynamic variation feature is appropriately
small, K is recommended to be large, and vice versa. Furthermore, when the SNR is low,
n f f t is recommended to be large; when frequency dynamic variation feature is small,
n f f t is recommended to be large, and vice versa. The selection of K and n f f t will be
comprehensively considered in the other situations. There is an empirical selection of
K and n f f t for reference: 0.005 ≤ n f f t

fs
≤ 0.5 and 10 ≤ K ≤ 50 in practical signal

processing procedure.
Then, each fczt_i , i = 1, 2, . . . , K is utilized to obtain the fitting model of the carrier

frequency by least squares polynomial fitting:

K

∑
i=1

[ f (tmid_i)− fczt_i]

2

= min (3)

f (t) = q1tn + q2tn−1 + . . . + qnt + qn+1 (4)

where n denotes the order of the polynomial fitting, q1, q2, . . . , qn+1 denotes the coefficient
of the polynomial fitting, and tmid_i denotes the time mid-value of the discrete samples of
the segment with n f f t points. The value of n can be set with the integer; however, it is
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recommended to fix n in one observation scan. In practical cases, n is normally set to 1 for
calculation because linear segmentation is suitable to obtain good performance.

Then, the differential frequency ∆ fi is written as:

∆ fi = fczt_i − fsky, i = 1, 2, . . . , K (5)

Since Doppler phenomenon exists, ∆ fi = fczt_i − fsky, i = 1, 2, . . . , K will not be always
equal to 0, except for the relatively static velocity between the probe and the ground station
that exist during the entire observation time.

The fitting model of the delay rate is obtained by least squares polynomial fitting in
the same way, written as:

K

∑
i=1

[
.
τ(tmid_i)−

∆ fi
fsky

]2

= min (6)

.
τ(t) = p1tn + p2tn−1 + . . . + pnt + pn+1 (7)

where n denotes the order of the polynomial fitting and p1, p2, . . . , pn+1 denotes the coeffi-
cient of the polynomial fitting. The unit of delay rate is s/s.

Since the delay could be obtained by the integration calculation of the delay rate, the
delay model is written as Equation (8). The unit of the delay is s. There are two constraint
conditions to obtain the delay model: ∆ fi = fczt_i − fsky ≡ 0 (not always equal to 0) and
t > 0, which should be satisfied in practical signal processing procedure.

τ(t) =
p1

n + 1
tn+1 +

p2

n
tn + . . . +

pn

2
t2 + pn+1t (8)

After obtaining the delay model, the local signal model ycons(ti) of the probe in each
n f f t points could be reconstructed and written as Equation (9). Then, the local signal model
in K segments can be easily obtained as ycons[ti + (j− 1)× n f f t× ∆t], j = 1, 2, . . . , K.

ycons(ti) = exp−j[2π fsky(ti−τ(ti))−2π flocti ], i = 1, 2, · · · , n f f t (9)

Then, the correlation calculation written as Equation (10) is implemented by the local
signal model and the real received signal, where f f t denotes FFT calculation and ∗ denotes
conjugate calculation.

Y(j, i) = f f t{y[ti + (j− 1)× n f f t× ∆t]} · f f t{ycons[ti + (j− 1)× n f f t× ∆t]}∗, j = 1, 2, . . . , K; i = 1, 2, . . . , n f f t (10)

The correlation phase φmax_j at the max frequency could be easily obtained in the
correlation spectrum by Equation (10). Thus, the estimated residual frequency fres_j could
be obtained by least squares linear fitting written as Equation (11), where T = n f f t× ∆t
denotes the time of each FFT calculation. Each segment fres_k, k = 1, 2, · · · , Q utilizes one
set of coefficients. This is shown as Equation (12), where ak, bk denotes the coefficient of the
linear fitting in one segment signal processing:

K

∑
j=1

(
2π fres_jTj − φmax_j

)2

= min (11)

fres_k = akt + bk (12)

The estimated frequency of the segmented signal is obtained by adding the residual
frequency and the model frequency, written as Equation (13). The model frequency is
calculated as Equation (14), which is implemented by taking the middle time of each FFT
calculation into Equation (4).

fest = fmodel + fres (13)
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fmodel = f
(

T
2

)
(14)

