
remote sensing

Article

Self-Attention-Based Conditional Variational
Auto-Encoder Generative Adversarial Networks for
Hyperspectral Classification

Zhitao Chen 1,2, Lei Tong 1,2,*, Bin Qian 3, Jing Yu 1 and Chuangbai Xiao 1

����������
�������

Citation: Chen, Z.; Tong, L.; Qian, B.;

Yu, J.; Xiao, C. Self-Attention-Based

Conditional Variational Auto-

Encoder Generative Adversarial

Networks for Hyperspectral

Classification. Remote Sens. 2021, 13,

3316. https://doi.org/10.3390/

rs13163316

Academic Editors: Ajmal Mian, Jun

Zhou, Naveed Akhtar, Pedram

Ghamisi, Antonio Robles-Kelly and

Tat-Jun Chin

Received: 24 June 2021

Accepted: 18 August 2021

Published: 21 August 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Faculty of Information Technology, Beijing University of Technology, Beijing 100124, China;
gid_chen@emails.bjut.edu.cn (Z.C.); jing.yu@bjut.edu.cn (J.Y.); cbxiao@bjut.edu.cn (C.X.)

2 Engineering Research Center of Intelligent Perception and Autonomous Control, Ministry of Education,
Beijing 100124, China

3 Traffic Management Research Institute of the Ministry of Public Security, Wuxi 214151, China;
311062198@njust.edu.cn

* Correspondence: lei_tong@bjut.edu.cn

Abstract: Hyperspectral classification is an important technique for remote sensing image analysis.
For the current classification methods, limited training data affect the classification results. Recently,
Conditional Variational Autoencoder Generative Adversarial Network (CVAEGAN) has been used
to generate virtual samples to augment the training data, which could improve the classification
performance. To further improve the classification performance, based on the CVAEGAN, we pro-
pose a Self-Attention-Based Conditional Variational Autoencoder Generative Adversarial Network
(SACVAEGAN). Compared with CVAEGAN, we first use random latent vectors to obtain more en-
hanced virtual samples, which can improve the generalization performance. Then, we introduce the
self-attention mechanism into our model to force the training process to pay more attention to global
information, which can achieve better classification accuracy. Moreover, we explore model stability
by incorporating the WGAN-GP loss function into our model to reduce the mode collapse probability.
Experiments on three data sets and a comparison of the state-of-art methods show that SACVAEGAN
has great advantages in accuracy compared with state-of-the-art HSI classification methods.

Keywords: Generative Adversarial Network (GAN); hyperspectral classification; self-attention

1. Introduction

With the development of remote sensing technology, hyperspectral images (HSI)
have made great breakthroughs in earth observation. Different from three-channel color
images, HSI can simultaneously collect images in hundreds of spectral bands, providing
rich spectral information. Therefore, HSI are widely used in many fields [1–6], such as
satellite remote sensing, agriculture observation, and mineral exploration.

For images classification problems, many algorithms [7–10] have be used, such as
kernel extreme learning machine (KELM) and kernel principal component (KPCK) [7],
wavelet coefficients [8], and neural network [9]. Many traditional methods have also been
used to solve HSI classification problems, such as support vector machine (SVM) [11–13], K
nearest neighbor (KNN) [14,15], maximum likelihood [16], neural network [17], and logistic
regression [18,19]. However, these algorithms usually require manual designing of spectral
and spatial features. Therefore, the classification results may be affected by manual features
instead of algorithms. Moreover, traditional HSI classification algorithms usually encounter
the Huges phenomenon [20], which severely affects the classification results.

Recently, deep learning methods [21–31] have received attention in HSI classification.
Chen et al. [21] first applied the convolution network to solve the HSI classification problem.
To augment the training data, CNN-PPF [26] was proposed by pairing selected samples.

Remote Sens. 2021, 13, 3316. https://doi.org/10.3390/rs13163316 https://www.mdpi.com/journal/remotesensing

https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://doi.org/10.3390/rs13163316
https://doi.org/10.3390/rs13163316
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/rs13163316
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/article/10.3390/rs13163316?type=check_update&version=2

Remote Sens. 2021, 13, 3316 2 of 21

In this way, the training data can be expanded to obtain better classification results. In Ref-
erence [31], a two-channel neural network was proposed, which extracts features from
spectral and spatial domains. In Reference [30], a novel local spatial sequence method based
on recurrent neural network (RNN) was proposed, which can extract local information and
semantic information for HSI classification. On the other hand, Hamida et al. [22] proposed
a 3D convolution network to extract the spatial-spectral features of hyperspectral data
for the classification and has achieved excellent results. However, most CNN-based HSI
classification methods use fixed-size patches to train the model, which cannot reflect the
complex spatial structure information in HSI. Therefore, MS-DenseNet [28] uses multi-scale
patches to solve this problem.

Although deep learning methods have made great progress in HSI classification,
they still face the problem of limited labeled data. To solve the problem, some scholars
have proposed Generative Adversarial Networks (GAN) [32] and other models [33–40] to
generate virtual samples to augment the training data. Zhu et al. [36] proposed a GAN-
based [32] classification method for HSI and discussed its practicability and effectiveness in
HSI classification. This method generates virtual samples through the GAN [32] network
to alleviate the lack of labeled data in HSI and to improve the accuracy of the model.
Multi-class spatial-spectral GAN (MSGAN) [34] was also proposed; it generates samples of
spatial and spectral information by designing two generators and then uses a discriminator
to extract spatial-spectral features and to output the final category. DropBlock structure
(DBGAN) [41] was also applied to a GAN [40], which allowed the CNN to learn features
by discarding continuous regions in the feature map to improve performance. Progressive
growing GAN (PG-GAN) [42] and Wasserstein GAN gradient penalty (WGAN-GP) [43]
were also proposed; they gradually increase the depth of the network, making the training
process faster. Capsule network (CapsNet) [44] and convolutional long short-term memory
(ConvLSTM) [45] were combined in Reference [39]. It designed a new discriminator that
extracts low-level features and combines them with local spatial sequence information
to form high-level context features. CVAEGAN [37] was also proposed for hyperspectral
classification; it makes the classification process more stable and obtains better performance.

In this paper, we propose a new HSI classification model called SACVAEGAN. Com-
pared with the original CVAEGAN [37] model, our proposed SACVAEGAN can generate
virtual samples from the generated and random latent vector and can generate more high-
quality training data. We also apply the self-attention mechanism [46] to the VAE and
discriminator so that the model focuses more on global features rather than local features,
thus making the virtual samples generated by the model more realistic. In the discrimi-
nator, the loss function in WGAN-GP [43] is applied to the optimization process, which
makes the model training more stable. Moreover, in the encoder and classifier, we extract
the features of HSI data from the spectral and spatial dimensions, which can effectively
enhance the performance.

The rest of this paper is organized as follows. Section 2 presents the CVAEGAN [47]
model and self-attention method [46]. Section 3 presents each module of SACVAEGAN in
detail. Section 4 carries out a comprehensive evaluation of the proposed method. Section 5
analyzes each module of the self-attention mechanism, the WGAN-GP loss function, and
the virtual samples. Finally, conclusions are drawn in Section 6.

2. Related Work

In this section, the CVAEGAN [47] and the self-attention mechanism [46,48] are
introduced, which is the basis of our proposed method.

2.1. Conditional Variational Auto-Encoder Generative Adversarial Networks

In recent years, generative models have been roughly divided into VAE and GAN.
Both have their strengths and weaknesses. The image generated by the VAE is normal but
blurry. The GAN generates clear images, but the GAN model is hard to converge in the

Remote Sens. 2021, 13, 3316 3 of 21

training stage and the samples generated from GAN are far from natural. The CVAEGAN
network combines the advantages of the two to improve the effect of generating images.

CVAEGAN [47] is a network structure that combines VAE [49] and GAN [32]. It
consists of four parts: (1) an encoder network E, used to learn the relationship between a
latent vector space and the real image space; (2) the generator network G, which generates
the corresponding virtual sample through the given latent vector; (3) the discriminator
network D, used to judge whether a given sample is a real sample or a virtual sample; and
(4) the classifier network C, used to classify a given sample.

