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Abstract: In this paper, we propose a cross-direction and progressive network, termed CPNet, to
solve the pan-sharpening problem. The full processing of information is the main characteristic of
our model, which is reflected as follows: on the one hand, we process the source images in a cross-
direction manner to obtain the source images of different scales as the input of the fusion modules at
different stages, which maximizes the usage of multi-scale information in the source images; on the
other hand, the progressive reconstruction loss is designed to boost the training of our network and
avoid partial inactivation, while maintaining the consistency of the fused result with the ground truth.
Since the extraction of the information from the source images and the reconstruction of the fused
image is based on the entire image rather than a single type of information, there is little loss of partial
spatial or spectral information due to insufficient information processing. Extensive experiments,
including qualitative and quantitative comparisons demonstrate that our model can maintain more
spatial and spectral information compared to the state-of-the-art pan-sharpening methods.

Keywords: full information processing; cross-direction manner; progressive reconstruction; image
fusion; pan-sharpening

1. Introduction

With the vigorous development of optical ground satellites in remote sensing, their
powerful ground reconnaissance capabilities have received ever-increasing attention [1–4].
However, due to the limitations of physical sensor technology, it is difficult for optical
satellites to obtain high-quality images with both high spatial and spectral resolutions.
Two primary modalities are captured by satellites: panchromatic (PAN) images with high
spatial resolution but low spectral resolution [5] and multi-spectral (LRMS) images with
high spectral resolution but low spatial resolution [6,7]. To meet the requirements for both
high spatial and spectral resolutions in practical applications, we propose pan-sharpening
to fuse PAN and LRMS images by combining their complementary information to generate
a high-resolution multi-spectral (HRMS) image.

In recent decades, with the increasing awareness of theoretical research and practical
applications in pan-sharpening techniques, scholars are constantly exploring high-quality
algorithms to solve the pan-sharpening problem. The existing pan-sharpening methods can
be generally classified into the traditional methods and the methods based on deep learning.
The traditional pan-sharpening methods can be further grouped into four categories,
including methods based on component substitution [8], methods based on multi-scale
decomposition [9], methods based on models [10,11], and hybrid methods [12].

Section 2.1 presents a detailed introduction of the traditional pan-sharpening methods.
These methods occupy a large area of the existing pan-sharpening methods and have
produced many excellent results. Nevertheless, due to the spectral uniqueness of each
sensor and the diversity of ground objects, it is a demanding task for traditional methods
to find a solution to establish a connection between the source image and the generated
HRMS image [13]. Due to this, scholars are seeking a new breakthrough to achieve fused
results with higher quality.
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In the past few years, the explosion of deep learning has provided new ideas for
solving the pan-sharpening problem [14–18]. Benefiting from the high nonlinearity of
neural networks, the connection between the source image and the generated HRMS image
can be well established in deep-learning-based pan-sharpening methods [19]. We will
discuss the detailed exposition of the deep-learning-based pan-sharpening methods later in
Section 2.2. On the whole, the fused performances of these methods are indeed improved
compared to traditional methods. However, there are still some issues to be settled.

On the one hand, in the pan-sharpening problem, the source PAN and LRMS images
are usually presented at two different scales (or resolutions). In most pan-sharpening
methods, they perform feature processing with the fixed scale ratio until the final output,
i.e., the HRMS image, thus, failing to take full advantage of the related information of the
source PAN and LRMS images across different scales. Accordingly, owing to the finite
exploitation and utilization of multi-scale information from PAN and LRMS images, there
is still some space for these methods to be improved.

On the other hand, in the current concepts of some methods, the reconstruction
information of the generated HRMS image only comes from the spatial information in
the PAN image and the spectral information in the LRMS image. The spatial/spectral
information is not unique to one satellite image, and both spatial and spectral information
are contained in the PAN/LRMS image. The direct consequence of this concept is the loss
of some spatial and spectral information in the generated HRMS image.

A cross-direction and progressive network, termed CPNet, is proposed for pan-
sharpening to settle the issues in the prior works as mentioned above. Specifically, the
“cross-direction” refers to the cross-direction processing of source images (down-sampling
for PAN image and up-sampling for LRMS images) to construct three multi-scale inputs. At
the same time, “progressive” means that the final fused image, i.e., the HRMS image, is gen-
erated progressively. The whole framework of the proposed CPNet is illustrated in Figure 1.
In our model, we construct three multi-scale inputs with cross-direction processing of the
source images.

The three-scale inputs are input into different networks (preliminary, intermediate,
and advanced fusion modules) for processing, thus, making the best of the multi-scale
information contained in the source images. Beyond that, the progressive reconstruction
loss (including low-scale and high-scale reconstruction loss) boosts the training in all
aspects of the network and promotes the fused HRMS image to approach the ground
truth. In addition, since our model extracts and reconstructs both the spatial and spectral
information at different scales in each image, it avoids the loss of spatial and spectral
information due to insufficient information processing to the greatest extent.

The main contributions of this work are summarized as follows:

• Through the cross-direction processing of source images and the progressive recon-
struction of the HRMS image, we propose a cross-direction and progressive network
(CPNet) for pan-sharpening, which can fully process the source images’ information
at different scales.

• The progressive reconstruction loss is designed in our model. It can boost the training
in all aspects of the network to avoid the inactivation of partial networks. For another
thing, it ensures a high degree of consistency between the fused image, i.e., the HRMS
image, and the ground truth.

• Compared to the prior state-of-the-art works in great experiments, the proposed
CPNet shows great superiority in both intuitive qualitative results and conventional
quantitative metrics.

