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Abstract: Synthetic aperture radar (SAR) provides high-resolution images of the Earth’s surface
irrespective of sunlight and weather conditions. In conventional spaceborne SAR, nadir echoes
caused by the pulsed operation of SAR may significantly affect the SAR image quality. Therefore,
the pulse repetition frequency (PRF) is constrained within the SAR system design to avoid the
appearance of nadir echoes in the SAR image. As an alternative, the waveform-encoded SAR concept
using a pulse-to-pulse variation of the transmitted waveform and dual-focus postprocessing can
be exploited for nadir echo removal and to alleviate the PRF constraints. In particular, cyclically
shifted chirps have been proposed as a possible waveform variation scheme. However, a large
number of distinct waveforms is required to enable the simple implementation of the concept.
This work proposes a technique based on the Eulerian circuit for generating a waveform sequence
starting from a reduced number of distinct cyclically shifted chirps that can be effectively exploited
for waveform-encoded SAR. The nadir echo suppression performance of the proposed scheme is
analyzed through simulations using real TerraSAR-X data and a realistic nadir echo model that
shows how the number of distinct waveforms and therefore the system complexity can be reduced
without significant performance loss. These developments reduce the calibration burden and make
the concept viable for implementation in future SAR systems.

Keywords: cyclically shifted chirps; Eulerian circuit; matched filtering; nadir echo; pulse repetition
frequency (PRF); synthetic aperture radar (SAR); waveform diversity

1. Introduction

Synthetic aperture radar (SAR) is a technology capable of providing high-resolution
images for remote sensing applications regardless of sunlight illumination and weather
conditions [1,2]. A typical SAR system is mounted on a moving platform to transmit
electromagnetic pulses and to receive the reflections from the region of interest.

The pulsed operation of SAR results in a simultaneous return of the echoes from the
desired scene and the echoes of succeeding pulses reflected from the nearest range to the
radar, referred to as nadir echoes. The nadir echo may significantly affect the SAR image
quality with its strong intensity because of the shorter distance and the specular reflection
even though it is attenuated by the transmit and receive antenna patterns. The nadir echo
is typically seen as a bright stripe in the SAR image [3], as shown in Figure 1.

The nadir interference in SAR images is avoided by proper the selection of the pulse
repetition frequency (PRF) in the design of conventional spaceborne SAR systems using a
timing (or diamond) diagram [4,5], shown in Figure 2. The blue areas represent the “blind”
ground ranges, which cannot be imaged due to the transmit interference, while the green
areas represent ground ranges where nadir interference is present in the imaged scene. The
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PRF is selected for the desired range swath (in red) to be imaged without transmit and
nadir interferences.

Remote Sens. 2021, 13, x FOR PEER REVIEW 2 of 14 
 

 

scene. The PRF is selected for the desired range swath (in red) to be imaged without trans-
mit and nadir interferences. 

The constraint on the PRF selection additionally imposed by the nadir echoes limits 
the SAR system performances in terms of both swath width and ambiguities. Hence, nadir 
echo suppression can alleviate the constraint on the PRF selection so that the given re-
quirements can be achieved without increasing the system complexity or the antenna size. 

 
Figure 1. TerraSAR-X image acquired over Australia as an example of nadir echo appearing in a 
SAR image. The horizontal and vertical axes correspond to slant range and azimuth, respectively. 

 
Figure 2. Timing diagram for PRF selection of a conventional SAR. The green and blue areas indicate 
transmit and nadir interferences, respectively, while the red lines indicate possible swaths that avoid 
transmit and nadir interferences. 

In this sense, an innovative waveform-encoded SAR concept for nadir echo suppres-
sion has been proposed [6–8]. This method exploits pulse-to-pulse variation of the trans-
mitted waveform and different matched filters in postprocessing for nadir echo removal. 
This idea can also be adopted for the suppression of very strong range ambiguities [8–10]. 
Even if the postprocessing is not performed for range ambiguities, range ambiguities will 
still appear to be smeared [11]. Therefore, removing the nadir echo and smearing the range 
ambiguities through the waveform encoding provides more flexibility in PRF selection 
and image quality enhancement. 

