
remote sensing

Article

A New Multi-Scale Sliding Window LSTM Framework
(MSSW-LSTM): A Case Study for GNSS Time-Series Prediction

Jian Wang 1 , Weiping Jiang 2,*, Zhao Li 2 and Yang Lu 2

����������
�������

Citation: Wang, J.; Jiang, W.; Li, Z.;

Lu, Y. A New Multi-Scale Sliding

Window LSTM Framework

(MSSW-LSTM): A Case Study for

GNSS Time-Series Prediction. Remote

Sens. 2021, 13, 3328. https://doi.org/

10.3390/rs13163328

Academic Editor: Nicola Cenni

Received: 1 August 2021

Accepted: 21 August 2021

Published: 23 August 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 School of Geodesy and Geomatics, Wuhan University, Wuhan 430079, China; winner@whu.edu.cn
2 GNSS Research Center, Wuhan University, Wuhan 430079, China; zhao.li@whu.edu.cn (Z.L.);

yang.lu@whu.edu.cn (Y.L.)
* Correspondence: wpjiang@whu.edu.cn

Abstract: GNSS time-series prediction plays an important role in the monitoring of crustal plate
movement, and dam or bridge deformation, and the maintenance of global or regional coordinate
frames. Deep learning is a state-of-the-art approach for extracting high-level abstract features from
big data without any prior knowledge. Moreover, long short-term memory (LSTM) networks are
a form of recurrent neural networks that have significant potential for processing time series. In
this study, a novel prediction framework was proposed by combining a multi-scale sliding window
(MSSW) with LSTM. Specifically, MSSW was applied for data preprocessing to effectively extract
the feature relationship at different scales and simultaneously mine the deep characteristics of the
dataset. Then, multiple LSTM neural networks were used to predict and obtain the final result by
weighting. To verify the performance of MSSW-LSTM, 1000 daily solutions of the XJSS station in
the Up component were selected for prediction experiments. Compared with the traditional LSTM
method, our results of three groups of controlled experiments showed that the RMSE value was
reduced by 2.1%, 23.7%, and 20.1%, and MAE was decreased by 1.6%, 21.1%, and 22.2%, respectively.
Our results showed that the MSSW-LSTM algorithm can achieve higher prediction accuracy and
smaller error, and can be applied to GNSS time-series prediction.

Keywords: deep learning; long short-term memory; multi-scale sliding window; GNSS; time se-
ries; prediction

1. Introduction

The long-term accumulated Global Navigational Satellite System (GNSS) coordinate
time series provides valuable data for geodesy and geodynamic research [1–3]. These
data not only reflect the long-term trend of change, but also represent nonlinear changes
caused by geophysical effects. GNSS coordinate time series play an important role in the
monitoring of crustal plate movements [4,5], dam or bridge deformation monitoring [6–10],
and the maintenance of global or regional coordinate frames [11,12]. The coordinates of the
successive time point can be predicted by analyzing the GNSS coordinate time series, thus
providing an important basis for judging the motion trend. Therefore, the prediction of
GNSS coordinate time series is a highly valuable work.

It is well known that the GNSS coordinate time series reflect both the deterministic
law of motion and uncertain information, which may be caused by imperfect processing
models, geophysical effects, and other factors that are difficult to model [13]. Two kinds
of time-series analysis methods exist: physical modeling and numerical modeling. In the
traditional physical and numerical modeling method, models of coordinate time series are
constructed according to geophysics theory, the linear term, the periodic term, and gap
information [14,15]. Usually, in these traditional modeling methods, the feature information
and modeling parameters must be established artificially. The exclusion of elements will
lead to systematic deviation and limitations in the results.

Remote Sens. 2021, 13, 3328. https://doi.org/10.3390/rs13163328 https://www.mdpi.com/journal/remotesensing

https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://orcid.org/0000-0001-6512-4803
https://doi.org/10.3390/rs13163328
https://doi.org/10.3390/rs13163328
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/rs13163328
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/article/10.3390/rs13163328?type=check_update&version=2