The rest of this paper is organized as follows. In Section 2, we introduce the back-
ground material and some related works of traditional and deep-learning-based pan-
sharpening methods. In Section 3, the proposed CPNet is described in detail, including
the problem formulation, the designs of network architecture, and the definition of loss
functions. In Section 4, we present the details of the data set and training phase. The results
of the qualitative and quantitative comparisons are shown subsequently. Furthermore,
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the ablation experiments are performed to further highlight the contributions of certain
components, including the multi-scale network and progressive construction loss in our
model. Our conclusions are provided in Section 5.
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Figure 1. The whole framework of the proposed CPNet. The images in the reddish brown background are the source
images (PAN and LRMS images). The I↑x/I↓x denotes image I after up-sampling/down-sampling x times the size.

2. Related Work

This section introduces background material and related works, including traditional
and deep-learning-based pan-sharpening methods.

2.1. Traditional Pan-Sharpening Methods

With the fast-growing demand for pan-sharpening techniques, traditional methods
have been developed to achieve it in recent decades. They can be divided into four cate-
gories according to the corresponding principles, including methods based on component
substitution, methods based on multi-scale decomposition, methods based on models, and
hybrid methods. Next, we will introduce their main ideas.

(1) Methods based on component substitution: These methods are the most classical
pan-sharpening techniques, including intensity-hue-saturation (IHS) [20], principal com-
ponent analysis (PCA) [21,22], etc. They are usually achieved by flexibly transforming
and replacing certain components in the transform domain, and the fused image is finally
obtained by inverse transformation. High efficiency, easy implementation, and high fidelity
of spatial information are the three most prominent advantages; however, they will suffer
from serious spectral distortions.

(2) Methods based on multi-scale decomposition: Similar to other image fusion meth-
ods, decomposition, fusion, and transform are the main three steps in this category of
pan-sharpening methods. The typical multi-scale decomposition-based methods include
principle component analysis [23], contourlet [24], nonnegative matrix factorization [25],
and pyramid [26,27].

(3) Methods based on models [28]: Most of the model-based methods suppose that
the PAN image could be modeled as the linear association between all bands of the HRMS
image, as well as the gradient maps, and the preservation of spatial and spectral information
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is commonly optimized by modeling. The classic model-based methods include the
minimum mean-square-error sense optimum methods and the sparsity regularization-
based methods.

(4) Hybrid methods [29]: This category of methods mainly combines the advantages of
the existing pan-sharpening method to achieve a better fusion performance. For example,
the fusion based on curvelet and ICA is one representative that combines the advantages
of both component substitution and multi-scale decomposition-based methods.

The main difficulty of the existing traditional pan-sharpening methods lies in con-
structing between the source images and the fused image. In our work, highly non-linear
mapping of the convolutional neural network is used to establish the connection between
them. Through the supervised manner, the generated HRMS image is forced to maintain a
high degree of consistency with the ground truth.

2.2. Deep Learning-Based Pan-Sharpening Methods

In recent years, due to the continuous advancement of deep learning technology and
its continuous improvement of data processing [15,30], automatic feature extraction, and
characterization capabilities, pan-sharpening methods based on deep learning have been
continuously proposed, which have shown better fusion performance than the traditional
methods [31]. The current deep learning methods used for pan-sharpening are mainly
based on convolutional neural networks (CNN) [32] and generative adversarial networks
(GAN) [33].

In CNN-based methods, Masi et al. [34] solved the pan-sharpening problem with
CNN in a supervised manner. Based on this, accompanied by domain-specific knowl-
edge, the PanNet [35] was proposed to focus on the preservation of spectral and spa-
tial information, which improved the fused results. In addition, Zhong et al. [36] pro-
vided a hybrid pan-sharpening method, which combined the advantages of CNN and
Gram–Schmidt transformation.

In addition, aiming at taking full advantage of the high nonlinearity of deep learning,
residual learning between the LRMS and ground truth was adopted to establish a deep con-
volutional neural network in DRPNN [37]. Similarly, the CMC proposed by Wei et al. [38]
solved the pan-sharpening problem from the perspective of improving the network struc-
ture with a two-stream deep learning architecture. Fu et al. [39] proposed a two-path
network with feedback connections to make full use of the powerful deep features, while
Zhou et al. [40] designed an unsupervised perceptual pan-sharpening framework based on
auto-encoder and perceptual loss.

As for the GAN-based methods, Liu et al. [41] presented PSGAN to generate high-
quality pan-sharpened images through adversarial learning between the generator and
discriminator, which was also the first GAN-based pan-sharpening method. Furthermore,
the RED-cGAN [42] was proposed with the residual encoder–decoder module extracting
multi-scale features, and the discriminator was utilized to enhance the spatial information
further. Innovatively, a GAN was employed without supervision in Pan-GAN proposed by
Ma et al. [43]. In this model, the adversarial relationship is established between a generator
and two discriminators, where the two discriminators are used to preserve the spectral and
spatial information.

In our work, the proposed CPNet is the pan-sharpening method based on CNN.
Additionally, compared with the existing deep-learning-based pan-sharpening methods,
the information in the source images can be fully extracted and reconstructed at different
scales in our model.

3. Proposed Method

In this section, we describe the proposed CPNet in detail. We first present the problem
formulation and then introduce the design of network architectures. Finally, the definition
of loss functions is given.
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3.1. Problem Formulation

Pan-sharpening aims to preserve as much spatial and spectral information as possible
from the source images by fusing the PAN and the LRMS image. For this purpose, the
processing, including the extraction and reconstruction of the information in the source
images, is crucial. The main idea of our CPNet is to fully process the information through
the cross-direction processing of source images and the progressive reconstruction of the
HRMS image.

