
remote sensing  

Article

A Novel Framework for Rapid Detection of Damaged Buildings
Using Pre-Event LiDAR Data and Shadow Change Information

Ying Zhang *, Matthew Roffey and Sylvain G. Leblanc

����������
�������

Citation: Zhang, Y.; Roffey, M.;

Leblanc, S.G. A Novel Framework for

Rapid Detection of Damaged

Buildings Using Pre-Event LiDAR

Data and Shadow Change

Information. Remote Sens. 2021, 13,

3297. https://doi.org/10.3390/

rs13163297

Academic Editor:

Mohammad Awrangjeb

Received: 6 July 2021

Accepted: 2 August 2021

Published: 20 August 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Canada Centre for Mapping and Earth Observation, Natural Resources Canada, Ottawa, ON K1S 5H4, Canada;
Matthew.roffey@canada.ca (M.R.); sylvain.leblanc@canada.ca (S.G.L.)
* Correspondence: ying.zhang@canada.ca

Abstract: After a major earthquake in a dense urban area, the spatial distribution of heavily damaged
buildings is indicative of the impact of the event on public safety. Timely assessment of the locations
of severely damaged buildings and their damage morphologies using remote sensing approaches is
critical for search and rescue actions. Detection of damaged buildings that did not suffer collapse
can be highly challenging from aerial or satellite optical imagery, especially those structures with
height-reduction or inclination damage and apparently intact roofs. A key information cue can
be provided by a comparison of predicted building shadows based on pre-event building models
with shadow estimates extracted from post-event imagery. This paper addresses the detection of
damaged buildings in dense urban areas using the information of building shadow changes based on
shadow simulation, analysis, and image processing in order to improve real-time damage detection
and analysis. A novel processing framework for the rapid detection of damaged buildings without
collapse is presented, which includes (a) generation of building digital surface models (DSMs) from
pre-event LiDAR data, (b) building shadow detection and extraction from imagery, (c) simulation of
predicted building shadows utilizing building DSMs, and (d) detection and identification of shadow
areas exhibiting significant pre- and post-event differences that can be attributed to building damage.
The framework is demonstrated through two simulated case studies. The building damage types
considered are those typically observed in earthquake events and include height-reduction, over-turn
collapse, and inclination. Total collapse cases are not addressed as these are comparatively easy to
be detected using simpler algorithms. Key issues are discussed including the attributes of essential
information layers and sources of error influencing the accuracy of building damage detection.

Keywords: building damage detection; shadow change; urban earthquake disaster; Pleiades image;
LiDAR-based DSM; shadow simulation; building damage simulation

1. Introduction

Major threats to public safety in many areas of the world involve earthquakes in urban
areas that contain dense high-rise buildings and population. High casualties can arise as
people are trapped in severely damaged, unstable standing buildings. Such buildings are
also dangerous for rescue teams, particularly during the aftershocks, so timely assessment
of their locations and conditions is crucial.

High-resolution imagery from aerial and satellite-based sensors can provide valuable
timely building damage information over large areas of coverage after the earthquake
event [1]. However, obtaining remotely and timely precise information about locations
and conditions of damaged buildings is still challenging for real-time disaster response.
Ideal data for detection of damaged buildings, but seldom available in practice, are pairs
of pre- and post-disaster digital surface models (DSMs) derived from aerial light detec-
tion and ranging (LiDAR) data with high resolution in combination with high-resolution
multi-spectral imagery. The paired LiDAR-based DSMs can provide precisely the three-
dimensional changes in the building shape due to damages. Such datasets can provide
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the most accurate information about the geometric structural conditions of affected build-
ings [2,3]. Pairs of pre- and post-disaster DSMs, derived from stereo optical satellite images,
have previously been exploited in this application [4–6]. The post-event data from high-
resolution multispectral and LiDAR sensors have been used in several tests of damaged
building detection [7–9]. In addition, a number of mature scene interpretation techniques
can be used to enhance building assessments. Shadow information extracted from high-
resolution optical imagery can capture additional attributes of building geometry [10].
For example, building shadow information extracted from single high-resolution optical
images has been used for the detection of buildings [11,12] and estimation of building
height [13–20]. Change detection techniques at pixel and object levels have been used to
detect buildings exhibiting significant radiometric, texture, and/or geometric differences
between pre- and post-event image acquisitions [1,21–24]. It should be noted that the
utilization of shadow changes is complicated by other factors that impact shadow appear-
ance, namely, differences in solar viewing elevation and azimuth of the two images in
question. On the other hand, the impacts of solar illumination geometry on shadows cast by
a three-dimensional object are readily predicted. Tong et al. [25] generated theoretical three-
dimensional building surface models for detecting locations of damaged buildings using
building footprints and height information and then compared the simulated pre-disaster
shadow areas based on the building surface model and the shadow information from the
post-disaster imagery. Before shadow change detection based on the baseline building
surface models can be used in practice, the sensitivity of shadow change to quantifying
aspects of building damage should be assessed and analysed.