Figure 1. TerraSAR-X image acquired over Australia as an example of nadir echo appearing in a SAR
image. The horizontal and vertical axes correspond to slant range and azimuth, respectively.
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Figure 2. Timing diagram for PRF selection of a conventional SAR. The green and blue areas indicate
transmit and nadir interferences, respectively, while the red lines indicate possible swaths that avoid
transmit and nadir interferences.

The constraint on the PRF selection additionally imposed by the nadir echoes limits
the SAR system performances in terms of both swath width and ambiguities. Hence,
nadir echo suppression can alleviate the constraint on the PRF selection so that the given
requirements can be achieved without increasing the system complexity or the antenna
size.

In this sense, an innovative waveform-encoded SAR concept for nadir echo suppres-
sion has been proposed [6–8]. This method exploits pulse-to-pulse variation of the trans-
mitted waveform and different matched filters in postprocessing for nadir echo removal.
This idea can also be adopted for the suppression of very strong range ambiguities [8–10].
Even if the postprocessing is not performed for range ambiguities, range ambiguities will
still appear to be smeared [11]. Therefore, removing the nadir echo and smearing the range
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ambiguities through the waveform encoding provides more flexibility in PRF selection and
image quality enhancement.

Cyclically shifted chirps have been suggested in the original concept [7] for the pulse-
to-pulse variation of the transmitted waveform. Unlike the simple alternation of up- and
down-chirps [12–14], cyclically shifted chirps allow for the implementation of nadir echo
suppression that is also for SAR systems with multiple elevation beams, where the dif-
ference of travelling pulses between the swath and the nadir echo is different for each
sub-swath. Furthermore, they lead to the smearing of all orders of range ambiguities.
However, the originally proposed sequence of cyclically shifted chirps requires a high
number of distinct waveforms, increasing the complexity in the hardware implementa-
tion and the calibration burden. SAR systems might have limited memory for storing
distinct waveforms, e.g., the TerraSAR-X can store up to eight different waveforms for an
acquisition [15].

This paper proposes a new idea to design a waveform sequence starting from a
reduced number of distinct cyclically shifted chirps by exploiting the Eulerian circuit.
For a given number of distinct waveforms, the set of optimum shifts of the cyclically
shifted chirps are provided as normalized values that can be used for any pulse width.
Furthermore, as the nadir echo suppression of waveform-encoded SAR using cyclically
shifted chirps has so far only been assessed through point-target simulations [7]. This work
provides additional realistic simulations using real TerraSAR-X data and a realistic nadir
echo model derived from real radar measurements.

The paper is structured as follows: Section 2 recalls the concept of a waveform-encoded
SAR using cyclically shifted chirps and addresses some issues related to the optimization
of the variation of the shift across the azimuth. Section 3 introduces the waveform sequence
design based on the Eulerian circuit to reduce the number of required distinct waveforms.
Section 4 presents the results of both the point-target and the realistic simulations together
with a performance analysis, and Section 5 draws some conclusions.

2. Cyclically Shifted Chirps for Waveform-Encoded SAR

The simultaneous return of the echo from the swath and the succeeding echo from
the nadir results in the nadir echo appearing in a SAR image. A pulse-to-pulse variation
of orthogonal waveforms allows the nadir echo to smeared while focusing the echo from
the swath even though they are superimposed in the received signals by selectively using
different matched filters because they correspond to different orthogonal waveforms [7].
The smeared nadir echo is less visible in a focused SAR image but still exists in the
background.

A dedicated multi-focus postprocessing shown in Figure 3 can be applied to further
remove the nadir echo. The raw data is focused using a filter matched to the nadir echo
instead of the useful signal. The focused nadir echo can be removed with only a negligible
influence on the useful signal because the nadir echo is located within a narrow range
interval. The focused nadir echo is blanked by simply replacing the samples with zeros or
introducing noise with the mean level of the useful signal. The nadir echo removed data
are inversely focused back into raw data and are then focused again using a filter matched
to the useful signal. This concept is referred to as waveform-encoded SAR.
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A possible implementation of the waveform-encoded SAR is based on the cyclically
shifted chirps proposed in [10], an example of short-term shift-orthogonal waveforms [16],
which is defined as follows [7]:

si(t) =

 ejπ B
T (bt−ti−T(

t+ T
2 −ti
T )c)