Finally, the estimated frequency of the other segmented signal could be easily obtained
by the local correlation method of segmented modeling in the same way. Thus, the
estimated Doppler frequency of the probe could be easily obtained, shown as Equations
(15) and (16).

fd = fest − fT =

(√
c + v
c− v

− 1

)
fT ≈

v
c

fTprobe (15)

fd = fest − q fT =

(√
c + v1

c− v1

√
c + v2

c− v2
− 1
)

q fT ≈
2v
c

q fTstation (16)

Equation (15) shows that the velocity of the deep space probe relative to the ground
station could be obtained from the estimated one way Doppler frequency. Where fTprobe
denotes the transmitting frequency from the probe, v is the velocity of the probe relative
to the ground station, and c is the velocity of light in a vacuum. In general, v � c.
Equation (16) shows that the velocity of the deep space probe relative to the ground station
could be obtained from the estimated two or three-way Doppler frequency. Where fTstation
denotes the transmitting frequency from the probe, v is the velocity of the probe relative to
the ground station in two-way mode, v1 is the velocity of the probe relative to the uplink
ground station, v2 is the velocity of the probe relative to the downlink ground station,
and q denotes the transponder turnaround ratio of the probe. In general, v � c and the
distance is very long in the flying mission of the deep space probe, thus v1 = v2 = v is
approximately achieved. Therefore, the Doppler velocity of the probe could be obtained as
Equations (17) and (18), respectively, for one-way mode and two/three mode.

v ≈ ( fest − fT)c
fTprobe

(17)

v ≈ ( fest − fT)c
2q fTprobe

(18)

3. Simulation

In order to evaluate the validity of the method before processing the real signal of the
deep space probe, it is important to check whether the results obtained from the method
in Section 2 are strictly identical with the theoretical ones. Numerous simulations are
performed under the condition of no random noise. One example is selected to display the
simulation procedure and the results are shown in Figure 1.

The signal expression is written just as Equation (1). The sky frequency of the probe is
set to 1040 kHz, the Doppler frequency is set to 5.0× ti, the initial phase is set to 0.2 rad,
and the sampling frequency is set to 4 MHz. The time of the simulation signal lasts 10 s.

In the simulation signal processing procedure, which has no random noise, n f f t is
set to 20 k, the number of segments K is set to 20. Figure 1a shows the FFT spectrum
of the simulation signal. There is only one spectral line corresponding to the maximum
amplitude, due to just one basic frequency being set in simulation. Figure 1b shows the
correlation phase result by the cross correlation calculation of the local signal model and
the real simulation signal. This correlation phase result is obtained by unwrapping 2π
ambiguities of the total correlation phases. Figure 1c shows the estimated frequency and the
theoretical frequency, and Figure 1d shows the differential values between the estimated
frequency and the theoretical frequency in 1 s integration. As is shown, the differential
values are very small at just 1.25 × 10−3 mHz in 1 s integration, which may be caused by
the truncation error of the computer. It proves the validity of the method of Section 2.
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Figure 1. Simulation with no random noise. (a) FFT spectrum of the simulation signal; (b) the phase of cross correlation; (c)
the theoretical frequency and the estimated frequency; and (d) differential values between the estimated frequency and the
theoretical frequency.

In practical application, the received signal of the probe always contains random noise.
In order to evaluate the accuracy of the proposed algorithm under the condition of the
random noise, we carry out the simulations in six situations. The random noise is added
to the pure carrier of the cosine wave. The SNR is defined to compare the level of the
desired signal with the level of background noise. In other words, the SNR is the ratio of
signal power to the noise power, and its unit of expression is typically in decibels (dB). In
six situations, SNRs are set from −20 dB to 10 dB. In addition, the sky frequency of the
probe is set to 1040 kHz, the Doppler frequency is set to 5.0× ti, the initial phase is set
to 0.2 rad, and the sampling frequency fs is set to 4 MHz. Furthermore, we carried out
many simulations under the condition of random noise. One of the simulations is shown
in Figure 2: n f f t is set to 20 k and the number of segments K is set to 40. Figure 2a shows
the FFT spectrum with the SNR of −10 dB. Figure 2b shows the estimated frequency and
the theoretical frequency. As is shown, the estimated frequency is almost identical with
the theoretical frequency. Figure 2c shows the differential values between the estimated
frequency and the theoretical frequency in 1 s integration. The root-mean-square (RMS) of
the residual frequency is 2.185 mHz.
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Figure 2. Simulation with random noise at different SNR values. (a) The FFT spectrum of the simulation signal; (b) the
theoretical frequency and the estimated frequency; (c) differential values in 1 s integration; and (d) the frequency calculation
errors at different SNR values.