There are various morphologies of building damage associated with a major earth-
quake disaster. A categorization of building damage types has been developed by Schweier
and Markus [26]. These common building damage occurrences were categorized into
18 types by ground field observations. Height-reduced building damage and inclination
building damage are among these major damage types (Figure 1). Particularly in the case
of height-reduced or inclination building damage [27] the damage can result from partial
collapse or distortion of a building with an intact roof and limited surrounding rubble
fields. In multispectral optical imagery from remote sensing sensors such as those onboard
satellites or aircraft, height-reduced or inclination building damage is much more difficult
to detect even with manual interpretation than more heavily damaged cases that include
horizontal building shifts and/or reduction of structures to rubble, since there are fewer
image radiometric and textural cues. On the other hand, with topological concepts (such as
that in the work of Hermosilla et al. [28]), as building height and shape can be inferred from
cast shadows, shadow comparison of pre- and post-event datasets provides an opportunity
for detecting these types of building damage. A precise shadow change map can be helpful
for real-time detection and analysis of building damage after a major earthquake [29].

The main objectives of this work are twofold; first, to develop a framework, based
on remote sensing technologies, for the rapid detection of earthquake-induced building
damage (without collapse) in dense urban areas encompassing high- and low-rise buildings
and secondly, to assess the effectiveness and limitations of building damage detection
based on shadow change information derived from baseline building DSMs and high-
resolution optical imagery. In this work, a number of key issues are also addressed
including (a) requisite information layers needed for accurate pre- and post-event shadow
estimation, (b) factors of LiDAR-derived baseline building DSMs impacting the accuracy of
building damage detection, and (c) limitations and errors associated with the employment
of shadow change information for building damage detection.
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Figure 1. Building damage models regrouped from the earthquake-induced building damage clas-
sification by Schweier and Markus [26] (Reprinted with permission from ref. [26]. Copyright 2004, 
Michael Markus). 
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damage; the DSM data include the pre-event ‘null hypothesis’ (i.e., no damage) set and 
post-event (i.e., with damage) sets. Two types of pre-event baseline DSM data have been 
used for the experiments and analyses described below. In the first case (Case A), an arti-
ficial DSM (1000 by 1000 pixels in extent) of synthetic buildings for testing was created. 
These buildings are rectangular in shape with flat roofs and have been assigned random 
characteristics of horizontal footprint size, building orientation, and building height. This 
DSM does not include other features such as trees, roads, etc., and its primary purpose is 
to evaluate shade sensitivities to various forms of damaged buildings. The second DSM 
case (Case B) comprises elevation information of an actual urban core area generated from 
airborne LiDAR data. Figure 3 illustrates the raw DSM map derived from LiDAR data as 
well as a Pleiades PAN-sharpened image used for this study. The LiDAR-based DSM im-
age (shown in Figure 3 left; data provided by the Airborne Imaging Inc) in question covers 

Figure 1. Building damage models regrouped from the earthquake-induced building damage classification by Schweier
and Markus [26] (Reprinted with permission from ref. [26]. Copyright 2004, Michael Markus).

2. Methodologies

There are image processing and simulation methodologies involved in our processing
framework. Figure 2 illustrates the proposed processing flow for damage assessment based
on shadow analysis.
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Figure 2. Outline of the framework for rapid damaged building detection. In the figure, DSM: digital surface model; LiDAR:
light detection and ranging; LC: land cover.