The encoder network E transfers the data x to a latent vector space with a Gaussian
distribution N(0, 1) through the learned distribution. It outputs the mean value µ and
covariance ε of the latent vector corresponding to the data sample x. Then, through
z = µ + r ∗ exp(ε), r ∈ N(0, 1), the latent vector z can be obtained. At the same time,
the distance between p(z) and q(z|x) can be reduced through KL divergence, where p
represents the true latent vector distribution and q represents the latent vector distribution
predicted by the model. The following is the equation:

KL(p||q) = ∑(p(x)log(
p(x)
q(x)

)) (1)

LKL =
1
2
(µTµ + ∑(exp(ε)− ε− 1)) (2)

The classifier takes the data x as input and outputs the posterior probability P(c|x).
Classifier C minimizes the following loss function as follows:

LC = −Ex∼Pdata(x)[logP(c|x)] (3)

Suppose the generator G generates data samples G(z) corresponding to the latent
vector by receiving the latent vector z. The discriminator is a binary classifier to judge the
true or false of a given data sample. The loss function of the discriminator is as follows:

LD = −Ex∼Pdata(x)[logD(x)]− Ex∼Pz(z)[log(1− D(G(z, c)))] (4)

In the generator, to solve the problem of unstable training and to synthesize more
realistic data samples, CVAEGAN [47] adds a feature matching method to the generator.
The generator G minimizes the following loss function:

LG =
1
2
(‖x− G(z, c)‖2

2 + ‖ fD(x)− fD(G(z, c))‖2
2 + ‖ fC(x)− fC(G(z, c))‖2

2) (5)

LGD =
1
2
(‖Ex∼Pr fD(x)− Ezr∼Pzr

fD(G(zr, c))‖2
2 (6)

LGC =
1
2
(‖Ex∼Pr fC(x)− Ezr∼Pzr

fC(G(zr, c))‖2
2 (7)

where fD and fC represent the middle layer features of the discriminator and classifier,
respectively; G(z, c) represents the sample generated by the latent vector generated by
the encoder; and G(zr, c) represents the sample generated by the latent vector generated
randomly.

2.2. Self-Attention

The purpose of the self-attention [46,48] mechanism is to improve the classification
performance of the classifier. Most GAN-based methods [32] used self-attention in their
encoder or generator to enhance the performance. Figure 1 shows the structure of self-
attention. f (x), g(x), and h(x) are all ordinary 1× 1 convolutions, and the difference lies
in the different output channels. The output of f (x) is transposed and multiplied by the
output of g(x), and the attention map is obtained after the softmax activation function.

Remote Sens. 2021, 13, 3316 4 of 21

After multiplying the obtained attention map by the output of h(x) pixel by pixel, the final
attention feature map can be obtained. The specific process is as follows.

Figure 1. The self-attention module for SACVAEGAN. The ⊗ denotes matrix multiplication.

Suppose that the image features x ∈ RC×N in the previous hidden layer are trans-
formed into two features spaces f and g to calculate attention. Among them, f (x) =
Wf x, g(x) = Wgx. β j,i represents the degree of participation in the i area when the
model synthesizes the image content of the j area, that is, the correlation.

β j,i =
exp(sij)

∑N
i=1 exp(sij)

, sij = f (xi)
T g(xj) (8)

The output of the attention layer is o = (o1, o2, . . . , oj, . . . , oN ∈ RC×N), C is the number
of channels, and N is the number of feature positions of the previous hidden layer feature.

oj = v(
N

∑
i=1

β j,ih(xi)), h(xi) = Whxi, v(xi) = Wvxi (9)

Finally, the output of the attention layer is multiplied by a scale parameter, and the
input feature map is added. Therefore, the final output is as follows:

yi = γoi + xi (10)

To allow the network to pay attention to the neighborhood information, γ is a scalar
that can be learned in the self-attention training process with the initial value of 0, and then,
the weight is slowly assigned to other long-distance features.

3. Methodology

In this section, we introduce the details of the proposed SACVAEGAN method.
As shown in Figure 2, the network structure consists of three modules: discriminator,
VAE, and classifier. The module of the discriminator is used to determine whether the
input samples are real samples or virtual samples. The VAE module is divided into two
parts: encoder and generator. The encoder transfers real samples to the latent vector space,
and the generator uses the latent vectors generated by the encoder and the random latent

Remote Sens. 2021, 13, 3316 5 of 21

vectors to generate virtual hyperspectral samples. The classifier module classifies the input
real samples and virtual samples.

Figure 2. The structure of the proposed SACVAEGAN.

3.1. Discriminator

As shown in Figure 3, it is the module of the discriminator. It consists of four con-
volution layers. For each layer, the kernel size of each layer is 3× 3. The self-attention
mentioned in Section 2 is applied after the first and second convolution layers. After the
last layer, we reshape the data into a feature vector. According to Reference [50], the label
information should also be input to the discriminator to make the model more stable.
Therefore, we reshape the label to a vector through a full connection layer and concatenate
it with the feature vector. Then, a full connection layer is applied to reduce the dimension.
At last, the sigmoid function is used to determine whether the data are real.

The loss function of the discriminator D is as follows:

LD = LDGP + LDG(zrandom |y)
(11)

The first term is the loss in WGAN-GP between x and G(z|y), which can make the
model more stable, and the second term is the loss of the discriminator, which judges
whether G(zrandom|y) is false.

Among them:

LDGP = Ez∼Pz [D(G(z|y)|y)]− Ex∼P(xreal)
[D(x|y)] + λEz∼Pz [(‖ 5G(z|y) D(G(z|y)|y)‖2 − 1)2] (12)

LDxzrandom
= −Ez∼pzrandom

[logD(G(zrandom|y)|y)] (13)

where z represents the latent vector generated by the encoder, zrandom represents the
latent vector generated randomly, xreal represents real samples, G(z|y) represents the
virtual samples generated by the generator according to z and the corresponding label,
G(zrandom|y) represents the virtual sample generated by the generator according to zrandom
and the corresponding label, and y represents the label.

Remote Sens. 2021, 13, 3316 6 of 21

Figure 3. The structure of the discriminator D.

3.2. Variational Auto-Encoder

The module of the Variational Auto-Encoder (VAE) is shown in Figure 4. The VAE
consists of two parts: the encoder and the generator. The encoder E is used to transfer
the real samples to the latent vector space, while the generator G uses the latent vector
to generate the virtual hyperspectral sample. We can see from Figure 4 that the encoder
E is divided into two spectral-spatial feature extraction networks: one is used to get the
mean vector µ, and the other is for the covariance ε of the latent vector space. For each
feature extraction network, the network structure is the same. It consists of spectral and
spatial feature extraction networks. For the spectral feature extraction network, it consists
of 4 1-D convolution layers with 5× 1 kernel. Self-attention is also applied to the first and
second layers. For the spatial feature network, there are four 2-D convolution layers with
3× 3 kernel and self-attention in the first and second layers. After the spectral and spatial
feature extraction network, we concatenate the spectral-spatial feature together and use a
full connection layer for dimension reduction. After we obtain the mean vector µ and the
covariance ε, we use the following equation to obtain the latent vector:

z = µ + r ∗ exp(ε) (14)

The goal of generator G is to learn the distribution of training data and to generate
virtual hyperspectral samples. For the generator G, it consists of two full connection
layers and four transposed convolution layers. After obtaining the latent vector and the
corresponding label, it uses two full connection layers to reshape the vector. Then, the
vector is reshaped into a 3-D data cube, which is sent to the transposed convolution layers.
The kernel size of the transposed convolution layer is 3× 3. At last, we can obtain a virtual
hyperspectral sample.

The loss function of VAE is as follows:

LVAE = Lkl + LG + LvaeD + LvaeC (15)

The first term is the KL divergence, which is used to reduce the difference between
the distribution of the obtained latent vector and the assumed latent vector distribution.
The second term is the l2 reconstruction loss between x and G(z|y). The third term is the
sum of the pair-wise feature matching loss between x and G(z|y) in the discriminator D
and the loss of the discriminator in judging whether G(zrandom|y) is true. The last term is
the sum of the pair-wise feature matching loss between x and G(z|y) in the classifier C and
the loss of the classification result of the classifier.