As shown in the brown background images in Figure 1, the LRMS image and the high-
resolution PAN image were the source images with the size of W×H×N and rW× rH× 1,
respectively. W and H were the width and the height of the LRMS image. N was set as 4,
meaning the number of bands, and r was set as 4, expressing the spatial resolution ratio
between the PAN image and the LRMS image.

To take full advantage of the related information of the PAN and LRMS images across
different scales, three multi-scale inputs are constructed with the cross-direction processing
of them (down-sampling for PAN image and up-sampling for the LRMS image): PAN and
LRMS↑4; PAN↓2 and LRMS↑2; and PAN↓4 and LRMS. Our model has three fusion stages,
which, respectively, correspond to the modules of preliminary fusion, intermediate fusion,
and advanced fusion.

The fusion idea of CFNet is as follows: after being upsampled by pixel shuffling, the
output of the current fusion stage is used as the input of the next fusion stage together with
the source images of larger scale. The final fused image, i.e., the HRMS image, is generated
progressively, that is, a low-scale fused image, i.e., the HRMS↓2 image, is generated in
advance before the final output.

The generated HRMS and HRMS↓2 images are constrained by ground truth and
ground truth↓2 with the high-scale construction loss and the low-scale construction loss.
Both of them constitute the progressive reconstruction loss. The progressive reconstruction
loss not only boosts the training in all aspects of the network, especially in the preliminary
fusion stage, but also ensures a high degree of consistency between the fused image, i.e.,
the HRMS image, and the ground truth.

3.2. Network Architectures

The modules of preliminary fusion, intermediate fusion, and advanced fusion repre-
sent the three stages of the fusion process. The preliminary fusion and intermediate fusion
modules have the most similar functions. To improve the utilization of the fusion module
and reduce the network parameters, the network architectures of the preliminary fusion
and intermediate fusion modules are consistent and share the same weights. Next, we will
introduce the network architectures of the pre-block, the Preliminary/Intermediate, and
advanced fusion modules in detail.

3.2.1. Network Architecture of the Pre-Block

The two pre-blocks were used to preprocess the concatenated data, and then the
output of the Pre-block was used as the input of initial training/intermediate training.
Each pre-block contained two convolutional layers with the kernel size and stride set as
3× 3 and 1. The numbers of output channels of the two convolutional layers were 16 and
32, respectively.

3.2.2. Network Architecture of the Preliminary/Intermediate Fusion Module

The network architecture of the preliminary/intermediate fusion module is shown
in Figure 2. The fusion module was mainly used for the progressive reconstruction of
the output images. There are four convolution layers, and the design of the network
architecture draws from the concept of DenseNet [44].

Specifically, as a feed-forward style, each layer was directly connected with other
layers. The reference of dense blocks further enhances the utilization of features and
alleviates the problem of gradient disappearance in the training process [45]. Moreover,
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we set the padding mode of all convolution layers as “REFLECT”. Notably, we set all the
kernel size as 3× 3 and the stride as 1. The Leaky ReLU was employed as the activation
function in all convolutional layers.

Figure 2. The network architecture of the preliminary/intermediate fusion module.

3.2.3. Network Architecture of the Advanced Fusion Module

The network architecture of the advanced fusion module is shown in Figure 3, which
is composed of five convolutional layers. The advanced fusion module is responsible for in-
tegrating multi-scale information and dimensionality reduction and outputs the generated
HRMS image. Consistent with the network architecture of the preliminary/intermediate
fusion module, the padding mode of each convolutional layer was set as “REFLECT”, and
the kernel size was set as 3× 3 with the stride setting as 1. The first four convolutional
layers adopted Leaky ReLU as the activation function, while for the last layer, it was
activated by tanh.

Figure 3. The network architecture of the advanced fusion module.

3.3. Loss Function

The loss function determines the direction and degree of the network optimization.
In our CPNet, the direction and degree of the network optimization was determined
by the progressive reconstruction loss. This can boost the training in all aspects of the
network to avoid the inactivation of partial networks. This ensures a high degree of
consistency between the fused image, i.e., the HRMS image, and the ground truth. The
progressive reconstruction loss Lpro consisted of the high-scale reconstruction loss Lhigh
and the low-scale reconstruction loss Llow, which is defined as follows:

Lpro = Lhigh + λLlow, (1)

where the λ is the weight controlling the trade-off between them.
Specifically, the high-scale reconstruction loss Lhigh was employed to constrain the

generated high-scale fused image, i.e., the HRMS image, with the high-scale ground truth.
Consequently, the generated HRMS image could maintain a high degree of consistency
with the ground truth. The high-scale reconstruction loss Llow is mathematically given by:

Lhigh =
1

HWN ∑
h

∑
w

∑
n
|HRMS− G|. (2)

where the | · | is the operation taking the absolute value. HRMS denotes the generated
HRMS image, and G denotes the ground truth.