2.1. Generation of Baseline Building Digital Surface Models (DSMs)

In this study, the DSMs of buildings provide a fundamental data source for inves-
tigating the shadow change behaviors and relationship between shadows and building
damage; the DSM data include the pre-event ‘null hypothesis’ (i.e., no damage) set and
post-event (i.e., with damage) sets. Two types of pre-event baseline DSM data have been
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used for the experiments and analyses described below. In the first case (Case A), an
artificial DSM (1000 by 1000 pixels in extent) of synthetic buildings for testing was created.
These buildings are rectangular in shape with flat roofs and have been assigned random
characteristics of horizontal footprint size, building orientation, and building height. This
DSM does not include other features such as trees, roads, etc., and its primary purpose is
to evaluate shade sensitivities to various forms of damaged buildings. The second DSM
case (Case B) comprises elevation information of an actual urban core area generated from
airborne LiDAR data. Figure 3 illustrates the raw DSM map derived from LiDAR data
as well as a Pleiades PAN-sharpened image used for this study. The LiDAR-based DSM
image (shown in Figure 3 left; data provided by the Airborne Imaging Inc) in question
covers a portion of the downtown area of Calgary, Canada. This study area is in the central
business district of Calgary, which has a dense building distribution including a complex
mix of high- and low-rise buildings with a large variation in building height and shapes.
The raw DSM from LiDAR data, sampled on a 1 m grid (derived from a height cloud point
density of 1.3 samples per m2), covers a 1 by 1 km site and was acquired on 15 August
2007. A portion of a Pleiades sensor image (shown in Figure 3 right), covering the Calgary
DSM map, has also been used to generate the final version of the baseline Calgary DSM
and for the evaluation of DSM-derived shadow information. This multi-spectral image
acquired on 10 April 2014 has been pan-sharpened with a panchromatic band of spatial
resolution 0.5 m.
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For the creation of a building class map and quality improvement of the raw DSM with
noise, further pre-processing of the raw DSM from LiDAR is needed. The generation of a
high-quality map of building DSMs involves a number of processing steps. First, trees have
been identified to isolate building objects on the LIDAR and the Pleiades images. This has
been accomplished first through a classification of the co-registered Pleiades multi-spectral
image into vegetated and non-vegetated areas; then a tree class map was generated with
the help of classifications of optical images and corresponding LiDAR height data. Further
processing of three-dimensional building objects has resulted in improved delineation by
using the building footprints and removing the noise on building tops. The final land
cover classification map illustrating refined distribution of buildings and trees is shown in
Figure 4 left, and the final DSM map for the study area, including the DSMs of buildings
and tree canopies, is presented in a perspective view in Figure 4 right.
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2.2. Shadow Simulation

For buildings or trees (Case B in the LiDAR-based DSM map), the locations of shadow
pixels are estimated from the equation below.

X = sin φ · tan ϑ · H
Y = cos φ · tan ϑ · H

(1)

where X and Y are the pixel row and line coordinates of the shadow cast by a building or
the tree pixel with height H above ground level; θ is the solar elevation angle and ϕ the
solar azimuth angle. In complex (e.g., multiple building scenarios) situations, shadows
being cast on nearby raised objects (e.g., sides of other buildings) and objects whose lines of
sight to the sun are blocked by intervening raised objects must be accounted for. A shadow
map is generated by tracing the shadows cast by all buildings and trees in the DSM map of
the study area. Predicted shadows can be further classified as building shadows or tree
shadows cast on ground surfaces or the sides or tops of other raised objects.

2.3. Building Damage Simulation

For experiments in this research work, the DSMs of damaged buildings have been
simulated by modifying the three-dimensional forms of existing buildings in the baseline
DSM map. From the view of earth observation from space, the satellite imagery captures
2D building information mainly about the building roofs, which is different from 3D
information observed at the ground surface. For remote detection of building damage from
above, therefore, the building damage types have been regrouped into five new model
categories, from the previously noted classification proposed by Schweier and Markus
(2004) [26], based on observations from the ground. As shown in Figure 1, the height-
reduced building damage model groups with an intact or apparently intact roof (hereafter
referred to as Model-1) include the classes 4a, 4b, 4c, 5, 5a, 5b, and 5c of the original
building damage classification from Schweier and Markus [26]; the height-reduction cases
with damaged roofs (as Model-2) include the classes 1, 2, 6 and 7c; the overturn cases
(as Model-3) include the classes 8 and 9b; the inclination case (class 9a) is referred to as
Model-4; and the heap of debris cases (classes 7a and 7b) is categorized as Model-5. For the
overhanging element case (class 10 in the original classification) that can be observed in
ground observations, satellite remote sensing with an observation view from above has
limited ability to provide useful information, and therefore this case of building damage is
excluded from investigation in this work. The details regarding the new model categories
are given in Table 1.
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Table 1. Building damage type models and damage detectability in imagery.