Among them:

Lkl =
1
2
(µTµ + sum(exp(ε)− ε− 1)) (16)

Remote Sens. 2021, 13, 3316 7 of 21

LG =
1
2
(‖x− G(z|y)‖2

2) (17)

LvaeD = ‖ fD(x)− fD(G(z|y))‖2
2 + E[log(1− D(G(zrandom|y)))] (18)

LvaeC = ‖ fC(x)− fC(G(z|y))‖2
2 − E[logP(y|G(zrandom|y))] (19)

where µ and ε represent the mean value and covariance generated by the encoder, respec-
tively; fD represents the features of the middle layer in the discriminator D; fC represents
the features of the middle layer of the classifier; the real samples is represented as xreal ;
the virtual sample generated according to the latent vector generated by the encoder is
G(z|y); the virtual sample generated according to the randomly generated latent vector is
G(zrandom|y); and y represents the label.

Figure 4. The structure of the VAE.

3.3. Classifier

The module of classifier C is shown in Figure 5. The purpose of classifier C is to obtain
the classification results. For classifier C, it also consists of spectral-spatial feature extraction
networks. For the spectral feature extraction network, there are five 1-D convolution layers
with the kernel of 1× 5, and for the spatial feature extraction network, it also consists of
five 2-D convolution layers with 3× 3 kernel. Finally, we concatenate the spectral and
spatial features together and then send them to two full connection layers to obtain the
final results. The loss function LC is as follows:

LC = LCxreal
+ λ1LCxz

+ λ2LCxzrandom
(20)

where the first term is the loss of the result obtained by classifying x. The second term is
the sum of the pair-wise feature matching loss between x and G(z|y). The last term is the
loss of the result obtained by classifying G(zrandom|y). λ1 and λ2 are the weights of LCxz
and LCxxrandom

loss, respectively.

LCxreal
= −E[logP(c|xreal)] (21)

LCxz
= ‖ fC(xreal)− fC(xz)‖2

2 (22)

Remote Sens. 2021, 13, 3316 8 of 21

LCzrandom
= −E[logP(y|xzrandom)] (23)

where fC represents the characteristics of the middle layer of the classifier, xreal represents
the real samples, xz represents the virtual sample generated by inputting the latent vector
z generated by the encoder into the generator, xzrandom represents the virtual sample gener-
ated by inputting the randomly generated latent vector zrandom into the generator, and y
represents the label.

Figure 5. The structure of the classifier C.

The procedure of the proposed SACVAEGAN is summarized in Algorithm 1.

Algorithm 1: Optimization procedure of SACVAEGAN.

Input: the training samples xtrain=(xi)
N
i=1 and test samples xtest = (xi)

S
i=1 from C

classes, the onehot lables (yi)
N
i=1 of training samples, batch size n,

the number of training epochs E, noise dimension d, the updating times k
of the discriminator

1 Initialize all the weight matrices and biases
2 while every epoch do
3 sample d dimensional noises zrandom = (zj)

d
j=1;

4 generate n latent vectors z = (zj)
d
j=1 by Encoder E

5 generate n virtual samples G(z|y) through the generator according to the
latent vector z ;

6 generate n virtual samples G(zrandom|y) through the generator according to the
latent vector zrandom;

7 for k steps do
8 updating parameters of the D by minimizing LD
9 end

10 updating parameters of the VAE by minimizing LVAE
11 updating parameters of C by minimizing LC
12 end

Output: the labels of the test samples xtest classified by the trained sample
classifier in SACVAEGAN

4. Experiments

To evaluate the accuracy of our proposed SACVAEGAN, we conducted training
and evaluation on three data sets, namely the Indian Pines data set, the PaviaU data set,

Remote Sens. 2021, 13, 3316 9 of 21

and the Salinas data set. We used three performance metrics: OA, AA, and K. OA is the
overall classification accuracy, which represents the ratio between the categories that are
properly classified and the total number of categories. AA is the average classification
accuracy, which represents the average accuracy between categories. K represents the
kappa coefficient for different weights in the confusion matrix.

4.1. Hyperspectral Data Sets
4.1.1. Indian Pines

The Indian Pines data set was collected by airborne visible infrared imaging spec-
trometer (AVRIS) sensors in Indian Pines testing in northwest Indiana. The AVIRIS sensor
captured images in 0.4 to 2.5 microns. The data consist of 145 × 145 pixels and 224 spectral
reflection bands. By deleting the bands covering the water absorption area, the number
of spectral was reduced to 200. There are 16 categories in total, and the distribution of
samples in each category is extremely unbalanced.

4.1.2. Paviau

The PaviaU data set was acquired by Reflective Optics System Imaging Spectrometer
(ROSIS) sensors in Pavia region of northern Italy. The data consist of 610 × 340 pixels and
115 spectral reflection bands. By deleting 12 bands affected by noise, 103 spectral signatures
remained. The size of the data is 610 × 340. However, most of them are background pixels,
with only 42,776 pixels being foreground pixels in nine categories, including trees, Asphalt,
Bricks, Meadows, etc.

4.1.3. Salinas

The Salinas data set was also collected by the AVIRIS sensor in the Salinas Valley,
California, with a spatial resolution of 3.7 m. The data consist of 512 × 217 pixels and
224 spectral reflection bands. By deleting the bands covering the water absorption area,
the spectrum was reduced to 204. The image size is 512 × 217 with 16 classes.

We divided the labeled samples in the three data sets into two parts: the training
set and the testing set. Among them, for the Indian Pines data set, we chose 5% data for
training. For the PaviaU data set, we chose 2% points as the training samples. For the
Salinas data set, we chose 1% points as the training samples. Tables 1–3 show the number
of training samples and testing samples for each category on the Indian Pines data set,
PaviaU data set, and Salinas data set, respectively.

Table 1. Training and testing data in the Indian Pines data set.

No. Class Training Test

1 Alfalfa 2 44
2 Corn-notill 71 1357
3 Corn-mintill 41 789
4 Corn 12 225
5 Grass-pasture 24 459
6 Grass-trees 37 693
7 Grass-pasture-mowed 1 27
8 Hay-windrowed 24 454
9 Oats 1 19
10 Soybean-notill 49 923
11 Soybean-mintill 123 2332
12 Soybean-clean 30 563
13 Wheat 10 195
14 Woods 63 1202
15 Buildings-Grass-Trees-Drives 19 367
16 Stone-Steel-Towers 5 88

Total 512 9737

Remote Sens. 2021, 13, 3316 10 of 21

Table 2. Training and testing data in the PaviaU data set.

No. Class Training Test

1 Asphalt 132 6499
2 Meadows 373 18,276
3 Gravel 42 2057
4 Trees 61 3003
5 Painted metal sheets 27 1318
6 Bare Soil 100 4929
7 Bitumen 27 1303
8 Self-Blocking Bricks 74 3608
9 Shadows 19 928

Total 855 41,921

Table 3. Training and testing data in the Salinas data set.

No. Class Training Test

1 Brocoli_green_weeds_1 20 1989
2 Brocoli_green_weeds_2 37 3689
3 Fallow 20 1956
4 Fallow_rough_plow 14 1380
5 Fallow_smooth 27 2651
6 Stubble 39 3920
7 Celery 36 3543
8 Grapes_untrained 113 11,158
9 Soil_vinyard_develop 62 6141

10 Corn_senesced_green_weeds 33 3245
11 Lettuce_romaine_4wk 11 1057
12 Lettuce_romaine_5wk 19 1908
13 Lettuce_romaine_6wk 9 907
14 Lettuce_romaine_7wk 11 1059
15 Vinyard_untrained 72 7196
16 Vinyard_vertical_trellis 18 1789

Total 541 53,588

4.2. Parameter Analysis

Before training the model, some important factors should be analyzed, which may
affect the results. Due to the introduction of WGAN-GP, we used RMSprop as the optimizer
in the VAE module and the discriminator module. The Adam optimizer was used in
the classifier module. We mainly discuss three factors: the different size of patch sizes,
the network regularization method, and the parameters of λ1 and λ2.

4.2.1. Analysis of the Size of Patches

To analyze the influence of the size of patches, we calculated the overall accuracy (OA)
on three data sets using different sizes of patches. As shown in the Table 4, the size of the
patches is 19× 19, 23× 23, 27× 27, 31× 31. It can be seen from Table 4 for the Indian Pines
and the PaviaU data sets. When the patch size was 27, the proposed method obtained the
best performance, while for the Salinas data set, when the size was set to 31, it obtained the
best results. Therefore, in the experiments, we set the patch size as 27, with better overall
accuracy (OA).

Remote Sens. 2021, 13, 3316 11 of 21

Table 4. Overall accuracy of different patch sizes in the Indian pines, PaviaU, and Salinas data sets.