2

, − T
2 ≤ t ≤ T

2

0, otherwise

(1)

where B is the chirp bandwidth, T is the chirp width, and ti is the cyclical shift of the
waveform. Figure 4 shows the schematic comparison of the conventional nonshifted and
the cyclically shifted chirp.
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The sequence of shifts, ti, which identifies the sequence of waveforms, is periodically
repeated while T and B remain constant. The pulse-to-pulse variation across the azimuth
is described by the ti variation given by the following quadratic law [7]:

ti =
i(i + 1)

2B
− T

⌊
i(i + 1) + BT

2BT

⌋
, i = 0 . . . 2BT − 1. (2)

The received echoes are processed using the ideal filter proposed in [17] instead
of the usual matched filter. The nadir echo is focused at different ranges after range
compression using a filter “matched” to the useful signal. The dislocation varies over the
pulses according to the difference of the chirp shifts, which leads to the smearing of the
nadir echo along the azimuth as a result of azimuth compression.

While in the example provided in [7] and the expression in Equation (2) allows the
smearing of the nadir echo across twice the pulse width in range and the whole synthetic
aperture in the azimuth, this is not the case for an arbitrary set of parameters. For that, a
factor K (K > 1) is introduced as follows to achieve a uniform smearing in all systems [18]:

ti =
K·i(i + 1)

2B
− T

⌊
K·i(i + 1) + BT

2BT

⌋
, i = 0 . . . 2BT − 1. (3)

A K > 1 produces a faster variation of the shift across the azimuth, leading to the repetition
of ti in every BT

K sample instead of in every BT sample in the azimuth. If BT
K is smaller than
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the number of azimuth samples of the synthetic aperture, the smearing in the azimuth
extends over the fully synthetic aperture, leading to the following condition for K:

BT
K
≤ R0λ

L
·PRF

vs
, (4)

where R0 is the slant range, λ is the wavelength, L is the antenna length, and vs is the
platform speed, which results in

K ≥ BTvsL
R0·λ·PRF

. (5)

It is therefore desired for an optimized system to choose K according to Equation (5)
in order to maximize the smearing. Maximizing the smearing will also lead to a better
suppression of the nadir echo during postprocessing.

Some typical TerraSAR-X parameters are listed in Table 1 and were adopted as a case
study to simulate the nadir echo smearing of the cyclically shifted chirps. A simple scenario
illustrated in Figure 5 in which a point target is located at the nadir is considered.

Table 1. System and Processing Parameters.

Parameter Value

Center frequency 9.65 GHz
Antenna length 4.8 m
Bandwidth 100 MHz
Pulse width 50 µs
PRF 3113 Hz
Orbit height 520 km
Processed Doppler bandwidth 2765 Hz
Processing window in range Generalized Hamming, α = 0.6
Processing window in azimuth Generalized Hamming, α = 0.6
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Figure 5. Simulation scenario with a point target at nadir.

The simulation results of a conventional SAR and cyclically shifted chirp sequences
with different values of K, namely K = 1 and K = 5, are shown in Figure 6. The image of
the conventional SAR is significantly affected by the strong nadir echo, but the waveform-
encoded SAR using the cyclically shifted chirps smears the nadir echo. Unlike the original
cyclically shifted chirp sequence with K = 1 that does not smear the nadir echo uniformly
across azimuth, the cyclically shifted chirp sequence with K = 5, which satisfies Equation (5),
smears the nadir echo uniformly across the full synthetic aperture. Compared to the
conventional SAR, the maximum level of the nadir echo decreases by 36.8 dB using the
cyclically shifted chirp sequence with K = 1 and by 39.4 dB using the cyclically shifted
chirp sequence with K = 5.
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The number of distinct waveforms generated in this simulation was 5050, which
means that a SAR system needs to store 5050 waveforms for real operation. Using a large
number of waveforms determines an increase in system complexity. The TerraSAR-X
satellite, for example, produces the transmit signal in a digital chirp generator [19,20],
where up to eight different waveforms can be written in a waveform memory. The transmit
waveform can be switched from pulse-to-pulse within an acquisition by selecting one
out of the eight waveforms in the memory [15]. The reduction in the number of required
waveforms is recommended from the hardware point of view. Moreover, when multiple
waveforms are used within an acquisition, every received pulse needs to be calibrated in
accordance with the transmitted waveform, i.e., to compensate the phase jumps [21]. The
calibration burden dramatically decreases by reducing the number of distinct waveforms.
Additionally, it is worth understanding how many waveforms are actually needed to satisfy
the desired performance of nadir echo smearing.