Damage Model
Damage Type Number

(Schweier and
Markus, [26])

Type of Damage Description of
Damage

Usefulness of Shadow
Information

Model 1 4, 4b, 4c, 5, 5a, 5b, 5c Height Reduction

Reduction in height
due to pancaked

collapse, with
undamaged (flat) roof.

Difficult to be detected in
image without shadow

information

Model 2 1, 2, 6, 7 Height Reduction with
damaged roof

Reduction in height
due to pancaked

collapse, roof totally or
partly damaged, with
changed shape of the

building top.

Difficult to be detected in
image without shadow

information

Model 3 8, 9b Overturn Overturn collapse,
parts are separated.

Easy to be detected directly in
image. Shadow information

can be helpful.

Model 4 9a Leaning
Inclination of whole

building with shifting
roof from footprint

From difficult to easy to be
detected directly in image

without shadow information,
depending on the inclination

angle

Model 5 3, 7a, 7b Total collapse

The building is totally
collapsed and easy to
be detected in image

without using shadow
information

Obvious in imagery. Easy to be
detected directly in image

without shadow information

Model 6 10 Overhang element Damage on parts of the
building bottom.

Undetectable in imagery with
or without shadow

information

It is noted that the effectiveness and usefulness of building damage detection using the
building shadow information varies among the five models. For height-reduced building
damage (Model-1 and Model-2), the detection of the building damage is less effective if
using only the 2-D information of the building derived from satellite imagery. For example,
Model-1 (where the building height is reduced but with an apparently intact roof) is hard
to recognize in the satellite image using only the roof shape and spectral information.
Therefore, the precise quantification of relevant shadow information is more important in
these damage cases.

For damage simulation purposes, the shape modifications of these building damage
models can be computed from the simplified expressions, respectively, shown below.

Model 1 (Height reduction with intact roof):

Hc = H0 − Hch (2)

Model 2 (Height reduction with damaged roof):

Hc = (H0 − Hch) · Rc (3)

Model 3 (Over-turn):

Hc = (H0 − Hch) + Hn(h, Hch) (4)
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Model 4 (Inclination):

Hc = f (Hc,max, Hc,min);
Hc,max = H0 sin α; Hc,min = (H0 − x0

tan α ) · sin α
(5)

Model 5 (Heap of debris):
Hc = Hmin(xn, yn) (6)

where Hc is the changed building height at the original location (x, y); Hch is the changes in
the height due to the damage; Rc is the randomly simulated damaged shape of the building
roof; Hn is the height increase in the surface DEM but in a new location with an area of
about h x Hch (h = x0 or y0, depending on the direction of the part of building overturning)
for the overturn damage; x0 and y0 are the original side lengths of the damaged building,
respectively; Hc,max and Hc,min are the maximum and minimum heights of the damaged
leaning building that is without roof distortion, respectively; α is the lean angle, i.e., the
angle between one of the building side and the ground, the angle should be 90◦ before the
leaning damage; Hmin is the height of debris pile from the damages building at extended
location (xn, yn). The values of the parameters Hch, Rc, and α can be randomly assigned in
the building damage simulation.

In high-resolution multispectral imagery, the changes due to building damage Model-
5 (the ‘heap of debris’ cases) are much more obvious compared to the other four damage
types; they can be detected both in the changes of surface texture or the changes from a
large regularly shaped shadow to limited or fragmented shadow. Therefore, the focus of
this paper is on the first four types of damage, which cause changes in building structure
that are hard to detect in earth observation imagery viewed from above.

For simulation purposes, a subset of buildings available on the Calgary DSM has been
randomly selected for height alteration. In Case B, the damaged building (or a damaged
part of a building) is randomly selected among all buildings from the building footprint
map. Furthermore, for each damaged building (or damaged part of a building footprint),
the damage parameter values (with the exception of H0 the baseline DSM height of the
building in question) have been randomly selected. The small amount of debris from
parts of damaged buildings is ignored in the simulation for building damage Model-1 to
Model-4.