The low-scale reconstruction loss Llow was employed to constrain the generated low-
scale fused image, i.e., the HRMS↓2 image with the low-scale ground truth, i.e., ground
truth↓2. In other words, it can boost the training in all aspects of the network to avoid the
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inactivation of partial networks. The low-scale reconstruction loss Llow is mathematically
formulated as follows:

Llow =
1

HWN ∑
h

∑
w

∑
n
|HRMS ↓2 −G ↓2 |. (3)

4. Experiments and Analysis

In this section, abundant experiments were conducted to verify the performance of
the proposed CPNet. First, we introduce the experimental settings, including the data set,
training details, comparison methods, and evaluation metrics. Second, not only the visual
inspection comparison but also the quantitative comparison were performed to validate
the superiority of our CPNet. We also performed ablation experiments to illustrate the
specific effects of including the multi-scale network and progressive construction loss in
our method.

4.1. Experimental Design
4.1.1. Data Set and Training Details

The satellite images used for training and testing our CPNet were from the QuickBird
data set. The characteristics of QuickBird sensors, including spatial resolutions and spectral
bands, are reported in Table 1. Due to the lack of HRMS images in practice, we obtained
the HRMS image following Wald’s protocol [46]. Specifically, the original PAN and MS
images were down-sampled into the lower resolutions, and the original MS image was
used as the ground truth. In our work, the spatial resolution ratio r of the PAN image and
the LRMS image was 4.

First, the down-sampled PAN and LRMS images were cropped into patches of
264× 264× 1 and 64× 64× 4, respectively. Secondly, we obtained the ground truth by
cropping the original LRMS into patches of size 264× 264× 4. Finally, the training data
containing 2052 patch pairs was established. Furthermore, in Equation (1), the hyper-
parameter λ was set as 0.5.

The number of training epochs was 10, and the batch size was set as 8. The parameters
in our model were updated by the AdamOptimizer. The experiments were performed on a
3.4 GHz Intel Core i5-7500 CPU and NVIDIA GeForce GTX Titan X GPU. This algorithm
was realized using the TensorFlow platform. The overall description of the proposed
method is summarized as Algorthm 1.

Table 1. Spatial resolutions and spectral bands of QuickBird sensors. The spectral bands report the
wavelength ranges (unit: nm). GSD denotes the ground sample distance.

Spatial Resolutions Spectral Bands

QuickBird PAN LRMS PAN Blue Green Red Nir
0.61 m GSD 2.44 m GSD 450–900 450–520 520–600 630–690 760–900

4.1.2. Comparison Methods

To verify the effectiveness of the proposed CPNet, we chose eight state-of-the-art pan-
sharpening methods to compare with it. The comparison methods comprise PRACS [47],
PNN [34], PanNet [35], PSGAN [41], TACNN [48], LGC [49], Pan-GAN [43], and SDP-
Net [13]. More concretely, PRACS and LGC are two typical traditional methods, while the
others are six typical methods based on deep learning.

As for the traditional methods, PRACS is a relatively recent method among the most
commonly used competitive methods. LGC is the first method that considers the gradient
difference of PAN and HRMS images in different local patches and bands rather than only
uses global constraints. Thus, it can achieve accurate spatial preservation.

The comparative deep-learning-based methods can be divided into two categories.
For one thing, according to whether there exist ground-truth HRMS images for supervised
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learning, the deep-learning-based methods can be divided into supervised methods and
unsupervised methods. For supervised methods, we selected PNN, PanNet, PSGAN,
TACNN, and SDPNet as representative methods. Among them, PNN is the first deep-
learning-based method for pan-sharpening, which is a foundation and landmark method.

Considering that PNN directly inputs source images, which fails to exploit known
image characteristics to define the network structure, PanNet trains the network in the
high-pass filtering domain to preserve the spatial details. In addition, some methods use
different architectures, loss functions, or training mechanisms to protect the information in
source images. For instance, TACNN modifies the loss function using l1 loss and modifies
the architecture by working on image residuals and deeper architectures. PSGAN is based
on generative adversarial networks (GANs).

It uses the discriminator to distinguish the differences between fused images and
the ground truth to minimize their differences further. SDPNet applies both the surface-
level constraint and deep-level constraint. By objectively defining the spatial and spectral
information through deep networks, it can further preserve both types of information.
Pan-GAN is the representative of unsupervised methods. It generates the HRMS image by
constraining it to maintain the pixel intensity of the LRMS image and the gradients of the
PAN image.

The generative adversarial mechanism is used to enhance information preservation.
For another thing, PNN, PanNet, TACNN, and SDPNet are CNN-based methods, while
PSGAN and Pan-GAN are GAN-based methods. Considering several classification ways,
we select the above eight comparison methods to include methods based on various
theories as far as possible.

Algorithm 1: Overall description of CPNet.
Initialize the pre-blocks, preliminary, intermediate, and advanced fusion modules.
In each training iteration:

• Sample m PAN patches and m corresponding LRMS patches;
• Generate the HRMS patches through CPNet;
• Calculate the loss function Lpro defined in Equation (1);
• Update the parameters of blocks and fusion modules in CPNet by minimizing
Lpro with the AdamOptimizer.