Patch Size Indian Pines PaviaU Salinas

19 × 19 92.78 98.91 97.05
23 × 23 94.78 99.01 97.80
27 × 27 95.94 99.32 98.82
31 × 31 95.02 99.10 99.19

4.2.2. Analysis of the Network Regularization Method

To analysis the regularization methods, we used different methods to regularize our
proposed method, including batch normalization (BN) and dropout. Batch normalization
can normalize the input data and can solve the problem of the gradient disappearing and
the gradient exploding. It can also accelerate the convergence speed. Dropout enhances
the generalization of the model by making the activation value have a certain probability
p during forward propagation. As shown in Table 5, when the proposed method uses
dropout and batch normalization, it obtains the best performance. Therefore, we applied
dropout and Batch Normalization (BN) in our proposed method.

Table 5. Network regularization method in the Indian Pines, PaviaU, and Salinas data sets.

Proposeed Indian Pines PaviaU Salinas

None 94.01 98.37 97.70
Dropout 95.26 98.26 98.00

BN 95.50 98.63 98.21
Both 95.94 99.32 98.82

4.2.3. Analysis of the λ1 and λ2 in the Classifier Loss Function

In order to analyze the influence of λ1 and λ2 in Equation (17), we conducted experi-
ments with different values of λ1 and λ2. We set λ1 from 0 to 0.5 and λ2 from 0.5 to 1 with
the interval of 0.1. We calculated the performance on three data sets. As can be seen in
Tables 6–8, when λ1 = 0.8 and λ2 = 0.2, our model obtains the best average classification
accuracy. Therefore, we set the value of λ1 to 0.8, and λ2 to 0.2 in our experiments.

Table 6. Overall accuracy in the Indian Pines data set with different λ1 and λ2.

λ2

λ1 0.5 0.6 0.7 0.8 0.9 1

0 94.50 94.82 95.23 95.73 95.67 95.39

0.1 94.51 94.71 95.35 95.32 95.71 95.32

0.2 93.56 94.75 95.46 95.94 95.76 95.44

0.3 93.72 93.32 94.67 95.55 95.10 95.59

0.4 93.85 94.10 94.43 94.57 94.66 94.91

0.5 93.43 93.87 94.22 94.01 94.62 94.68

Remote Sens. 2021, 13, 3316 12 of 21

Table 7. Overall accuracy in the PaviaU data set with different λ1 and λ2.

λ2

λ1 0.5 0.6 0.7 0.8 0.9 1

0 98.99 99.01 99.05 99.24 99.10 98.82

0.1 98.83 98.74 99.21 99.28 99.14 99.07

0.2 98.91 99.12 99.27 99.32 99.29 99.19

0.3 98.61 98.67 99.01 99.13 99.07 98.91

0.4 98.69 98.43 98.87 98.57 98.76 98.59

0.5 98.34 98.31 97.89 98.46 98.39 98.21

Table 8. Overall accuracy in the Salinas data set with different λ1 and λ2.

λ2

λ1 0.5 0.6 0.7 0.8 0.9 1

0 98.47 98.51 98.57 98.65 98.41 98.61

0.1 98.38 98.42 98.58 98.66 98.72 98.67

0.2 98.46 98.32 98.78 98.82 98.81 98.79

0.3 98.12 98.09 98.41 98.31 98.53 98.37

0.4 97.75 98.18 98.43 98.29 98.05 98.17

0.5 97.37 97.51 98.25 97.93 98.11 98.03

4.3. Classification Results

To illustrate the effectiveness of our proposed method, SACVAEGAN was compared
with several different hyperspectral image classification methods, including SVM-Radial Ba-
sis Function (RBF), Two-CNN [31], 3D-CNN [22], DCGAN [36], DBGAN [41], and CVAE-
GAN [37]. SVM-Radial Basis Function uses a Gaussian kernel function, and the parameter
gamma of the kernel function was set to 0.125. The hyperparameters of the deep learning
method were all set to the parameters mentioned in the corresponding paper. We used
the classifier module for the final classification. Tables 9–11 show the comparison of the
methods we proposed on the Indian Pines data set, the PaviaU data set, and the Salinas
data set. All of the classification methods were tuned to the best settings. The training set
and test set are shown in Tables 1–3.

Tables 9–11 show the results of the proposed methods on the Indian Pines data set,
the PaviaU data set, and the Salinas data set, respectively. From the tables, we can see that
the performance of the deep learning methods is better than the traditional method. This
is because the deep learning method can extract better features. Moreover, for the GAN-
based method, the performance is better than other deep learning methods because the
GAN-based method could generate more training data, which could help the training.
From these tables, we can see that our proposed method obtained the best performance.
This may be due to the following reasons: First, compared with DCGAN and DBGAN,
the VAE module is applied to our proposed method, which makes it higher. Second,
compared with CVAEGAN, the conditional GAN is also applied to our proposed method,
which could generate more high-quality training data and can enhance the performance.

Figures 6–8 show the false color images of the three HSI data sets, the corresponding
ground truth maps, and the classification maps of each method. It can be seen that
the classification result diagram is consistent with the classification results shown in
Tables 9–11. From these figures, we can see that the classification maps of our proposed
method are clearer, less noisy, and closer to the ground truth. This indicates that our
proposed method has a better classification capability than other methods.

Remote Sens. 2021, 13, 3316 13 of 21

Table 9. Classification results on the Indian Pines data set.

Class SVM−RBF Two−CNN 3D−CNN DCGAN DBGAN CVAEGAN Proposed

1 0 69.78 ± 1.98 17.70 ± 1.11 75.97 ± 0.04 37.83 ± 7.44 71.01 ± 2.37 66.67 ± 3.29
2 28.07 ± 2.63 84.78 ± 0.26 68.96 ± 0.84 85.60 ± 0.01 77.23 ± 1.38 90.13 ± 0.27 97.15 ± 0.38
3 0.33 ± 0.99 88.39 ± 0.59 68.11 ± 1.46 90.72 ± 0.01 81.16 ± 1.26 88.76 ± 0.91 91.04 ± 1.63
4 1.11 ± 2.90 94.68 ± 0.42 67.75 ± 3.67 95.36 ± 0.01 89.37 ± 3.95 90.44 ± 2.88 92.55 ± 1.80
5 2.11 ± 4.08 80.68 ± 0.75 87.52 ± 0.84 81.78 ± 0.02 24.43 ± 5.88 84.82 ± 2.06 91.58 ± 1.05
6 92.58 ± 2.35 95.04 ± 0.32 88.26 ± 0.65 95.62 ± 0.01 91.84 ± 0.97 99.45 ± 0.11 97.99 ± 0.31
7 0 90.00 ± 2.66 65.31 ± 6.28 81.07 ± 0.05 14.29 ± 9.16 79.76 ± 1.94 42.86 ± 2.92
8 99.21 ± 1.27 97.05 ± 0.22 99.16 ± 0.21 97.47 ± 0.00 98.42 ± 0.32 100 ± 0 98.60 ± 0.82
9 0 36.00 ± 0.63 60.00 ± 6.06 80.00 ± 0.04 29.50 ± 6.65 45.00 ± 4.08 38.33 ± 5.93
10 0.35 ± 1.04 84.44 ± 0.47 68.90 ± 0.77 87.14 ± 0.01 83.70 ± 0.69 89.27 ± 0.93 96.02 ± 1.3
11 94.99 ± 1.76 93.18 ± 0.27 80.14 ± 0.72 96.99 ± 0.00 94.12 ± 0.75 97.65 ± 0.64 98.56 ± 0.31
12 0.23 ± 0.54 82.48 ± 0.38 54.85 ± 2.36 83.98 ± 0.01 73.88 ± 2.44 85.83 ± 1.33 89.71 ± 0.68
13 0.29 ± 30.79 94.44 ± 0.46 98.47 ± 0.59 96.59 ± 0.01 95.41 ± 0.48 99.02 ± 0.61 99.84 ± 0.13
14 98.66 ± 0.38 96.17 ± 0.19 92.94 ± 0.36 98.18 ± 0.01 97.53 ± 0.40 99.31 ± 0.04 98.58 ± 0.78
15 2.70 ± 4.24 95.52 ± 0.62 69.73 ± 1.18 97.93 ± 0.02 87.42 ± 2.30 92.57 ± 2.20 95.51 ± 0.78
16 82.61 ± 4.37 84.95 ± 1.84 80.49 ± 2.10 88.17 ± 0.02 50.86 ± 8.51 78.49 ± 0.51 92.47 ± 2.63

OA (%) 51.69 ± 0.73 90.10 ± 0.21 77.80 ± 0.46 91.11 ± 0.45 84.42 ± 0.37 93.47 ± 0.11 95.94 ± 0.20
AA (%) 33.27 ± 1.75 85.41 ± 0.35 73.02 ± 0.73 87.53 ± 0.55 67.00 ± 0.29 86.97 ± 0.24 86.71 ± 0.69

Kappa (%) 41.46 ± 0.92 88.73 ± 0.24 74.68 ± 0.52 89.87 ± 0.51 82.14 ± 0.42 82.54 ± 0.13 95.36 ± 0.22

Table 10. Classification results on the PaviaU data set.