2.4. Building Shadow Differencing

Shadow change maps for damage analysis can be generated by differencing pairs of
shadow maps; the differencing involves a shadow mask that is a prediction of damage-free
structures and a mask of shadows of post-event structures, some of which may exhibit
damage.

In Case B of this study, the baseline shadow change map is considered. It is generated
by differencing a map of extracted shadows from a multispectral image and one derived
from the DSM using the solar direction parameters of the acquisition time of the multispec-
tral image (in this study a Pleiades image of Calgary for Case B). Both shadow maps for the
differencing should be pre-damage information. This output of the differencing is referred
to as a baseline or ‘natural’ change map as reference information for damage detection. A
number of pronounced changes in the baseline shadow change map can be expected due to
activities related to urban development, namely, new building construction and building
demolition that has occurred between the acquisition dates of the multispectral image
and DSM datasets. On the other hand, most discrete shadow objects will be associated
with ‘nominally unchanged’ buildings (i.e., those present on both the multispectral image
and the DSM). In these cases, the shadow ‘natural change’ will arise from dataset and
extraction information uncertainties such as height and shape inaccuracies in the DSM
building models and limitations of the algorithm used to delineate shadow areas on the
multispectral image. The quantification of these change uncertainty levels is important to
determine the limitations of shadow as a detector of building damage. Another type of
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shadow change map is generated by differencing the shadow map from the simulation
based on the DSM and the map derived from post-event imagery. The information of
this shadow change map includes the natural changes and the changes due to building
damage.

2.5. Shadow Change Detectability

In addition, limitations in building change detection using shadow change informa-
tion are investigated with a focus on the relationship between shadow change and the
image data resolution. This has been undertaken through a pure simulation approach by
differencing building shadows between undamaged and simulated damage renditions
of DSM-based building models. Building damage (e.g., damage models 1–5) will result
primarily in apparent shadow length reduction. A key imaging sensor attribute governing
the detection of shadow length differences will be sensor spatial resolution. Assuming that
the minimum detectable shadow length difference must correspond to approximately one
sensor resolution element, and each image pixel corresponds to a resolution element, the
relationship between the minimum detectable change in shape or top surface of a building;
thus, the minimum detectable building height reduction (∆Hmin), spatial resolution of the
image (R), and solar elevation angle (θ) will be:

∆Hmin = R · tan ϑ (7)

The graph shown in Figure 5 illustrates variations of minimum detectable height
reduction (∆Hmin) for spatial resolutions ranging from 0.1 to 10 m and imagery acquired at
solar elevation angles ranging from 30 to 70 degrees. The values of ∆Hmin are lowest in
the highest spatial resolution imagery case for minimal solar elevation angle. Therefore,
in the case of an earthquake disaster, the highest detection performance can be expected
when using higher resolution imagery with longer shadow length (in lower latitude areas
and/or during the summer season). A further consideration is the anticipated ∆Hmin given
the structure of buildings, namely, one story. If the ∆Hmin is at least 3 m, shadow change
detection methods will not be feasible using imagery with a resolution of 5 m or above
since ∆Hmin value will exceed 3 m unless the solar elevation angle is less than 30 degrees.
As an example of a real image source, for the Pleiades data acquired at a solar elevation
angle of 45.9◦ over downtown Calgary (at about 51◦ N latitude) used in this work, the
value of ∆Hmin is about 0.516 m for the PAN-sharpened image with 50 cm resolution and
is about 2.06 m for the multispectral image with 2 m resolution.
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3. Results
3.1. Case A—Based on Simulated Building DSM

For the building damage simulation in Case A, the damaged building types discussed
in Table 1 are used to generate simulated damage candidates. A total of ten buildings with
a box shape have been used to simulate pre- and post-event (i.e., no damage and damage
cases) pairs for shadow comparison. The focus of the investigation addresses changes in
building shadow patterns based on perfect baseline DSM information, i.e., it is assumed
that there are no errors associated with the DSMs.