Since n f f t and K are important, which may cause different accuracies in the estimated
frequency, different parameters with six groups are set at different SNR conditions for
simulation verification. The length of one signal processing is equal to n f f t × K, in
simulation, n f f t is fixed to 20 k, and K is set from 5 to 100, thus the length of one signal
processing is from 12.5 ms to 400 ms. All the results of the estimated frequencies are
interpolated with the 1 s integration interval to conveniently compare the result of the RMS
in the same scale. The frequency calculation errors at different SNR conditions are shown
in Figure 2d. It is obvious that when the SNR is higher, the estimated error is smaller.
The SNR is the most sensitive element to influence the estimated error in this simulation.
The estimated accuracy would be improved by appropriately extending the length of one
processing time of the signal. This validates the method in Section 2.

4. Results

In order to verify the proposed method, the raw signals obtained from the Mars
Express and Tianwen-1 orbiter observation experiment were utilized to evaluate the es-
timated frequency accuracy when the two probes were both on the orbit of Mars. The
observation experiments were implemented by CDSN. The CDSN consists of three Chinese
deep space stations (CDSS), Jiamusi (JM) station, Kashi (KS) station, and Argentina (AG)
station. The location of CDSS is shown in Figure 3. JM station is located in Northeast China
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with one telescope of 66 m, KS station is located in Northwest China with 4 telescopes of
35 m, and AG station is located in southwestern Argentina with one telescope of 35 m.
The CDSS not only supported Chinese lunar exploration missions and Mars exploration
missions, but also carried out some deep space navigation experiments and radio science
experiments [22–24].
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4.1. Mars Express Experiment

The MEX orbiter was launched on 2 June 2003 and has been orbiting the red planet
since December 2003 [25]. Before the first Chinese Mars exploration mission of Tianwen-1
was carried out, the China National Space Administration (CNSA) cooperated with the
European Space Agency (ESA) to test Mars’ probe navigation performance of CDSN in
2020. MEX was utilized to test and verify the feasibility of orbit measurement and orbit
determination at the distance between Earth and Mars by CDSS.

On 3 April and 16 April 2020, MEX observation experiments were carried out by
CDSS. MEX was in an elliptical orbit with periaerion of ~340 km, apoaerion of ~10,500 km,
and an orbital period of ~7.0 h. An open-loop digital signal recorder assembly for interfer-
ometry signal sampling was utilized to record the signal of MEX, with 4 MHz sampling
frequency and 4-bit quantification. The format of the recorded signal is Delta-DOR Raw
Data Exchange Format (RDEF) [26]. The raw recorded signal could be used not only for
the interferometry, but also for the open-loop Doppler extraction.

On 3 April, the KS station transmitted the uplink signal to MEX in X band (7.1 GHz),
and received the coherent frequency from MEX in X band (8.4 GHz). This means that the
observation of KS station utilized a two-way mode. The observation time of the KS station
lasted about 2 h. Then, the AG station observed MEX for approximately 1.2 h. The AG
station received the downlink signal in X band (8.4 GHz) by three-way mode, when the
uplink station was the Cebreros (CB) deep space station in Spain.

Figure 4 shows the FFT spectrum of MEX in the KS station on 3 April. The signal
corresponding to the max amplitude in the FFT spectrum is the carrier signal of MEX in
Figure 4. The carrier signal is utilized to extract the high accuracy Doppler frequency by
the proposed method.
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Figure 4. FFT spectrum of MEX observed at the KS station.

In the signal processing procedure of MEX, n f f t is set to 400 k, and K is set to 10. Open-
loop Doppler observables were obtained by the local correlation method of segmented
modeling. Meanwhile, the digital baseband receiver of the station provided real-time
Doppler observables by digital PLL technique.