3. Waveform Sequence Design Based on Eulerian Circuit

This section proposes a technique based on the Eulerian circuit for effectively gener-
ating a waveform sequence starting from a limited number of distinct waveforms. The
sequence can be arbitrarily long and periodically repeated, while the number of employed
distinct waveforms remains limited.

The location of the focused nadir echo varies in range according to the difference
between the ti values of the pulses and are characterized by a distance given by the
difference of traveling pulses to the nadir echo and the swath. In this respect, the main
idea of the proposed method is to produce a long sequence of all of the possible transitions
among the ti values for a given number of distinct waveforms N, where i = 0 . . . N − 1. If
the distinct waveforms are represented as the vertices of a polygon, the transitions among
ti values can be represented as the edges of the polygon, where the number of vertices is
N. To generate a repeatable sequence that contains all of the possible transitions among
distinct waveforms but only once, the Eulerian circuit [22,23] is adopted. The Eulerian path
is a trail in a finite graph that visits every edge exactly once, although revisiting vertices is
allowed. The Eulerian circuit is a kind of Eulerian path that starts and ends at the same
vertex, which corresponds to a repeatable sequence. Figure 7 depicts the Eulerian circuit for
the generation of waveform sequences, where the vertices represent the distinct waveforms,
and the edges represent the pulse-to-pulse transitions of the distinct waveforms. There
are two edges that exist between two vertices to account for the transition of ti values in
both directions. In addition, all vertices having an even number of edges, guaranteeing
the existence of the solution for the Eulerian circuit. The length of the sequence is the
total number of edges in the Eulerian circuit, which is given by the permutation of N,
NP2 = N(N − 1). Finding solutions in the Eulerian circuit with a prime number of vertices
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is easier; thus, only prime numbers were considered for N in this analysis. As a solution of
the Eulerian circuit for a given prime N, a sequence can be obtained as follows.

ik = k·
(⌊

k
N

⌋
+ 1
)

mod N, k = 0 . . . N·(N − 1)− 1. (6)
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quence obtained using Equation (3); the decimation of the 𝑡௜ sequence obtained using 
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Figure 7. The Eulerian circuit for generating a waveform sequence, where the vertices represent
distinct waveforms, and the edges represent the transitions among them.

The sequence directly corresponds to the waveform sequence for a waveform-encoded
SAR and can be periodically repeated along the azimuth. Further solutions exist for the
Eulerian circuit, but the one in Equation (6) is referred to from now on.

The values of ti are randomly determined within the uniform distribution from −τ/2
to τ/2 instead of being generated using Equation (3). The randomly picked ti values may
cause a variation in the performance of nadir echo suppression. After a sufficient number
of simulations with different ordered sets of randomly generated ti values, the one with the
best performance is selected for each N. The selected ti values and its waveform sequence
generated as the solution of the Eulerian circuit provided in Equation (5) for N = 5 are
shown in Figure 8 as an example.
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using the Eulerian circuit.

The proposed method to reduce the number of distinct waveforms has been chosen
after devising and considering various other methods, including the digitization (or quan-
tization) of the ti sequence obtained using Equation (3); trimming a part of the ti sequence
obtained using Equation (3); the decimation of the ti sequence obtained using Equation (3).
The proposed method is determined to be showing better nadir echo suppression perfor-
mance compared to other methods if the same number of distinct waveforms is used for
all methods. Digitized ti revisits the same values frequently so that no shift occurs between
the consecutive pulses. The shift variation for the trimmed ti is not enough to cover the
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full synthetic aperture, causing similar effects as K = 1. Decimation of ti shows a better
performance compared to the trimmed ti, but the number of available shift differences
between the consecutive pulses is still not enough.

4. Simulation Results and Performance Analysis

The proposed technique has been validated through point-target simulations and
simulations using real TerraSAR-X data in order to assess its performance in terms of nadir
echo smearing. The point-target simulations are presented in Section 4.1, whereas the
simulations using data generated from a real TerraSAR-X image and a realistic nadir echo
model are presented in Section 4.2.