4.1.3. Evaluation Metrics

In quantitative comparisons, we also used five commonly used metrics to evaluate the
quality of the fused image, including the relative dimensionless global error in synthesis
(ERGAS) [50], the root-mean-squared error (RMSE), the structural similarity (SSIM) [51],
the spectral angle mapper (SAM) [52], and the spatial correlation coefficient (SCC) [53].
Except for SCC, which is a non-reference metric, the rest are full-reference metrics. The
specific introductions of these metrics are as follows:

• The ERGAS is used as a global metric, measuring the mean deviation and dynamic
range change between the fused result and ground truth. Therefore, the smaller value
of the ERGAS means that the fused image is closer to the ground truth. The ERGAS is
mathematically defined as follows:

ERGASG,F = 100
h
l

√√√√r
N

∑
i=1

[
RMSE(Bi)

µ(Bi)

]2

, (4)

where r is set as 4 in our work, expressing the spatial resolution ratio between the
PAN image and LRMS image, and N is 4, denoting the number of the band of LRMS.
We use the RMSE(Bi) to compute the root mean square error between the fused result
and ground truth, and the µ(Bi) expresses the average of the ith band in the source
LRMS image.
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• The RMSE shows the difference between the fused result and ground truth through
the change of pixel value. The smaller RMSE denotes that the pixel between the
fusion image and the ground truth is closer. The RMSE is mathematically formulated
as follows:

RMSEG,F = 100

√√√√ 1
h× w× N

N

∑
k=1

h

∑
i=1

w

∑
j=1

[G(i, j, k)− F(i, j, k)]2, (5)

where h and w indicate the height and weight of the LRMS image, respectively. The G
and F are the ground truth and fused image.

• The SSIM is the metric measuring the structural similarity between the fused result
and the ground truth. It evaluates the structural similarity in three different factors
containing brightness, contrast, and structure. The higher the SSIM is, the more the
fused image has higher structural similarity with the ground truth. The SSIM between
the fused result F and the ground truth G is mathematically formalized as follows:

SSIMG,F =∑
g, f

2µgµ f +S1

µ2
g+µ2

f +S1
·

2σgσf +S2

σ2
g+σ2

f +S2
·

σg f +S3

σxσf +S3
, (6)

where the g and f are, respectively, the image patches of the ground truth G and fused
image F. The µ and σ are the mean value and standard deviation, respectively. The S1,
S2 and S3 are the parameters stabilizing the metric.

• The SAM reflects the spectral quality of the fused result by calculating the angle
between the fused result and ground truth, and the calculation is performed between
each pixel vector in n-dimensional space and the endmember spectrum vector. The
smaller SAM expresses that the fused image possesses a higher consistency with the
ground truth in spectral information. The SAM is mathematically given by:

SAMG,F = cos−1
(

GT F
‖G‖‖F‖

)
. (7)

• The SCC embodies the correlation in spatial information between the fused result and
the PAN image, and thus the ground truth is not needed as a reference. The larger
value of SCC means that the fused image shows better performance in preserving
spatial information.

4.2. Results of Reduced-Resolution Validation and Analysis
4.2.1. Qualitative Comparison

• Results. In qualitative comparison, to have better visualization and perception, we
choose the first three bands (including the blue, green, and red bands) of the LRMS,
generated HRMS images, and ground truth for presentation. The intuitive results on
six typical satellite image pairs are illustrated in Figures 4–9.

• Analysis. The fused results of each pan-sharpening method have approximately the
same style in these six typical satellite image pairs. For PRACS, PNN, PanNet, and
TACNN, on the one hand, the severe spatial distortion appears in all the six examples,
shown as edge distortion or blurred texture details. On the other hand, they suffer
from varying degrees of spectral distortion and show distinct differences in spectral
information from the ground truth. In addition, the results of PanNet introduce
significant noise.
The Pan-GAN preserves the spatial and spectral information based on the constraints
of the gradient and pixel intensity between the fused result and source images. Never-
theless, the excessive gradient constraint and the distinguishing between the fused
result and the ground truth led to the most serious spectral distortion in these pan-
sharpening methods in Figures 4–9, as well as edge distortion, as shown in Figure 4.
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In PSGAN, LGC, and SDPNet, Although their fused results show approximately
the same spectral information as the ground truth, their spatial information is still
lacking compared to the ground truth, showing varying degrees of blurry texture
details or edge distortion. The result of SDPNet in Figure 9 does not preserve the
spectral information well. By comparison, the results of our CPNet do not undergo
the questions as mentioned above and can better maintain the spatial and information
simultaneously, showing the best qualitative results.

PanNet PSGAN TACNN

LRMS PAN PRACS PNN

LGC

Pan-GAN SDPNet ours       ground truth

Figure 4. Qualitative comparison of CPNet with other eight pan-sharpening methods on the data from the QuickBird data
set. The first row: the LRMS image, the PAN image, the results of PRACS and PNN; the second row: the results of PanNet,
PSGAN, TACNN, and LGC; the third row: the results of Pan-GAN, SDPNet, and our CPNet, and the ground truth. In the
reduced validation, the PAN images are of size 264× 264 and the LRMS images are of size 66× 66× 4. The fused HRMS
results are of size 264× 264× 4.
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LRMS PAN PRACS PNN

PanNet PSGAN TACNN LGC

Pan-GAN SDPNet ours ground truth

Figure 5. Qualitative comparison of CPNet with other eight pan-sharpening methods on the data from the QuickBird
data set.

4.2.2. Quantitative Comparison

• Results. In order to have a more objective evaluation of the performances of these
pan-sharpening methods, we further performed the quantitative comparison of our
CPNet and the eight competitors on eighty satellite image pairs in the testing data.
The statistical results are provided in Table 2.