Figure 5 shows the measurement and orbit determination results of MEX on 3 April
2020. In Figure 5a, the estimated frequency is obtained by baseband receiver and open-loop
receiver at the KS station, respectively. Here, the open-loop receiver means the software
receiver utilizing the proposed local correlation method of segmented modeling. The
experiment shows that the open-loop result is consistent with the baseband result, and
the trend of frequency variety is similar. However, there are two sections of results in
Figure 5a because some parameters did not select the optimal schemes when the KS
station first carried out the two-way measurement of Mars’ probe. The KS station did not
capture MEX’s downlink signal from 04:40 to 05:50 (UTC time) since some incorrect setting
operations occurred at the station. In the first section of Figure 5a, the PLL loop bandwidth
is fixed to 100 Hz; in the second section, the PLL loop bandwidth is fixed to 500 Hz. Both
the open-loop and baseband Doppler observables were utilized for orbit determination
of MEX. Figure 5b shows the residual velocity of orbit determination at the KS station.
The RMS of baseband velocity is 0.21 mm/s in 1 s integration, and the RMS of open-loop
velocity is 0.055 mm/s in 1 s integration.

Figure 5c shows that the estimated frequency is obtained by the baseband receiver and
the open-loop receiver at the AG station, respectively. The PLL loop bandwidth is fixed to
50 Hz in the baseband receiver. Figure 5d shows the residual velocity of orbit determination
at the AG station. The RMS of baseband velocity is 0.095 mm/s in 1 s integration and the
RMS of open-loop velocity is 0.054 mm/s in 1 s integration. The RMS of baseband velocity
at the AG station is better than that of the KS station, because the AG station utilized a
narrower and more suitable PLL loop bandwidth to extract the Doppler frequency. It is
apparent that the open-loop result is better than the baseband result.
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Figure 5. The measurement and orbit determination results of MEX on 3 April 2020. (a) The measurement results of the
carrier frequency by two-way mode at the KS station, (b) the residual of orbit determination at the KS station, (c) the
measurement results of the carrier frequency by three-way mode at AG station, and (d) the residual of orbit determination
at the AG station.

On 16 April, the JM station and the KS station also observed MEX. There were two
phases of the observation. In the first phase, the JM station carried out the measurement
experiment by two-way mode; the KS station utilized three-way mode. In the second
phase, the KS station carried out the measurement experiment by two-way mode. For the
JM station, it was also the first time the two-way measurement of Mars’ probe was carried
out and there were some errors in the baseband receiver at the JM station in the first phase,
thus the baseband receiver was not successful in obtaining the correct Doppler frequency
of MEX. The JM station did not participate in the second phase of observation due to
MEX being located out of sight at that time. However, the open-loop Doppler frequency
was successfully obtained by the proposed method. For the KS station, it carried out the
measurement experiment by three-way mode in the first phase, when JM transmitted
the uplink signal to MEX. The KS station carried out the measurement experiment in
two-way mode in the second phase. Doppler frequency was successfully obtained both
by the baseband receiver and the open-loop receiver at the KS station. The PLL loop
bandwidth was fixed to 500 Hz in the baseband receiver when the KS station observed
MEX in two-way mode.
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Figure 6 shows residual results of MEX orbit determination on 16 April 2020. In
Figure 6a, the result shows the residual velocity of orbit determination at the JM station;
the RMS of open-loop velocity is 0.06 mm/s in 1 s integration. In Figure 6b, the result
shows the residual velocity of orbit determination in three-way mode at the KS station; the
RMS of open-loop velocity is 0.061 mm/s in 1 s integration. In Figure 6c, the result shows
the residual velocity of orbit determination in two-way mode at the KS station; the RMS of
open-loop velocity is 0.053 mm/s in 1 s integration and the RMS of baseband velocity is
0.24 mm/s in 1 s integration. The results are shown in Table 1. In summary, the open-loop
result is better than the baseband result. Although some errors occurred in the baseband
receivers of CDSS during the MEX experiments, these experiments were very helpful to
test and improve the performance of Doppler measurement at CDSS before they support
the first Chinese Mars exploration mission called Tianwen-1.
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Figure 6. The measurement and orbit determination results of MEX on 16 April 2020. (a) The residual of orbit determination
in two-way mode at the JM station, (b) the residual of orbit determination in three-way mode at the KS station, and (c) the
residual of orbit determination in two-way mode at the KS station.

Table 1. The RMS of residual velocity of MEX orbit determination.