Figure 6 illustrates an example of the simulation of the pre-event building DSMs
and post-event damaged buildings. Five of the ten buildings are oriented with a similar
orientation (north–south and east–west sides), while the remaining five have randomly
selected orientations. In the first group, a lower building is close to and behind a taller
building. The heights of other buildings are set randomly with a maximum building height
set to 100 m. The simulated pre-damage building dataset (upper-left) and post-damage
dataset of buildings with various types of damages (middle-left) are shown in Figure 6.
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The damage types in Figure 6 are height reduction (building numbers 2, 3, 4, and
5), inclination (building numbers 6, 7, 8, 9, and 10), and overturn (building number 1).
The damage parameters such as leaning angle, leaning direction, overturn direction, and
reduction in height and shape of the damaged building tops are randomly selected in the
simulation. In this scenario, the solar elevation and azimuth angles have been selected to
match those of the acquisition time of the Pleiades image. Perspective views of the building
cases are also shown in Figure 6 right. The changes in building shadows corresponding well
with the building damage, especially the changes in shadow, readily revealed the building
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damage well in the cases of the height-reduction and inclination damage of buildings with
intact roofs that are not obvious in the two-dimensional imagery. In the height-reduced
building damage cases, all of the shadow changes are in the shadow length along the solar
azimuth direction, i.e., the shadows of the damaged buildings lie within the shadow areas
of their undamaged counterparts. The height reduction of a damaged building can be
estimated from the reduced length of the shadow pattern as measured in the solar azimuth
direction. If height reduction is also coupled with roof deformation, this deformation will
result in additional shadow shape change, as shown in the buildings labeled 2, 3, 4, and
5 in Figure 6. The presence of these additional shadow elements provides a cue in the
classification of damage types.

For the inclination damage cases, two sub-types that are common in earthquake-
induced building damage are considered, as shown in Figure 7. One is that one side of
the building sinks into the soil and the building is without roof distortion (noted as a
in Figure 7), and the other is where the building leans to one side, but the roof remains
horizontal and flat (examples labeled b in Figure 7). Cases of the latter sub-type are
often observed in wood-structured buildings. Detecting both sub-types of damages from
images is very challenging since the roofs of the buildings remain intact. Figures 6 and
7 demonstrate that the significant shadow changes between pre- and post-event images
should provide reliable cues and quantitative information of damage conditions.
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Additional complications in shadow change interpretation can arise when shadows of
multiple buildings overlap and when the shadow of a tall building is cast on the roof of a
neighboring lower building. The height differential between the buildings must be taken
into account when estimating the damage-related height reduction of the taller building.
Further complications can arise as an observed shadow segment can be a composite that
contains shadow contributions from more than one building.

The shadow changes and patterns vary depending on the solar elevation angle and
solar azimuth angle, i.e., damage detection performance based on shadow change will
vary with season and time of day. Figure 8 illustrates examples of the building shadows in
cases of lower or higher solar zenith angles, in which ten buildings with various types of
height-reduced damage are under investigation. The shadow changes in autumn (lower
solar zenith angle, left panel) are obvious with larger change areas in the shadow patterns,
compared to those in summer (higher solar zenith angle, right panel). On the one hand,
shadow-based building damage detection should be more effective for isolated buildings.
In dense urban areas, however, the complications noted above regarding overlapping
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building shadows and shadows cast by one building on another will be more acute in
lower solar zenith angle conditions.
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3.2. Case B—Analyses Using LiDAR-Based Building DSM
3.2.1. Comparison of Pleiades and Predicted Baseline Shadows