• Analysis. As provided in the table, our CPNet achieved the best values in three out
of five metrics, including the ERGAS, RMSE, and SSIM. In terms of the remaining
two metrics, our CPNet can still reach the second-best value in SAM and the third
value in SCC, respectively. To be more specific, the best value in ERGAS revealed that
the mean deviation and dynamic range changes between the fused result and ground
truth were the least, and the best value in RMSE indicates that the pixel change of our
fused results was the smallest.
The best value in SSIM demonstrates that the results of our CPNet showed the highest
structural similarity with the ground truth. The second-best value in SAM also showed
that our CPNet generated comparable results in preserving spectral information. Last,
since the methods Pan-GAN and LGC both focus on imposing gradient constraints
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between the PAN image and the fused results, they preserved the spatial information
well, which led to better results in SCC for PAN-GAN and LGC.
However, they do not consider the preservation of the spectral information, and the
transitional constraint on the gradient even caused edge distortion in some results.
Therefore, with the comprehensive evaluation on all the five metrics, we concluded
that our CPNet performed the best in preserving both spatial and spectral information
in general.

LRMS PAN PRACS PNN

PanNet PSGAN TACNN LGC

Pan-GAN SDPNet ours ground truth

Figure 6. Qualitative comparison of CPNet with other eight pan-sharpening methods on the data from the QuickBird
data set.
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LRMS PAN PRACS PNN

PanNet PSGAN TACNN LGC

Pan-GAN SDPNet ours ground truth

Figure 7. Qualitative comparison of CPNet with other eight pan-sharpening methods on the data from the QuickBird
data set.

Table 2. The quantitative comparisons of different pan-sharpening methods on eighty satellite image pairs from QuickBird
(values in red, blue, and green indicate the best, the second best, and the third best value, respectively).

Methods ERGAS↓ RMSE↓ SSIM↑ SAM↓ SCC↑
PRACS [47] 1.6048 ± 0.3730 3.7584 ± 0.9809 0.9185 ± 0.0315 2.1343 ± 0.5313 0.8656 ± 0.0468

PNN [34] 1.4129 ± 0.3432 3.2430 ± 0.9502 0.9412 ± 0.0260 1.8680 ± 0.3844 0.8432 ± 0.0297
PanNet [35] 1.7965 ± 0.3559 4.1060 ± 1.0516 0.9016 ± 0.0362 2.4372 ± 0.5441 0.7398 ± 0.0492
PSGAN [41] 1.3093 ± 0.3264 3.0488 ± 0.9325 0.9465 ± 0.0236 1.6386 ± 0.4209 0.8108 ± 0.0349
TACNN [48] 1.8509 ± 0.4022 4.3168 ± 1.1223 0.9054 ± 0.0366 2.1808 ± 0.5296 0.8467 ± 0.0350

LGC [49] 1.3161 ± 0.2952 3.0276 ± 0.8842 0.9437 ± 0.0240 1.7613 ± 0.5011 0.9059 ± 0.0284
Pan-GAN [43] 2.2084 ± 0.4698 5.0773 ± 1.4061 0.8992 ± 0.0381 2.7843 ± 0.7078 0.9304 ± 0.0287
SDPNet [13] 1.2757 ± 0.2960 3.0436 ± 0.8934 0.9449 ± 0.0240 1.8385 ± 0.4796 0.8662 ± 0.0223

Ours 1.2462 ± 0.2999 2.9854 ± 0.8861 0.9466 ± 0.0233 1.7556 ± 0.4558 0.8678 ± 0.0230
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LRMS PAN PRACS PNN

PanNet PSGAN TACNN LGC

Pan-GAN SDPNet ours ground truth

Figure 8. Qualitative comparison of CPNet with other eight pan-sharpening methods on the data from the QuickBird
data set.

4.2.3. Reliability and Stability Validation

To analyze and validate the reliability and stability of the proposed method, we used
the independent samples t-test to validate whether there were performance differences
between the training data and test data. For this purpose, we measured the performance of
the proposed method on 222 training patch pairs. For higher accuracy, the results on four
reference metrics were used for validation. The results are shown in Table 3.

For the results of each metric, we set the null hypothesis as that no statistically
significant difference between the performance on the training data and that on the test
data. In our experiment, the degree of freedom (df) was 150, and this is a two-tailed
test. When we set the probability level as p = 0.05 and performed the two-tailed test, the
corresponding critical t-value was 1.9679. As shown in Table 3, the calculated t-values of
the four metrics were all smaller than the critical value. Thus, we do not reject the null
hypothesis. In other words, there was no statistically significant difference between the
performance on the training data and that on the test data.
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LRMS PAN PRACS PNN

PanNet PSGAN TACNN LGC

Pan-GAN SDPNet ours ground truth

Figure 9. Qualitative comparison of CPNet with other eight pan-sharpening methods on the data from the QuickBird
data set.

Table 3. The quantitative comparisons of the proposed method on some training data and test data
for the t-test.

Samples ERGAS RMSE SSIM SAM
Training data 72 1.2352 ± 0.2438 2.9011 ± 0.8471 0.9531 ± 0.0206 1.6232 ± 0.4194

Test data 80 1.2462 ± 0.2999 2.9854 ± 0.8861 0.9466 ± 0.0233 1.7556 ± 0.4558
Calculated t-value - 0.2491 0.5994 1.8254 1.8650

Critical t-value - 1.9679 1.9679 1.9679 1.9679

4.3. Results of Full-Resolution Validation and Analysis

• Results. To verify the application of our CPNet on full-resolution data, we further
performed qualitative experiments, whose source PAN and LRMS images were at
the original scale, and hence there was no ground truth. The comparison results are
presented in Figures 10–13.