Remote Sens. 2021, 13, 3328 2 of 15

Deep learning is an emerging technology that forms a deep architecture by stacking
learning modules in a hierarchical structure, and trains the whole network in an end-to-
end manner according to gradient training. The deep learning algorithm does not need
to artificially select the feature information, and automatically extracts the information
suitable for the data characteristics by constructing a complex and precise network [16].
Due to the development of artificial intelligence (AI), an increasing number of powerful
algorithms have been applied in different fields and have achieved excellent results. Among
these, the recurrent neural network (RNN) is one of the most popular AI methods used for
time-series prediction, and can process sequence information and regard the output of the
current epoch as the input for the subsequent epoch [17,18]. Its data-driven characteristic
can effectively memorize the information of the data. However, because the RNN is subject
to the problem of the vanishing gradient, it cannot easily handle long sequences [19]. Thus,
Hochreiter and Schmidhuber proposed long short-term memory (LSTM), which avoids the
problem of gradient disappearance by optimizing memory cells via the use of gates [20].
LSTM has been widely used to deal with sequence learning problems such as natural
language processing (NLP), and has shown significant potential for time-series prediction,
such as air quality forecasting, weather forecasting, and traffic flow prediction [21–23].

Recently, LSTM has also been applied in the GNSS field, and has achieved remarkable
results. In the monitoring of landslide deformation, Xing et al. proposed a model based on
variational mode decomposition (VMD) and a stack LSTM, which had a higher forecast
accuracy than that of LSTM and the EMD-LSTM network, in experiments conducted in
Dashuitian [24]. Subsequently, Xing et al. combined the double moving average (DMA)
method and LSTM to predict landslide displacement, and obtained high-quality confidence
intervals [25]. Xie et al. used the LSTM algorithm to predict the periodic component of
landslides, and showed that the performance of LSTM has good characteristics of dynamic
features [26]. Wang et al. developed an attention mechanism LSTM model based on
Complete Ensemble Empirical Mode Decomposition with Adaptive Noise (CEEMDAN-
AMLSTM), and confirmed its validity for landslide displacement prediction [27]. Yang et al.
used an LSTM model to predict the periodic displacement of landslides in the Three Gorges
Reservoir Area, and found that the LSTM method can simulate the dynamic characteristics
of landslides better than a static model due to full use of historical information [28].

In navigation and positioning, Tan et al. used LSTM as a de-noising filter and proposed
the rEKF-LSTM method to significantly improve single-point positioning accuracy [29].
Jiang et al. proposed an LSTM-RNN algorithm to filter MEMS gyroscope outputs, and the
results indicated that the method was effective for improving MEMS INS precision [30].
Kim et al. improved the accuracy and stability of GNSS absolute solutions for autonomous
vehicle navigation using LSTM [31]. Tao et al. developed a CNN-LSTM method to mine
the deep multipath features in GNSS coordinate series, and showed that the CNN-LSTM
can effectively mitigate multi-GNSS multipath issues and reduce the average RMS of
positioning errors [32]. In addition, Hoang et al. proposed an LSTM structure for WiFi
fingerprinting of indoor localization, and achieved a smaller average localization error
than that obtained from other algorithms [33]. Fang et al. used LSTM to support an inertial
navigation system (INS), and confirmed that the algorithm can enhance the navigation
accuracy compared with pure INS [34]. The above research shows that LSTM has produced
good results in both deformation monitoring and positioning in the GNSS field, and the use
of deep learning has gradually become more common, providing new ideas for research.

Prior to the use of LSTM, the data must be preprocessed. The traditional approach of
a single sliding window is widely used in the existing research on data preprocessing. A
review of studies of image processing shows that the multiscale sliding window is widely
used in this area, and has achieved good results, because it can take into account informa-
tion at different scales. The multiscale sliding window is a feature extraction method for
image processing in the field of computer vision [35,36] that is able to consider the feature
information at different scales. In this study, we applied the idea of the multiscale sliding
window to one-dimensional time-series data. Furthermore, we applied the algorithm that

Remote Sens. 2021, 13, 3328 3 of 15

was originally conceived for application to two-dimensional data, to one-dimensional data,
thus providing a new idea for the use of LSTM.

In this study, we proposed a multiscale sliding window LSTM (MSSW-LSTM) ap-
proach for GNSS time-series prediction. The new method uses several different sliding
windows for data preprocessing that can capture data information at different scales. Then,
the preprocessed outputs are used as inputs into the corresponding LSTM, and each LSTM
can be adjusted according to the data. The structure of this article is as follows: Section 2
details the methodology for the MSSW-LSTM. Then, the data and processing strategy are
introduced in Section 3. Section 4 analyses the experimental results, and a discussion and
conclusions are given in Section 5.