A baseline building shadow map was generated (Figure 9, left) using the Calgary
LiDAR-based DSM with the solar parameters corresponding to the acquisition date and
time of the Pleiades image. This baseline shadow product has been compared with the
Pleiades PAN-sharpened image (Figure 9, middle) and the shadow map extracted from
the Pleiades image (Figure 9, right). Overall, the predicted and extracted shadows of
buildings exhibit good agreement. However, as updating of LiDAR information from new
flights is usually infrequent compared to that of optical multispectral image acquisition,
there is generally a difference associated with recent urban change. As shown in Figure 9,
there are several locations of significant disagreement due to the difference of acquisition
dates between the LiDAR and Pleiades multispectral image for the Calgary case. These
disagreements can be explained by (A) new building construction in previously open
land, (B) where old buildings have been replaced or altered, and (C) old building removal
resulting in open land. The difference in the building shadows between the DSM-based
shadow map and those extracted from a pre-event image (in this case the Pleiades image)
can be used to detect these urbanization-development changes and in so doing identify
limitations of the information content of a DSM source that might be employed in the
future for damage assessment purposes and also emphasizes the need for up-to-date pre-
event information, especially in highly dynamic landscapes. There is a need to develop a
pre-event baseline shadow change map as a reference for response use, which provides
disagreement due to the acquisition difference of data sets. To illustrate this pre-event
application, Figure 10 provides a baseline shadow classification map through shadow
matching using two shadow maps from different sources. Overall, the two shadow maps
agree well. Furthermore, by comparing these with the predicted shadow from the LiDAR-
based DSM, shadows related to new buildings in the multi-spectral image can be detected
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and identified and more detail of the similarity and differences between them can be
derived as shown in Figure 10. First, shadows cast by small objects on building roofs (e.g.,
heating/air conditioning units) can be identified and extracted from the multi-spectral
image. These details may be missing in the LiDAR-derived DSM map depending on the
relative spatial resolution of the image and DSM. Since the small features on the building
rooftops and their shadows can provide detailed information about the morphology of the
building in question, the spatial details in the baseline building DSM map are important
factors influencing the accuracy of the damage detection based on the building shadow
information. Second, the DSM counts the height information of an object only using the
vertical length from the object’s top surface but not the three-dimensional shape of the
object. The three-dimensional shape of an object like a TV tower with the shape narrowed
down in the lower part cannot be represented well with the DSM. Therefore, in this case,
there is a difference in the shadow pattern of the TV tower between the simulated shadow
map from LiDAR-based DSM and the map extracted from the image.
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The LiDAR-based building DSM map is assumed to be an accurate representation
of the real morphology distribution of the buildings. From the analysis above, a high
similarity of the pre-event building DSM map to reality is essential for effectively building
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damage detection based on shadow information. However, as described above, there can
be a gap between the DSM map and the reality at the time of a disaster event. A baseline
map of differences (natural differences) between the shadow map from the LiDAR-based
DSM and the extracted shadows from the image before the event is necessary. The baseline
differences result from causes such as building changes that have occurred between the
LiDAR and image acquisitions. The baseline shadow difference map as shown in Figure 10
is an important information layer as reference information for validation of the shadow
changes in real-time and can also be used to update the baseline building DSM map for
preparation. Furthermore, for disaster-prone areas, it is a necessity to acquire new LiDAR
imagery on a frequent basis to update the DSM.

3.2.2. Shadow Changes from Simulated Building Damage

Building damage scenarios have been simulated with randomly selected values of the
building damage parameters (reduced height, leaning angle/direction, overturn direction,
etc.) applied to selected building objects in the LiDAR-derived DSM map. Candidate
buildings have been randomly selected from the available building footprint map. Further-
more, for each damaged building, the damage type has been randomly assigned from the
building damage categories (Models 1–4) shown in Figure 1, while damage parameters
for each building case have been assigned randomly selected values. For each scenario,
differencing of the baseline shadow map and the simulated building damage map for each
scenario has resulted in the creation of one of the shadow change maps. The solar parame-
ters used for the shadow simulation are the same as those for the Pleiades image. Figure 11
illustrates the results from height-reduced building damages. The shadow change maps
(right panel) for the two damage cases involve total damaged building areas of 30% and
50% as shown in Figure 11a and 11b, respectively, as well as the DSM maps of these two
damage cases, respectively (Figure 12). The total damaged area of buildings is estimated
by the accumulation of individual building areas. The changes in building shadow have
three classes, shadow reduction on the ground and shadow reduction or increase on roofs.
The red-colored shadow reduction areas on the group surface shown in the map resulted
from building height-reduction damage. Since it is a downtown urban case with dense
building distribution, the shadow changes due to building damage are also shown on the
roofs of neighboring buildings; some of the shadow changes on roofs have been reduced
(pink) or increased (bright blue), as shown in Figure 11.
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Figure 13 illustrates the results of all model building damage (height reduction, over-
turn, and inclination) with a scenario of 85% damaged building area, including the sim-
ulated shadow maps before and after damage (left panels) and the DSM maps before
and after damage (right panels). Again, the generation of the building damage maps in-
volves the random selection and assignment of the building damage parameters. Figure 14
demonstrates the shadow differences due to the building damages, which reveal the dam-
aged building locations and also the damage conditions. The shadow areas are not only
decreased on ground surfaces but also increased on roofs depending on the building dam-
age conditions. In this map, the exposure of building walls due to inclination damages is
also marked out. From the information given in the shadow difference map, the locations
and conditions of the damaged building can be quickly identified during the real-time
response.
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In Case B with a more complicated urban landscape with variation in built-up mor-
phology and distribution of tall trees, most damaged buildings can be detected with the
changes in shadows. However, it is noted that the changes in shadows under tree canopies
and tree shadows, as well as in the case that shadows of damaged buildings cast on walls
of neighboring buildings, cannot be detected in the image.
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Figure 13.