Date Station Measurement Way RMS
(mm/s) Remark

3 April KS two-way 0.055 Open-loop
3 April KS two-way 0.21 Baseband
3 April AG three-way 0.054 Open-loop
3 April AG three-way 0.095 Baseband

16 April JM two-way 0.06 Open-loop
16 April KS three-way 0.61 Open-loop
16 April KS two-way 0.053 Open-loop
16 April KS two-way 0.24 Baseband

From the above results, we can see that different PLL loop bandwidths will cause
different levels of accuracy in Doppler velocity. When the SNR of the received signal is
fixed, a narrower PLL loop bandwidth will obtain a higher accuracy in Doppler velocity.
However, the phase of the downlink signal will lead to loss-of-lock, when the PLL loop
bandwidth is too narrow and the frequency dynamics range of the probe is high. The best
PLL loop bandwidth to select will depend on the circumstances [27]. In general, the value
selected for the PLL loop bandwidth should be small in order to maximize the carrier loop
signal-to-noise ratio, but a larger value for the PLL loop bandwidth is necessary when there
is significant uncertainty in the downlink Doppler dynamics [27]. Thus, the CDSS selected
different and appropriate PLL loop bandwidths for Doppler measurement in two-way
mode to obtain the Doppler observables.
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Furthermore, the Doppler measurement results of MEX obtained by the proposed
method in this paper are compared with that of MEX obtained by ESA, NASA, Very
Large Baseline Array (VLBA), European VLBI Network (EVN), and the Chinese VLBI
network (CVN), respectively [4,10,17,19,28]. For quantitative comparison, the Doppler
frequency results of MEX by the proposed method are obtained within 1 s, 5 s, 10 s, and
60 s integration respectively, as shown in Table 2. The average accuracy Doppler frequency
is 3.30 mHz (0.059 mm/s) in 1 s integration, 1.82 mHz (0.033 mm/s) in 5 s integration,
1.38 mHz (0.025 mm/s) in 10 s integration, and 0.73 mHz (0.013 mm/s) in 60 s integration.

Table 2. The Doppler frequency accuracy of the open-loop measurement (mHz) of MEX.

Station Measurement Way Integration (1 s) Integration (5 s) Integration (10 s) Integration (60 s) Remark

KS
two-way 2.99 1.70 1.18 0.45 3 April

three-way 3.66 1.94 1.52 0.73 16 April
AG three-way 3.18 1.51 1.20 1.03 /
JM two-way 3.38 2.13 1.63 0.72 /

CDSS / 3.3 1.82 1.38 0.73 Average
EVN/VLBA three-way / / 1.7 / Ref. [17]
EVN/VLBA three-way / / 2.0 / Ref. [10]
NASA/ ESA two-way / / 1.0 / Ref. [10]
NASA/ ESA two-way 3.2 / / 1.2 Ref. [4]

CVN three-way / 4.14 / / Ref. [28]
CVN three-way 7.0 / / / Ref. [19]

The study in [4] shows that the Doppler accuracy of MEX obtained by ESA and
NASA was around 3.2 mHz in 1 s integration, and 1.2 mHz in 60 s integration [4]. These
measurement results were obtained by the digital baseband receivers of ESA and NASA in
closed-loop mode. The study in [10] shows that the median of the Doppler residuals for all
the detections with the VLBI stations (EVN and VLBA) was found to be 2.0 mHz in 10 s
integration [10], and the DSS63 and DSS14 of NASA is about 1.0 mHz in 10 s integration [10].
The study in [17] shows that 1.7 mHz precision (30 µm/s at a 10 s integration time) for radial
three-way Doppler estimates for MEX was obtained by the PRIDE technique [17]. The study
in [26] shows that the average 4.14 mHz precision of MEX in 5 s integration was obtained
by CVN [28]; 7.0 mHz precision of MEX in 1 s integration was obtained by CVN [19]. The
results are shown in Table 2. Since the raw signals in references [4,10,17,19,28] and in this
paper were sampled and recorded by different ground station assemblies that do not have
the same set of raw signals for processing, the comparison results are for reference. From
the above results of the MEX Doppler accuracy and the results of Table 2, we can see that
the accuracy of the open-loop Doppler by CDSS in this paper is approximately consistent
with ESA and NASA, is a little better than EVN and VLBA, and is about two times better
than CVN.