• Analysis. Equally, the results of our CPNet achieved outstanding performance. As
shown in Figure 10, our fused result can describe the edge of the buildings most
clearly, while the results of other methods have varying degrees of edge blur. The
problem of spectral distortion still exists in the results of other methods. The result
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of PanNet also exposes the problem of noise introduction and the severest spectral
distortion in the result of Pan-GAN.
A similar situation also appears in other full-resolution satellite image pairs as dis-
played in Figures 11–13. In conclusion, our CPNet also showed the best fusion
performance in the full-resolution results, which is reflected in the spatial and spectral
information preservation.

LRMS PAN PRACS PNN

PanNet PSGAN TACNN LGC

Pan-GAN SDPNet ours

Figure 10. Qualitative comparison of CPNet with other eight pan-sharpening methods on the data from the QuickBird data
set in full-resolution validation. The PAN images are of size 1056× 1056, and the LRMS images are of size 264× 264× 4.
The generated HRMS images are of size 1056× 1056× 4.
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LRMS PAN PRACS PNN

PanNet PSGAN TACNN LGC

Pan-GAN SDPNet ours

Figure 11. Qualitative comparison of CPNet with other eight pan-sharpening methods on the data from the QuickBird data
set in full-resolution validation.

4.4. Ablation Study

We performed the multi-scale network and progressive construction loss in the pro-
posed method to ensure high consistency between the generated HRMS image and ground
truth. To validate the effectiveness of these two items separately, we performed two abla-
tion studies in this section. First, to validate the efficacy of the multi-scale fusion network,
we removed the preliminary and intermediate fusion networks as shown in Figure 1. The
overall framework is shown as Figure 14a.

In this case, only the advanced fusion network was used to fuse the PAN and up-
sampled LRMS images. Second, in CPNet, the progressive reconstruction loss function of
the overall network consisted of two items. As shown in Equation (1), it consists of the low-
scale and high-scale loss. The low-scale loss is used to boost the training in all aspects of
the network to avoid the inactivation of the preliminary and intermediate fusion networks.

To validate the effectiveness of the low-scale loss, we employed the same network
components and architectures with the proposed CPNet. In contrast, the total loss function
only consisted of the high-scale reconstruction loss, i.e., the hyper-parameter λ defined
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in Equation (1) was set as 0. In this condition, the framework is summarized as shown in
Figure 14b.

LRMS PAN PRACS PNN

PanNet PSGAN TACNN LGC

Pan-GAN SDPNet ours

Figure 12. Qualitative comparison of CPNet with other eight pan-sharpening methods on the data from the QuickBird data
set in full-resolution validation.

The qualitative comparison results are shown in Figure 15. The results shown in the
first two rows were performed on two pairs of reduced-resolution source images, and
the results in the last two rows were performed on two pairs of full-resolution source
images. Thus, in the last two rows, the ground truth was not available. When only the
advanced fusion network was applied, the spectral information completely came from the
up-sampled multi-spectral image. As shown in the third column of Figure 1, it blurred
the high-quality texture details in the PAN image. Some edges in the PAN images were
weakened or even lost in the fused results.
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LRMS PAN PRACS PNN

PanNet PSGAN TACNN LGC

Pan-GAN SDPNet ours

Figure 13. Qualitative comparison of CPNet with other eight pan-sharpening methods on the data from the QuickBird data
set in full-resolution validation.

By comparison, when the preliminary and intermediate fusion networks were applied,
the multi-spectral image was sharpened from the lowest resolution, as shown in Figure 1.
The progressive approach ensured that the high-quality spatial information in the PAN
image was preserved to a greater extent. We concluded this from the results shown in the
fourth column compared with those in the third column.

In addition, the low-scale loss function can further guarantee the function of the
progressive approach. The qualitative results are shown in the fifth column in Figure 15.
Compared with the results of only applying the advanced fusion network and only using
the high-scale loss, the proposed CPNet exhibited the most abundant texture details, which
were blurred or even not preserved in other results. The guarantee of the preliminary
and intermediate network functions ensured that the output of the intermediate network
retained the fundamental spatial and spectral information. Then, the advanced fusion
network focused on preserving the high-quality texture details in the PAN image. Thus,
the proposed method showed the most satisfactory fused results.
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(a)

(b)

Figure 14. Frameworks of the ablation experiment methods. (a) Advanced fusion. (b) High-scale loss.

The quantitative results of the two ablation methods and the proposed CPNet are
shown in Table 4. Considering the results of several indexes comprehensively, the method
of just applying the advanced fusion network showed the worst fusion performance. The
method that only applied the high-scale loss showed suboptimal performance, and our
CPNet showed optimal performance. More concretely, the best results of our CPNet on
ERGAS, RMSE, and SSIM showed that the similarities between the generated HRMS images
and the ground truth were the highest. The best results on SAM showed that the spectral
quality of our fusion results was similar to that of the ground truth. The best result of our
method on SCC indicates that our results preserved the greatest extent of ground truth.
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LRMS PAN advanced fusion high-scale loss (λ=0) ground truthours (λ=0.5)

not exist

λ=10^6

Figure 15. Qualitative results of the ablation study. From left to right: LRMS and PAN images, the results without applying
preliminary and intermediate fusion networks (only applying the advanced fusion network), the results without using the
low-scale loss (only using the high-scale loss, i.e., λ = 0), the results when λ = 106, and the results of the proposed CPNet.

Table 4. Quantitative results of the ablation study.