4. Conclusions and Discussion

The detection of damaged buildings that did not suffer collapse can be highly chal-
lenging from aerial or satellite optical imagery. A key information cue can be provided
by a comparison of predicted building shadows based on pre-event building models with
shadow estimates extracted from post-event imagery. For precise detection of damaged
buildings without total collapse, a practical processing framework for EO-based detection
of earthquake-induced building damages in dense urban areas has been proposed based
on a comparison of pre- and post-event building shadows derived from DSM and multi-
spectral image data. This processing framework includes (a) the extraction of post-event
shadow patterns from multispectral image source; (b) the generation of a pre-disaster
(or baseline) DSM derived from LiDAR data that encapsulates building morphologies;
(c) the prediction, through DSM-based simulation, of the anticipated undamaged build-
ing shadow patterns at a post-event acquisition time for which multispectral imagery is
available; (d) the generation of a baseline shadow change map due to pre- and post-event
data acquisition date difference, which shows the natural shadow changes related to urban
development; (e) the differencing of these two building shadow patterns to generate a
shadow change map; and (f) the estimation of the building damage level/type for those
buildings exhibiting significantly different shadow patterns.

The various common types of building damage caused by earthquakes, including
height-reduced, inclination, and overturn, have been considered in this work, especially
the inclination and height-reduced damaged buildings with intact roofs since these types
of building damage are difficult to detect and identify from two-dimensional images from
satellite or aerial plane sensors without shadow information. The detection of these damage
classes with intact building roofs in remotely sensed imagery has high uncertainties using
only roof spectral or texture information, even with manual interpretation. The use of
relevant building shadow information is essential for EO-based detection of the damaged
buildings mentioned above.
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Through two case studies using building damage and shadow simulations, as well as
analysis using the differencing between predicted and post-event shadows, based on build-
ing DSMs and extracted shadow information delineated from multispectral imagery, an
in-depth investigation into the effectiveness and limitation of our proposed building dam-
age detection framework was undertaken. A number of key findings from the investigation
are summarized as follows.

i. Shadow differencing information is essential for the rapid detection of damaged
buildings that are not in total collapse.

ii. There is a limitation on the detection of building height changes based on the
estimation of the shadow length from remote sensing imagery. This limitation
is dependent on the fineness of the optical image spatial resolution, from which
the post-event shadow patterns are extracted, and also is influenced by the solar
elevation angle.

iii. One key step in damage detection is the differencing of the baseline shadow patterns
between the DSM-based and image-based shadow maps. The baseline shadow
difference map is essential in the processing as reference information for the rapid
detection of damaged buildings. The differences in the baseline shadow maps
result from several causes, such as errors in shadow extraction from imagery, the
low quality of LiDAR data, and the lack of building DSM updating. The baseline
shadow difference map information can be used for the validation of the building
damage detection using the shadow change information and also for improvement
of the baseline building DSM map information for response preparation.

iv. A high level of similarity of the baseline building DSM map with reality before
the event is essential for building damage detection using the building shadow
change information. Meanwhile, since the gap between the building DSM replica
and the building morphology in reality is not avoidable, the information about the
differences between the shadow maps from a LiDAR-based baseline surface model
and from extraction from the image before the event are important information
layers for the improvement of the detection accuracy.

Frequently updated LiDAR data over urban areas can provide accurate three-
dimensional information about buildings and the urban renewal development, which
are essential information for an emergency response to natural disasters [3], especially in
urban areas. In recent years, as the technologies of LiDAR sensors and data processing
have been improved, more DSM information layers in urban areas derived from LiDAR
data with more frequent updating and improved quality and spatial resolution have been
generated, which reduce the similarity gaps between the DSM and real morphology dis-
tribution. The improvement in urban DSM map information provides the opportunities
for applications of effective shadow-based building damage detection for rapid disaster
response.
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