From the simulation results, the optimized waveform sequence with the best possible
smearing performance is chosen because it leads to less degradation of the useful signal
after multi-focus postprocessing.

4.1. Simulation Using Point Targets

The raw data of a point target corresponding to the nadir echo is generated according
to the SAR system parameters in Table 1. A conservative approach has been adopted to find
a set of chirp shifts that shows satisfactory performance of practical interest. The results of
a sufficient number of simulations for each N to determine set of ti values with the best
performance are shown in Figure 9, where each point corresponds to a set of ti values. The
indicated worst possible cases happen when the ti values are uniformly spaced. The final
(best) performances of nadir echo smearing for different numbers of distinct waveforms
are listed in Table 2. The results of N = 5050 in Table 2 are from the cyclically shifted chirps
described in Section 2, and the results of N = 5.41 are from the proposed method. The
performance does not significantly improve as N becomes larger than 17.
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Figure 9. Simulation results of nadir echo smearing for each N with different sets of ti values.

Table 2. Performance of Nadir Echo Suppression (Optimum Set of ti) vs. Number of Distinct Waveforms.

N 5050
(K = 1)

5050
(K = 5) 5 7 11 13 17 19 23 29 37 41

Peak
suppression (dB) 36.8 39.4 24.6 26.2 31.0 31.9 33.4 32.8 34.4 34.7 35.4 35.4

The optimum sets of ti values for primes N between 5 and 17 are listed in Table 3
as normalized to τ, i.e., their values are comprised between − τ/2 and τ/2. A proper N
can be chosen for an arbitrary system or configuration, and the ti values can simply be
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scaled to the pulse width τ without an iterative search for each system or acquisition. The
procedure for the practical use of the results provided in this work is as follows:

• Choose a proper N for the system and desired configuration;
• Scale the normalized ti values provided in Table 3 to the pulse width of the system;
• Generate N distinct waveforms s0 . . . sN−1 using (1) and the scaled ti values;
• Generate the waveform sequence ik using (5);
• For the kth transmit pulse and select the waveform sik ;
• Repeat the waveform sequence for the whole acquisition.

Table 3. Sets of ti values (normalized by τ) with the best nadir echo suppression performance for
primes N between 5 and 17.

N ti Values

5 −0.294 −0.184 0.027 0.186 0.449 - - -

7 −0.422 −0.29 −0.286 −0.096 0.113 0.288 0.38 -

11
−0.373 −0.368 −0.312 −0.208 −0.167 −0.151 0.109 0.113
−0.186 0.268 0.388 - - - - -

13
0.468 −0.284 −0.27 −0.225 −0.224 −0.138 −0.065 0.05
0.069 0.12 0.16 0.218 0.268 - - -

17
−0.49 −0.487 −0.482 −0.413 −0.396 −0.347 −0.31 −0.269
−0.172 −0.135 −0.048 0.044 0.087 0.123 0.133 0.397 0.447

The focused SAR images for N = 5 and N = 13 are representatively shown in Figure 10.
The nadir echo is successfully smeared using the proposed method.
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Figure 10. Focused SAR images for (a) N = 5 and (b) N = 13 showing the smearing of the nadir echo
for a point scatterer. All data are displayed in dB.

4.2. Simulation Using Real SAR Data and a Realistic Nadir Echo Model

To better observe the impact of the waveform-encoded SAR based on a reduced
number of distinct cyclically shifted chirps on image quality, simulations were conducted
using a real TerraSAR-X image over Lake Starnberg, which is shown in Figure 11a. The
raw SAR data can be generated from the complex backscatter of the TerraSAR-X image by
introducing range and azimuth modulation [9] as if they were obtained by a SAR system
with the parameters listed in Table 1. The azimuth modulation performs Doppler chirp
modulation and applies the azimuth antenna pattern, and the range modulation performs
range chirp modulation with the cyclically shifted chirps.
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Figure 11. (a) TerraSAR-X image acquired over Lake Stanberg used to generate the simulated data
and (b) realization of a range line of the nadir echo data.

The realistic nadir echo model with a backscatter profile and an azimuth autocorre-
lation function was derived from TerraSAR-X images [24]. The range-compressed data
were aligned to be nadir echo centered in all azimuth lines and were averaged across the
azimuth to achieve the backscatter profile without speckle. The model was obtained by
fitting the data to a parametric function. A realization of the resulting nadir echo for a
range line is shown in Figure 11b. The nadir echo signal was then added to the raw data of
the scene.