Class SVM−RBF Two−CNN 3D−CNN DCGAN DBGAN CVAEGAN Proposed

1 91.49 ± 1.00 94.81 ± 0.16 96.91 ± 0.18 92.70 ± 0.35 96.03 ± 0.37 96.31 ± 0.53 99.60 ± 0.15
2 96.80 ± 2.76 99.51 ± 0.07 99.15 ± 0.08 99.40 ± 0.16 99.67 ± 0.09 99.98 ± 0.02 99.99 ± 0.01
3 1.89 ± 3.50 79.15 ± 0.28 85.88 ± 0.85 72.87 ± 3.10 80.98 ± 3.09 90.41 ± 0.68 97.09 ± 1.01
4 63.57 ± 12.59 94.14 ± 0.25 94.73 ± 0.45 91.33 ± 1.52 97.90 ± 0.33 95.96 ± 0.22 97.96 ± 0.44
5 98.87 ± 0.16 98.74 ± 0.34 99.72 ± 0.06 99.48 ± 0.16 98.23 ± 0.64 100 ± 0 100 ± 0
6 14.84 ± 1.79 96.88 ± 0.38 95.32 ± 0.49 96.34 ± 0.91 98.90 ± 0.31 99.25 ± 0.37 100 ± 0
7 0 84.09 ± 0.29 86.46 ± 0.99 85.41 ± 3.62 90.79 ± 1.29 94.29 ± 2.94 96.54 ± 1.95
8 91.90 ± 2.59 92.15 ± 0.24 94.41 ± 0.33 83.13 ± 0.20 93.83 ± 1.04 98.75 ± 0.26 98.23 ± 0.68
9 99.82 ± 0.08 92.73 ± 0.73 97.02 ± 0.54 86.91 ± 0.37 92.67 ± 1.79 90.11 ± 1.02 97.04 ± 0.85

OA (%) 76.00 ± 0.49 95.80 ± 0.09 96.55 ± 0.17 93.88 ± 0.39 96.99 ± 0.34 98.07 ± 0.04 99.32 ± 0.06
AA (%) 62.13 ± 1.16 92.47 ± 0.14 94.40 ± 0.33 89.19 ± 0.23 95.33 ± 0.21 96.12 ± 0.37 98.49 ± 0.14

Kappa (%) 66.28 ± 0.48 94.41 ± 0.12 95.42 ± 0.23 91.86 ± 0.51 96.00 ± 0.45 97.43 ± 0.05 99.10 ± 0.08

Table 11. Classification results on the Salinas data set.

Class SVM−RBF Two−CNN 3D−CNN DCGAN DBGAN CVAEGAN Proposed

1 94.92 ± 1.43 93.16 ± 0.61 97.58 ± 0.14 96.33 ± 1.10 23.48 ± 0.19 99.93 ± 0.05 99.30 ± 0.31
2 95.36 ± 1.43 98.79 ± 0.15 99.84 ± 0.04 92.39 ± 1.65 97.82 ± 1.49 100 ± 0 98.60 ± 0.57
3 60.68 ± 4.33 99.65 ± 0.16 98.46 ± 0.31 92.02 ± 1.36 98.50 ± 0.83 99.19 ± 0.45 99.85 ± 0.10
4 98.44 ± 0.36 96.90 ± 0.37 98.76 ± 0.24 97.20 ± 0.40 97.30 ± 0.58 97.87 ± 0.59 98.02 ± 0.77
5 96.83 ± 0.56 96.15 ± 0.20 87.56 ± 0.93 97.53 ± 0.50 96.03 ± 1.25 98.32 ± 0.33 99.22 ± 0.20
6 98.25 ± 0.79 98.65 ± 0.18 98.86 ± 0.24 91.02 ± 0.20 99.78 ± 0.11 99.99 ± 0.01 99.92 ± 0.03
7 99.05 ± 0.17 96.12 ± 0.32 98.10 ± 0.31 96.68 ± 0.58 98.70 ± 0.32 100 ± 0 99.95 ± 0.03
8 96.77 ± 2.87 94.22 ± 0.28 83.66 ± 0.69 81.53 ± 0.96 96.06 ± 0.58 97.23 ± 0.89 97.79 ± 0.36
9 98.65 ± 0.36 98.36 ± 0.13 97.29 ± 0.15 99.18 ± 0.33 98.82 ± 0.50 99.80 ± 0.17 99.44 ± 0.29

10 61.48 ± 11.90 99.78 ± 0.09 92.75 ± 0.53 97.87 ± 0.46 98.45 ± 0.36 99.30 ± 0.30 99.82 ± 0.13
11 0.11 ± 0.34 90.69 ± 0.24 89.96 ± 0.97 92.08 ± 1.63 63.55 ± 0.30 93.07 ± 0.54 96.47 ± 0.57
12 60.40 ± 7.68 91.99 ± 0.14 98.71 ± 0.26 91.26 ± 0.82 95.99 ± 0.80 97.61 ± 1.15 99.12 ± 0.47
13 38.82 ± 39.97 90.97 ± 0.54 98.76 ± 0.14 95.82 ± 0.92 94.07 ± 0.48 95.49 ± 1.28 96.98 ± 0.49
14 87.97 ± 1.71 93.90 ± 0.29 94.90 ± 0.35 96.50 ± 0.96 95.95 ± 0.78 97.69 ± 0.45 98.57 ± 0.45
15 2.91 ± 5.88 92.06 ± 0.19 75.98 ± 1.05 78.98 ± 1.68 97.93 ± 0.28 97.67 ± 0.30 98.81 ± 0.55
16 53.00 ± 3.16 99.23 ± 0.15 94.23 ± 1.14 81.08 ± 2.10 97.34 ± 0.80 98.73 ± 0.63 97.79 ± 0.47

OA (%) 75.25 ± 1.23 95.79 ± 0.07 91.05 ± 0.24 90.39 ± 0.35 94.13 ± 0.94 98.49 ± 0.01 98.82 ± 0.11
AA (%) 71.48 ± 3.01 95.66 ± 0.06 94.09 ± 0.19 92.80 ± 0.30 90.61 ± 2.34 98.24 ± 0.29 98.72 ± 0.08

Kappa (%) 71.92 ± 1.46 95.31 ± 0.07 90.04 ± 0.27 89.30 ± 0.39 93.46 ± 1.04 98.69 ± 0.12 98.80 ± 0.01

Remote Sens. 2021, 13, 3316 14 of 21

(a) Ground truth (b) SVM-RBF (c) Two-CNN (d) 3D-CNN

(e) DCGAN (f) DBGAN (g) CVAEGAN (h) SACVAEGAN
Figure 6. Illustration of the classification results on the Indian Pines data set. (a) Ground truth, (b) SVM-RBF (51.69%),
(c) Two-CNN (90.10%), (d) 3D-CNN (77.80%), (e) DCGAN (91.11%), (f) DBGAN (84.42%), (g) CVAEGAN (93.47%), and
(h) SACVAEGAN (95.98%).

(a) Ground truth (b) SVM-RBF (c) Two-CNN (d) 3D-CNN

(e) DCGAN (f) DBGAN (g) CVAEGAN (h) SACVAEGAN
Figure 7. Illustration of the classification results on the PaviaU data set. (a) Ground truth, (b) SVM-RBF (76.00%),
(c) Two-CNN (95.80%), (d) 3D-CNN (96.55%), (e) DCGAN (93.88%), (f) DBGAN (96.99%), (g) CVAEGAN (98.07%), and
(h) SACVAEGAN (98.30%).