Methods ERGAS↓ RMSE↓ SSIM↑ SAM↓ SCC↑
Advanced fusion 1.3144 ± 0.2903 3.0794 ± 0.8762 0.9451 ± 0.0240 1.8120 ± 0.4511 0.8566 ± 0.0239

High-scale loss (λ = 0) 1.2729 ± 0.2993 3.0393 ± 0.8600 0.9459 ± 0.0238 1.7867 ± 0.4492 0.8639 ± 0.0250
λ = 106 1.4330 ± 0.2915 3.3146 ± 0.8555 0.9421 ± 0.0247 1.9944 ± 0.3983 0.8530 ± 0.0247

Ours (λ = 0.5) 1.2462 ± 0.2999 2.9854 ± 0.8861 0.9466 ± 0.0233 1.7556 ± 0.4558 0.8678 ± 0.0230

4.5. Hyper-Parameter Analysis

The hyper-parameter in the proposed method consists of λ defined in Equation (1),
which controls the trade-off between the high-scale and low-scale constraint losses. We
analyzed the effect of this hyper-parameter’s value on the pan-sharpening performance.
When λ = 0, it is the second ablation method shown in Figure 14b. The qualitative and
quantitative results are shown in Figure 15 and Table 4. Then, we set λ = 0.5, which
corresponds to the proposed method. To further analyze the effect of λ, we set λ = 106,
and the results are shown in Figure 15 and Table 4.

When λ increases, the low-scale constraint gradually dominates the function of the
network. The functions of pre-blocks, preliminary, and intermediate fusion blocks were
consolidated. Then, the intermediate fusion results became increasingly similar to the
down-sampled ground truth. However, the high-scale loss in the original resolution also
increased. This led to the distortion of both high-quality spatial and spectral information, as
shown in the qualitative results in Figure 15. The quantitative results are shown in Table 4
also objectively demonstrates that a larger λ resulted in more serve information distortion.
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4.6. Efficiency Comparison

We compared the efficiency of different methods in this section. The traditional meth-
ods, including PRACS and LGC were tested on the CPU. The deep-learning-based methods,
including PNN, PanNet, TACNN, Pan-GAN, SDPNet, and our methods were tested on
the GPU. The specific runtimes are reported in Table 5. For the sake of comprehensive-
ness, both the efficiency on the reduced-resolution and full-resolution images were taken
into account.

As shown in this table, for the reduced-resolution images, our method showed com-
parable efficiency. The runtime was on the same order of magnitude as PNN and PSGAN
and ranked third among all the methods. For the full-resolution images, our CPNet ranked
fourth, which also followed behind SDPNet. The reason is that, with the improvement
of the spatial resolution, the preliminary fusion and intermediate fusion took more time.
Despite all this, our method still took less time than PanNet, TACNN, and Pan-GAN.

Table 5. Efficiency comparison of different methods on the test satellite images from the QuickBird data set. The mean and
deviation values are shown in this table (unit: second).

PRACS [47] PNN [34] PanNet [35] PSGAN [41] TACNN [48] LGC [49] Pan-GAN [43] SDPNet [13] Ours
Reduced-resolution 0.14 ± 0.16 0.03 ± 0.04 0.29 ± 0.09 0.04 ± 0.05 8.35 ± 0.73 14.86 ± 0.91 0.38 ± 0.10 0.15 ± 0.05 0.05 ± 0.01

Full-resolution 2.13 ± 0.17 0.23 ± 0.04 0.84 ± 0.15 0.28 ± 0.07 9.86 ± 0.08 552.47 ± 26.39 4.97 ± 0.08 0.56 ± 0.03 0.74 ± 0.02

4.7. Limitations and Future Works

This section discusses some limitations of this work and some future improvements.
As shown in Figure 1, the progressive fusion went through two pixel shuffles. This was
designed based on the assumption that the spatial resolution ratio of PAN and LRMS
images was 4. When the spatial resolution ratio is larger than 4, the framework of the
proposed method needs to be modified to different spatial resolution ratios.

In our future work, we will first consider the solution to the above-mentioned lim-
itation. When the resolution ratio is larger than 4, e.g., if the ratio is 8, the intermediate
fusion shown in Figure 1 would be performed twice. This handles the fusion of two
intermediate-resolution images. In addition, the low-scale reconstruction loss Llow would
consist of two items, i.e., the similarity constraint between HRMS ↓2 and G ↓2 and the
similarity constraint between HRMS ↓4 and G ↓4.

We will apply our CPNet to more satellite imageries. On the one hand, we will apply
it to satellite images containing different wavelength ranges, such as images captured by
Ikonos and GeoEye-1 sensors. On the other hand, we will apply it to satellites images,
including more spectral bands, such as images captured by WorldView-2 sensors, which
contain eight spectral bands.

In addition to the similarity loss between the generated HRMS image and the ground
truth, we also design a low-scale construction loss based on the pixel shuffle result of the
preliminary fusion for an enhanced constraint. Likewise, the pixel shuffle result of the
intermediate fusion can also potentially be used as an additional constraint. In our future
work, we will investigate adding this additional constraint.

5. Conclusions

In this paper, we proposed a novel network called CPNet for pan-sharpening. Our
model maximized the development and utilization of the information from the source
image through the cross-direction processing of source images and the progressive recon-
struction of the fused image. In addition, we designed the progressive reconstruction loss,
including low-scale loss and high-scale reconstruction loss, to determine the direction and
degree of the model optimization.

Particularly, the progressive reconstruction loss promoted the training of all fusion
modules in different stages and preserved the spatial and spectral information in the
generated HRMS image to the greatest extent. Rather than a single type of information, we
processed the information in the image level throughout the fusion process, which avoided
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partial information loss. Compared with the state-of-the-art pan-sharpening methods, our
CPNet showed the greatest preservation in both spatial and spectral information.
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