4.2. Signal Processing Results of Tianwen-1

Mars exploration is one of the main objectives of international space programs [29].
It is helpful to study Martian sciences such as Martian internal structure by radio mea-
surements [30–33]. Tianwen-1 is the first Chinese deep probe to Mars for Martian science
research, which was launched on 23 July 2020 [34]. The CDSS supports the navigation
mission of Tianwen-1. We also utilized the received downlink signal of Tianwen-1 to
verify the local correlation method of segmented modeling. The raw signal of Tianwen-1
was recorded by the open-loop digital signal recorder assembly of CDSS, with 200 kHz
sampling frequency, and 8-bit quantification. We selected two observation dates to verify
the proposed method: one was February 26 and the other was March 1, 2021. At that time,
Tianwen-1 was on an elliptical orbit with periaerion of ~280 km, apoaerion of ~57,815 km,
and an orbital period of ~49.0 h.
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The FFT spectrum of Tianwen-1 is shown in Figure 7, which was observed by the JM
station. The carrier signal in the FFT spectrum is apparent. Both the digital baseband re-
ceiver and the open-loop software receiver were simultaneously utilized to obtain Doppler
observables of Tianwen-1 for orbit determination. For the digital baseband receiver, the
PLL loop bandwidth was fixed to 500 Hz for the Doppler velocity measurement and the
integration time was 10 s. For open-loop software receiver, n f f t was set to 100 k, and K
was set to 20. Doppler observables were output in 1 s intervals.
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Figure 7. FFT spectrum of Tianwen-1 observed at the JM station.

Figure 8 shows the residual velocity of orbit determination at the JM station on
February 26. The blue dot line is the result of the baseband receiver, the red dot line is the
result of the open-loop receiver. The RMS of the baseband velocity is 0.15 mm/s in 10 s
integration. The RMS of the open-loop velocity is 0.049 mm/s in 1 s integration. Figure 9
shows the residual velocity of orbit determination at the KS station on March 1. The RMS
of the baseband velocity is 0.13 mm/s in 10 s integration and the RMS of the open-loop
velocity is 0.043 mm/s in 1 s integration. We can see that the two trends of the residual
results are very similar, but the residual result of the open-loop has lower noise level. It
is concluded that the accuracy of the open-loop result, which is at the level of 0.05 mm/s
in 1 s integration for Tianwen-1 measurement, is better than that of the baseband result.
The open-loop Doppler velocity observables could effectively support high accuracy orbit
determination of Mars’ probe and these also will be helpful for future Chinese Mars radio
science experiments.
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Figure 9. The orbit determination residual results of Tianwen-1 on 1 March 2021.

5. Conclusions

In this paper, a method of Doppler frequency retrieved via local correlation of seg-
mented modeling is proposed, which could obtain high accuracy results of velocity ob-
servables in open-loop mode. The theoretical algorithm and signal processing procedure
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are described which combined FFT, CZT, and correlation techniques. Simulations were
implemented which verified the validity of the above method to retrieve the genuine
Doppler frequency signal under frequency dynamic range and various SNR conditions.
The observation experiments of MEX and Tianwen-1 were carried out by the CDSS, and the
proposed method was utilized to process the received raw signal of MEX and Tianwen-1.
The Doppler observables of the CDSS were utilized for orbit determination and the residual
velocity was obtained. The results show that the RMS of the residual velocity of MEX is
from 0.053 mm/s to 0.06 mm/s in 1 s integration by open-loop mode, and the RMS of the
residual velocity of Tianwen-1 is at the level of 0.05 mm/s in 1 s integration by open-loop
mode, respectively. The accuracy of the Doppler frequency retrieved by the proposed
method in open-loop mode is about two times better than that of the digital baseband
receiver in closed-loop mode at the CDSS, which utilize the PLL technique. Meanwhile, the
accuracy of the Doppler frequency retrieving of MEX is compared with that of ESA, NASA,
EVN, VLBA, and CVN. The compared results show that the accuracy of the open-loop
Doppler frequency retrieved by the CDSS is consistent with ESA and NASA, is a little
better than EVN and VLBA, and is about two times better than CVN. This method could
be effectively utilized to apply to future Chinese deep space navigation missions and radio
science experiments.
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