Remote Sens. 2021, 13, 3316 15 of 21

(a) Ground truth (b) SVM-RBF (c) Two-CNN (d) 3D-CNN

(e) DCGAN (f) DBGAN (g) CVAEGAN (h) SACVAEGAN
Figure 8. Illustration of the classification results on the PaviaU data set. (a) Ground truth, (b) SVM-RBF (75.25%),
(c) Two-CNN (95.79%), (d) 3D-CNN (91.05%), (e) DCGAN (90.39%), (f) DBGAN (94.13%), (g) CVAEGAN (98.49%), and
(h) SACVAEGAN (98.92%).

4.4. Analysis of the Size of the Training Set

To verify the robustness of SACVAEGAN for different sizes of training data, we
selected different proportions of samples for training. For the three data sets, we selected 1
to 5% data for training. We show the results in Figure 9. From Figure 9, we can see that our
proposed method obtains a better performance than other methods. This demonstrates that
our proposed method is more stable compared with other methods and robust to different
sizes of training data.

Remote Sens. 2021, 13, 3316 16 of 21

(a) (b)

(c)
Figure 9. OA(%) of different methods with different training percentages of samples. (a) Indian Pines. (b) PaviaU. (c) Salinas.

4.5. Investigation on the Run Time

To evaluate the effectiveness of our proposed method, we show the training and
testing time of seven different methods in Table 12. The experiments were run with
an NVIDIA GTX 1660 GPU and an Inter i5-9300H 2.40-GHz CPU with 16 GB of RAM.
It can be seen from Table 12 that the traditional method is much faster than the deep
learning method. The deep learning method using the generative adversarial network is
slower in training speed than and similar in test speed to the other deep learning methods.
The method proposed in this paper requires a relatively long training time on the three
data sets. The reason is that our proposed method extracts spectral and spatial features for
training to enhance the performance, so more training time is required.

Table 12. Training and testing time on the three data sets.

Algorithms Time Indian Pines PaviaU Salinas

SVM−RBF Train(s) 0.0098 0.0080 0.0043
Test(s) 0.1366 0.4065 0.5430

Two−CNN Train(s) 2023.64 4306.78 10,957.61
Test(s) 22.47 48.75 140.63

3D−CNN Train(s) 448.00 1565.82 2559.34
Test(s) 5.27 15.12 21.38

DCGAN Train(s) 7019.69 14,053.51 10,273.40
Test(s) 7.28 25.63 31.62

DBGAN Train(s) 3485.74 7922.47 6551.87
Test(s) 4.57 13.73 18.06

CVAEGAN Train(s) 4394.08 8514.97 6988.92
Test(s) 3.70 16.47 19.72

Proposed Train(s) 14,101.28 25,665.42 17,524.97
Test(s) 10.26 43.10 102.79

Remote Sens. 2021, 13, 3316 17 of 21

5. Discussion

To analyze the influence of the self-attention mechanism, WGAN-GP loss, and ad-
ditional generated samples on the classification accuracy of the proposed method, we
conducted several ablation experiments to analyze the spatial features, spectral features,
and overall accuracy under different conditions.

5.1. Spatial Feature Analysis

To illustrate the advantages of the spatial features of the generated samples, we draw
the corresponding virtual samples under different conditions. As shown in Figure 10, it can
be seen that the samples generated by our method are closer to the real sample distribution.
Thus, the detailed features captured by the virtual sample can improve the classification
performance of the model in return. To analyze the difference between the spatial features
of the generated virtual sample and the real sample, we calculated the mean square error
(MSE) between the generated sample and the real sample. The mean square error can
be calculated using Equation (24). As shown in Table 13, the sample generated by our
proposed method is closer to the real sample compared with other methods.

(a) Ground
Truth

(b) Proposed
Method

(c) without
self-attention

(d) without
wgan-gp

(e) without more
virtual samples

(f) Ground
Truth

(g) Proposed
Method

(h) without
self-attention

(i) without
wgan-gp

(j) without more
virtual samples

(k) Ground
Truth

(l) Proposed
Method

(m) without
self-attention

(n) without
wgan-gp

(o) without more
virtual samples

Figure 10. Illustration of the spatial features on the Indian Pines (a–e), PaviaU (f–j), and Salinas (k–o) data sets.

Table 13. MSE when self-attention, WGAN-GP, and additional virtual samples are removed.

Algorithms Indian Pines PaviaU Salinas

SACVAEGAN without self-attention 0.021 0.048 0.013
SACVAEGAN without wgan-gp 0.022 0.052 0.023

SACVAEGAN without additional virtual samples 0.020 0.046 0.021
SACVAEGAN 0.017 0.043 0.011

MSE(x, y) = ∑n
i=1(xi − yi)

2

n
(24)

Remote Sens. 2021, 13, 3316 18 of 21

5.2. Spectral Feature Analysis

To illustrate the advantages of spectral feature, we plot the spectral feature map
corresponding to the generated virtual sample under different conditions in Figure 11. It
can be seen that the spectral feature distribution of the virtual sample generated by our
method is more consistent with the spectral feature distribution of real samples. In order to
analyze the difference in spectral features between the virtual sample and the real sample,
we calculated the spectral information divergence (SID) between the virtual sample and
the real sample. SID is based on the theory of information theory to measure the difference
between two spectral calculated by Equation (25). The smaller the SID value, the more
similar the spectral. As shown in Table 14, the proposed method obtains the optimal SID
on the three data sets.

SID(x, y) =
l

∑
i=1

pilog(
pi
qi
) +

l

∑
i=1

qilog(
qi
pi
) (25)

(a) Ground
Truth

(b) Proposed
Method

(c) without
self-attention

(d) without
wgan-gp

(e) without more
virtual samples

(f) Ground
Truth

(g) Proposed
Method

(h) without
self-attention

(i) without
wgan-gp

(j) without more
virtual samples

(k) Ground
Truth

(l) Proposed
Method

(m) without
self-attention

(n) without
wgan-gp

(o) without more
virtual samples

Figure 11. Illustration of the spectral features on the Indian Pines (a–e), PaviaU (f–j), Salinas (k–o) data sets. The orange
line represents the mean, the green line represents the mean add the variance, and the blue line represents the mean minus
the variance.

Table 14. SID when self-attention, WGAN-GP, and additional virtual samples are removed.

Algorithms Indian Pines PaviaU Salinas

SACVAEGAN without self-attention 0.019 0.041 0.003
SACVAEGAN without wgan-gp 0.012 0.021 0.028

SACVAEGAN without additional virtual samples 0.011 0.035 0.011
SACVAEGAN 0.011 0.014 0.002

Remote Sens. 2021, 13, 3316 19 of 21

5.3. Overall Accuracy Analysis

Self-attention enables the model to better extract global features. For the WGAN-
GP, it can make the model more stable and can improve performance. Additional virtual
samples can improve the generalization performance and classification accuracy. To analyze
the advantage of each module, we run the experiments with or without each module
for 10 times. As shown in Table 15, each module contributes to the improvement of
classification accuracy. When the proposed method uses all three strategies, it achieves the
best performance. Therefore, we apply all three strategies in our proposed method.

To analyze the impact of WGAN-GP loss on model performance, we calculate the
Frechet Inception Distance (FID) of the proposed method with and without WGAN-GP.
FID is a criterion to evaluate the performance of GAN. The basic idea is to input the
training samples and generated samples into the classifier. Then, it extracts the features
of the middle layer of the classifier. Assuming that the data conforms to the multivariate
Gaussian distribution, it estimates the mean values of µtrain and µgen, and the variance of
σtrain and σgen of the Gaussian distribution of the generated sample and the training sample.
Then, it calculates the Freche distance of two Gaussian distributions using Equation (26).
The smaller the value of FID, the better the performance of GAN. We run experiments 10
times on each data set and obtain the average values. It can be seen from Table 16 that,
when the WGAN-GP loss is added, the FID of our model is lower. This proves that adding
WGAN-GP can improve the performance of the SACVAEGAN model to a certain extent.

FID = ‖µtrain − µgen‖+ tr(σtrain + σgen − 2(σtrainσgen)
1
2) (26)

Table 15. OA when self-attention, WGAN-GP, and additional virtual samples are removed.

Algorithms Indian Pines PaviaU Salinas

SACVAEGAN without self-attention 95.37 98.52 98.38
SACVAEGAN without wgan-gp 95.61 99.01 98.67

SACVAEGAN without additional virtual samples 95.43 98.99 98.64
SACVAEGAN 95.94 99.32 98.82

Table 16. FID value of the model with or without WGAN-GP.