The focused SAR images of the simulations are shown in Figures 12 and 13. The nadir
echo appears as a bright vertical line in the conventional SAR image, while the nadir echo
is successfully smeared using the proposed waveform sequences. The nadir echo smearing
performances for different N are listed in Table 4. The proposed method reduces the nadir
echo peak by 13–21 dB for N comprised between 5 and 41.
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nadir echo only displayed in dB.
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Figure 13. Focused images using the proposed technique for (a) N = 5, (b) N = 13, and (c) N = 37 showing (Top) both the
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Table 4. Performance of Nadir Echo Suppression in Simulation with Real Data vs. Number of Distinct Waveforms.

N 5050
(K = 1)

5050
(K = 5) 5 7 11 13 17 19 23 29 37 41

Peak
suppression (dB) 17.7 20.7 13.2 15.7 16.9 18.8 19.6 19.5 20.2 19.8 21.5 20.8

The performances of nadir echo suppression in point-target simulations and simula-
tions with real data are compared in Figure 14. In the case of simulation with real data, the
sequence based on a short number of distinct waveforms reached or even outperformed
the optimum sequence exploiting a very large number of distinct waveforms. This is due
to a sort of “convolutional” effect, i.e., the extension of the nadir echo through its tail in
range together favors a further smearing of the echo itself.
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Instead of being smeared, the nadir echo can be further removed through a multi-
focus postprocessing [7]. The proposed waveform sequence generated based on the
Eulerian circuit is also eligible to further apply dedicated multi-focus postprocessing. The
postprocessed image for N = 5 is shown in Figure 15, where the nadir echo is significantly
suppressed without affecting the underlying scene. The peak suppression of the nadir echo
is 27.6 dB. The averaged range profiles of the images where the nadir echo is only smeared
and removed through postprocessing for N = 13 are compared to those of conventional
SAR and to the waveform-encoded SAR case with the long sequence of N = 5050 and K = 5
(without postprocessing) in Figure 16. The postprocessing even removes the residual peaks
with very low levels compared to the conventional SAR case.
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tinct waveforms has been proposed. This technique effectively reduces the number of the 
required distinct waveforms while retaining the performance of nadir echo suppression. 
The chirp shifts that define the distinct waveforms are randomly determined, and sets of 
normalized chirp shifts that lead to the best nadir echo suppression performance are pro-
vided. 

Figure 16. Averaged range profiles of the focused image for conventional SAR (blue), waveform
variation using a very long sequence with K = 5 (orange), mere waveform variation using a sequence
with only N = 13 distinct waveforms (green), and waveform variation and dual-focus postprocessing
using a sequence with only N = 13 distinct waveforms (red).

5. Conclusions

A technique for generating a waveform sequence for waveform-encoded SAR with
cyclically shifted chirps based on the Eulerian circuit and using a limited number of distinct
waveforms has been proposed. This technique effectively reduces the number of the
required distinct waveforms while retaining the performance of nadir echo suppression.
The chirp shifts that define the distinct waveforms are randomly determined, and sets
of normalized chirp shifts that lead to the best nadir echo suppression performance are
provided.
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The nadir echo suppression of the proposed technique has been tested through point-
target simulations and simulations with a real TerraSAR-X image and a realistic nadir echo
model. The simulation parameters were selected considering the TerraSAR-X specification,
but the technique can be applied in general to any SAR system. The peak suppression
performances for various numbers of distinct waveforms have been compared to the perfor-
mance of the original long sequence of cyclically shifted chirps. In the realistic simulation,
the proposed method with a number of distinct waveforms larger than 13 showed perfor-
mances only slightly worse than using 5050 distinct waveforms. The proposed method is
also eligible to further apply multi-focus postprocessing.

The implementation of the SAR system significantly benefits from reducing the num-
ber of required distinct waveforms using the proposed technique, which also reduces the
calibration burden. The proposed waveform sequence generated based on the Eulerian
circuit for cyclically shifted chirps will be further investigated through real TerraSAR-X
experiments in the future, as has already done for up- and down- chirp alternation [13,14].
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