Algorithms Indian Pines PaviaU Salinas

SACVAEGAN 10.21 1.78 2.37
SACVAEGAN without wgan-gp 12.35 12.62 11.83

6. Conclusions

In this paper, a self-attention-based conditional variational autoencoder generative
adversarial network (SACVAEGAN) is proposed for hyperspectral classification. We
combine the Conditional GAN with CVAEGAN, which can generate more high-quality
training data to enhance the performance. Moreover, the self-attention mechanism is also
applied to our proposed SACVAEGAN to extract better features. A novel loss function
is used to make the whole training process more stable. Compared with the GAN-based
methods, SACVAEGAN achieved a better classification performance than the state-of-the-
art methods on three commonly used hyperspectral image data sets by incorporating an
extra self-attention mechanism and the WGAN-GP loss. In the future, we will explore more
GAN-based models for HSI classification.

Author Contributions: All authors contributed to this manuscript: Conceptualization, L.T. and Z.C.;
Methodology, L.T. and Z.C.; Supervision, L.T. and C.X.; Validation, Z.C and B.Q.; Resources, Z.C. and
J.Y.; Writing original draft, Z.C.; Writing review and editing, Z.C., L.T. and B.Q. All authors have read
and agreed to the published version of the manuscript.

Remote Sens. 2021, 13, 3316 20 of 21

Funding: This work was partly supported by the National Natural Science Foundation of China un-
der Grant 61701009, 61801479 and Beijing Municipal Education Commission Science and Technology
Program under Grant KM202010005016.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Hong, D.; Yokoya, N.; Chanussot, J.; Zhu, X.X. An Augmented Linear Mixing Model to Address Spectral Variability for

Hyperspectral Unmixing. IEEE Trans. Image Process. 2019, 28, 1923–1938. [CrossRef]
2. Gevaert, C.M.; Suomalainen, J.; Tang, J.; Kooistra, L. Generation of Spectral–Temporal Response Surfaces by Combining

Multispectral Satellite and Hyperspectral UAV Imagery for Precision Agriculture Applications. IEEE J. Sel. Top. Appl. Earth Obs.
Remote Sens. 2015, 8, 3140–3146. [CrossRef]

3. Hunt, E.R.; Daughtry, C.S.T.; Mirsky, S.B.; Hively, W.D. Remote Sensing With Simulated Unmanned Aircraft Imagery for Precision
Agriculture Applications. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2014, 7, 4566–4571. [CrossRef]

4. Tao, C.; Wang, Y.J.; Zou, B.; Tu, Y.L.; Jiang, X.L. Assessment and Analysis of Migrations of Heavy Metal Lead and Zinc in Soil
with Hyperspectral Inversion Model. Spectrosc. Spectr. Anal. 2018, 38, 1850.

5. Wang, Q.; Yuan, Z.; Du, Q.; Li, X. GETNET: A General End-to-End 2-D CNN Framework for Hyperspectral Image Change
Detection. IEEE Trans. Geosci. Remote Sens. 2019, 57, 3–13. [CrossRef]

6. Salah Bourennane, C.F. Robust Denoising Method based on Tensor Models Decomposition for Hyperspectral Imagery. WSEAS
Trans. Signal Process. 2019, 15, 92–98.

7. Sawssen, B.; Okba, T.; Noureeddine, L. A Mammographic Images Classification Technique via the Gaussian Radial Basis Kernel
ELM and KPCA. Int. J. Appl. Math. Comput. Sci. Syst. Eng. 2020, 2, 92–98.

8. Vetova, S. A Comparative Study of Image Classification Models using NN and Similarity Distance. Int. J. Electr. Eng. Comput. Sci.
(EEACS) 2021, 3, 109–113.

9. Vetova, S. Covid Image Classification using Wavelet Feature Vectors and NN. Eng. World 2021, 3, 38–42.
10. Luqman Hakim, M.I.Z. Implementation of Discrete Wavelet Transform on Movement Images and Recognition by Artificial

Neural Network Algorithm. WSEAS Trans. Signal Process. 2019, 15, 149–154.
11. Zhong, S.; Chang, C.I.; Zhang, Y. Iterative Support Vector Machine for Hyperspectral Image Classification. In Proceedings of the

2018 25th IEEE International Conference on Image Processing (ICIP), Athens, Greece, 7–10 October 2018; pp. 3309–3312.
12. Sun, S.; Zhong, P.; Xiao, H.; Liu, F.; Wang, R. An active learning method based on SVM classifier for hyperspectral images

classification. In Proceedings of the 2015 7th Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote
Sensing (WHISPERS), Tokyo, Japan, 2–5 June 2015; pp. 1–4.

13. Melgani, F.; Bruzzone, L. Classification of hyperspectral remote sensing images with support vector machines. IEEE Trans.
Geoence Remote Sens. 2004, 42, 1778–1790. [CrossRef]

14. Song, W.; Li, S.; Kang, X.; Huang, K. Hyperspectral image classification based on KNN sparse representation. In Proceedings of
the 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Beijing, China, 10–15 July 2016; pp. 2411–2414.

15. Guo, Y.; Cao, H.; Han, S.; Sun, Y.; Bai, Y. Spectral–Spatial HyperspectralImage Classification with K-Nearest Neighbor and
Guided Filter. IEEE Access 2018, 6, 18582–18591. [CrossRef]

16. Jia, X. Block-based maximum likelihood classification for hyperspectral remote sensing data. In Proceedings of the IGARSS’97.
1997 IEEE International Geoscience and Remote Sensing Symposium Proceedings: Remote Sensing—A Scientific Vision for
Sustainable Development, Singapore, 3–8 August 1997; Volume 2, pp. 778–780

17. Ratle, F.; Camps-Valls, G.; Weston, J. Semisupervised Neural Networks for Efficient Hyperspectral Image Classification. IEEE
Trans. Geosci. Remote Sens. 2010, 48, 2271–2282. [CrossRef]

18. Li, J.; Bioucas-Dias, J.M.; Plaza, A. Semisupervised Hyperspectral Image Classification Using Soft Sparse Multinomial Logistic
Regression. IEEE Geosci. Remote Sens. Lett. 2013, 10, 318–322.

19. Khodadadzadeh, M.; Li, J.; Plaza, A.; Bioucas-Dias, J.M. A Subspace-Based Multinomial Logistic Regression for Hyperspectral
Image Classification. IEEE Geosci. Remote Sens. Lett. 2014, 11, 2105–2109. [CrossRef]

20. Hughes, G. On the mean accuracy of statistical pattern recognizers. IEEE Trans. Inf. Theory 1968, 14, 55–63. [CrossRef]
21. Chen, Y.; Jiang, H.; Li, C.; Jia, X.; Ghamisi, P. Deep Feature Extraction and Classification of Hyperspectral Images Based on

Convolutional Neural Networks. IEEE Trans. Geosci. Remote Sens. 2016, 54, 6232–6251. [CrossRef]
22. Hamida, A.B.; Benoit, A.; Lambert, P.; Amar, C.B. 3-D Deep Learning Approach for Remote Sensing Image Classification. IEEE

Trans. Geoence Remote Sens. 2018, 56, 4420–4434. [CrossRef]
23. Chen, Y.; Wang, Y.; Gu, Y.; He, X.; Ghamisi, P.; Jia, X. Deep Learning Ensemble for Hyperspectral Image Classification. IEEE J. Sel.

Top. Appl. Earth Obs. Remote Sens. 2019, 12, 1882–1897. [CrossRef]
24. Chen, Y.; Lin, Z.; Zhao, X.; Wang, G.; Gu, Y. Deep Learning-Based Classification of Hyperspectral Data. IEEE J. Sel. Top. Appl.

Earth Obs. Remote Sens. 2017, 7, 2094–2107. [CrossRef]
25. Zhang, M.; Li, W.; Du, Q. Diverse Region-Based CNN for Hyperspectral Image Classification. IEEE Trans. Image Process. 2018,

27, 2623–2634. [CrossRef]
26. Li, W.; Wu, G.; Zhang, F.; Du, Q. Hyperspectral Image Classification Using Deep Pixel-Pair Features. IEEE Trans. Geosci. Remote

Sens. 2017, 55, 844–853. [CrossRef]

http://doi.org/10.1109/TIP.2018.2878958
http://dx.doi.org/10.1109/JSTARS.2015.2406339
http://dx.doi.org/10.1109/JSTARS.2014.2317876
http://dx.doi.org/10.1109/TGRS.2018.2849692
http://dx.doi.org/10.1109/TGRS.2004.831865
http://dx.doi.org/10.1109/ACCESS.2018.2820043
http://dx.doi.org/10.1109/TGRS.2009.2037898
http://dx.doi.org/10.1109/LGRS.2014.2320258
http://dx.doi.org/10.1109/TIT.1968.1054102
http://dx.doi.org/10.1109/TGRS.2016.2584107
http://dx.doi.org/10.1109/TGRS.2018.2818945
http://dx.doi.org/10.1109/JSTARS.2019.2915259
http://dx.doi.org/10.1109/JSTARS.2014.2329330
http://dx.doi.org/10.1109/TIP.2018.2809606
http://dx.doi.org/10.1109/TGRS.2016.2616355

Remote Sens. 2021, 13, 3316 21 of 21

27. Xu, X.; Li, W.; Ran, Q.; Du, Q.; Gao, L.; Zhang, B. Multisource Remote Sensing Data Classification Based on Convolutional Neural
Network. IEEE Trans. Geosci. Remote Sens. 2018, 56, 937–949. [CrossRef]

28. Xie, J.; He, N.; Fang, L.; Ghamisi, P. Multiscale Densely-Connected Fusion Networks for Hyperspectral Images Classification.
IEEE Trans. Circuits Syst. Video Technol. 2021, 31, 246–259. [CrossRef]

29. Ying, L.; Haokui, Z.; Qiang, S. Spectral-Spatial Classification of Hyperspectral Imagery with 3D Convolutional Neural Network.
Remote Sens. 2017, 9, 67.

30. Zhang, X.; Sun, Y.; Jiang, K.; Li, C.; Jiao, L.; Zhou, H. Spatial Sequential Recurrent Neural Network for Hyperspectral Image
Classification. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2018, 11, 4141–4155. [CrossRef]

31. Yang, J.; Zhao, Y.; Chan, J.C.W.; Yi, C. Hyperspectral image classification using two-channel deep convolutional neural network.
In Proceedings of the 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Beijing, China, 10–15 July
2016; pp. 5079–5082.

32. Goodfellow, I.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-Farley, D.; Ozair, S.; Courville, A.; Bengio, Y. Generative Adversarial
Networks. Commun. ACM 2020, 63, 139–144. [CrossRef]

33. Wang, X.; Tan, K.; Du, Q.; Chen, Y.; Du, P. Caps-TripleGAN: GAN-Assisted CapsNet for Hyperspectral Image Classification.
IEEE Trans. Geosci. Remote Sens. 2019, 57, 7232–7245. [CrossRef]

34. Feng, J.; Yu, H.; Wang, L.; Cao, X.; Zhang, X.; Jiao, L. Classification of Hyperspectral Images Based on Multiclass Spatial–Spectral
Generative Adversarial Networks. IEEE Trans. Geosci. Remote Sens. 2019, 57, 5329–5343. [CrossRef]

35. Zhong, Z.; Li, J.; Clausi, D.A.; Wong, A. Generative Adversarial Networks and Conditional Random Fields for Hyperspectral
Image Classification. IEEE Trans. Cybern. 2020, 50, 3318–3329.

36. Zhu, L.; Chen, Y.; Ghamisi, P.; Benediktsson, J.A. Generative Adversarial Networks for Hyperspectral Image Classification. IEEE
Trans. Geosci. Remote Sens. 2018, 56, 5046–5063. [CrossRef]

37. Wang, H.; Tao, C.; Qi, J.; Li, H.; Tang, Y. Semi-Supervised Variational Generative Adversarial Networks for Hyperspectral
Image Classification. In Proceedings of the IGARSS 2019—2019 IEEE International Geoscience and Remote Sensing Symposium,
Yokohama, Japan, 28 July–2 August 2019; pp. 9792–9794.

38. Zhang, F.; Bai, J.; Zhang, J.; Xiao, Z.; Pei, C. An Optimized Training Method for GAN-Based Hyperspectral Image Classification.
IEEE Geosci. Remote Sens. Lett. 2020, 1–5. [CrossRef]

39. Wang, W.Y.; Li, H.C.; Deng, Y.J.; Shao, L.Y.; Lu, X.Q.; Du, Q. Generative Adversarial Capsule Network With ConvLSTM for
Hyperspectral Image Classification. IEEE Geosci. Remote Sens. Lett. 2021, 18, 523–527. [CrossRef]

40. Yin, J.; Li, W.; Han, B. Hyperspectral Image Classification Based on Generative Adversarial Network with Dropblock. In
Proceedings of the 2019 IEEE International Conference on Image Processing (ICIP), Taipei, Taiwan, 22–25 September 2019;
pp. 405–409.

41. Srivastava, N.; Hinton, G.; Krizhevsky, A.; Sutskever, I.; Salakhutdinov, R. Dropout: A Simple Way to Prevent Neural Networks
from Overfitting. J. Mach. Learn. Res. 2014, 15, 1929–1958.

42. Karras, T.; Aila, T.; Laine, S.; Lehtinen, J. Progressive growing of gans for improved quality, stability, and variation. arXiv 2017,
arXiv:1710.10196.

43. Gulrajani, I.; Ahmed, F.; Arjovsky, M.; Dumoulin, V.; Courville, C.A. Improved Training of Wasserstein GANs. In Proceedings of
the Advances in Neural Information Processing Systems 30 (NIPS 2017), Long Beach, CA, USA, 4–9 December 2017; pp. 5767–5777.

44. Sabour, S.; Frosst, N.; Hinton, G.E. Dynamic Routing Between Capsules . arXiv 2017, arXiv:1710.09829.
45. Hochreiter, S.; Schmidhuber, J. Long short-term memory. Neural Comput. 1997, 9, 1735–1780. [CrossRef]
46. Vaswani, A.; Shazeer, N.M.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, L.; Polosukhin, I. Attention is All you Need.

arXiv 2017, arXiv:1706.03762.
47. Bao, J.; Chen, D.; Wen, F.; Li, H.; Hua, G. CVAE-GAN: Fine-Grained Image Generation through Asymmetric Training. In

Proceedings of the IEEE International Conference on Computer Vision (ICCV), Venice, Italy, 22–29 October 2017; pp. 2764–2773.
48. Zhang, H.; Goodfellow, I.; Metaxas, D.; Odena, A. Self-attention generative adversarial networks. In Proceedings of the

International Conference on Machine Learning (PMLR 2019), Beach, CA, USA, 9–15 June 2019; pp. 7354–7363.
49. Kingma, D.P.; Welling, M. Auto-Encoding Variational Bayes. arXiv 2014, arXiv:1312.6114.
50. Mirza, M.; Osindero, S. Conditional Generative Adversarial Nets. arXiv 2014, arXiv:1411.1784.

http://dx.doi.org/10.1109/TGRS.2017.2756851
http://dx.doi.org/10.1109/TCSVT.2020.2975566
http://dx.doi.org/10.1109/JSTARS.2018.2844873
http://dx.doi.org/10.1145/3422622
http://dx.doi.org/10.1109/TGRS.2019.2912468
http://dx.doi.org/10.1109/TGRS.2019.2899057
http://dx.doi.org/10.1109/TGRS.2018.2805286
http://dx.doi.org/10.1109/LGRS.2020.3009017
http://dx.doi.org/10.1109/LGRS.2020.2976482
http://dx.doi.org/10.1162/neco.1997.9.8.1735

	Introduction
	Related Work
	Conditional Variational Auto-Encoder Generative Adversarial Networks
	Self-Attention

	Methodology
	Discriminator
	Variational Auto-Encoder
	Classifier

	Experiments
	Hyperspectral Data Sets
	Indian Pines
	Paviau
	Salinas

	Parameter Analysis
	Analysis of the Size of Patches
	Analysis of the Network Regularization Method
	Analysis of the 1 and 2 in the Classifier Loss Function

	Classification Results
	Analysis of the Size of the Training Set
	Investigation on the Run Time

	Discussion
	Spatial Feature Analysis
	Spectral Feature Analysis
	Overall Accuracy Analysis

	Conclusions
	References