2. Methodology
2.1. LSTM

The traditional neural network model does not encompass the processing information
of the previous time span, but only concerns information of the current time. In contrast,
the RNN has a memory function, which provides information of the current moment to the
subsequent moment. However, the long-term dependence of the RNN leads to gradient
explosion. By comparison, LSTM can avoid the problem of gradient disappearance by
optimizing memory cells, via the introduction of the concept of gates.

As shown in Figure 1a, a typical LSTM cell has three gates, i.e., input gate, forget gate,
and output gate. The cell state and output hidden state are also cores of the LSTM cell.

Remote Sens. 2021, 13, x FOR PEER REVIEW 3 of 17

used in this area, and has achieved good results, because it can take into account infor-
mation at different scales. The multiscale sliding window is a feature extraction method
for image processing in the field of computer vision [35,36] that is able to consider the
feature information at different scales. In this study, we applied the idea of the multiscale
sliding window to one-dimensional time-series data. Furthermore, we applied the algo-
rithm that was originally conceived for application to two-dimensional data, to one-di-
mensional data, thus providing a new idea for the use of LSTM.

In this study, we proposed a multiscale sliding window LSTM (MSSW-LSTM) ap-
proach for GNSS time-series prediction. The new method uses several different sliding
windows for data preprocessing that can capture data information at different scales.
Then, the preprocessed outputs are used as inputs into the corresponding LSTM, and each
LSTM can be adjusted according to the data. The structure of this article is as follows:
Section 2 details the methodology for the MSSW-LSTM. Then, the data and processing
strategy are introduced in Section 3. Section 4 analyses the experimental results, and a
discussion and conclusions are given in Section 5.

2. Methodology
2.1. LSTM

The traditional neural network model does not encompass the processing infor-
mation of the previous time span, but only concerns information of the current time. In
contrast, the RNN has a memory function, which provides information of the current mo-
ment to the subsequent moment. However, the long-term dependence of the RNN leads
to gradient explosion. By comparison, LSTM can avoid the problem of gradient disap-
pearance by optimizing memory cells, via the introduction of the concept of gates.

As shown in Figure 1a, a typical LSTM cell has three gates, i.e., input gate, forget gate,
and output gate. The cell state and output hidden state are also cores of the LSTM cell.

σσ σ

 × +

× ×

tanh

tanh

tX

th

th

tf ti
tC

tC

tO

A A A A A

2X 3X tX 1tX +1X

1h 2h 3h th 1th +

...

(a) (b)

Figure 1. (a) Long short-term memory architecture; (b) typical structure of LSTM (1 layer)

The single-layer and multi-layer LSTM models are shown separately in Figures 1b
and Figure 2.

The definition of the forget gate can be written as:

1()t fh t fx t ff W h W x bσ −= + +

(1)

where σ is the logistic sigmoid function, fhW , fxW are the weight matrix for trans-

formation of information from cell to gate vectors, 1th − is the input of the previous time,

tx is the input of the current time, fb is the offset value of the forget gate, and tf is

the forget gate of the moment t . The forget gate combines the input 1th − of the previous

time with the input tx of the current time to selectively forget the content.

Figure 1. (a) Long short-term memory architecture; (b) typical structure of LSTM (1 layer).

The single-layer and multi-layer LSTM models are shown separately in
Figures 1b and 2.

Remote Sens. 2021, 13, x FOR PEER REVIEW 4 of 17

The input gate can be shown as:

1()t ih t ix t ii W h W x bσ −= + + (2)

1tanh()t ch t cx t cC W h W x b−= + + (3)

where σ and tanh are activation functions, ihW , ixW , chW , cxW are weight ma-

trixes, 1th − is the input of the previous time, tx is the input of the current time, ib

and cb are offset values of the input gate, and ti and tC are the input gates of the t
moment. The input gate combines the input 1th − of the previous time with the input

tx of the current time to selectively remember the content.
The definition of the cell state update can be written as:

1t t t t tC f C iC−= +  (4)

where tf is the forget gate, 1tC− represents the information of the previous moment

on the main line, and ti is the input gate. tC denotes information that should be mem-

orized at time t , and tC indicates the cell state of the main line. The main line cells
selectively remember and forget the current input information. Finally, the output gate
can be obtained by:

1()t oh t ox t oO W h W x bσ −= + + (5)

tanh()t t th O C= (6)

where σ and tanh are activation functions, ohW and oxW are weight matrixes,

1th − indicates the input of the previous time, tx is the input of the current time, ob

denotes offset values of the input gate, tO represents the output gate, tC is the cell

state of the main line, and th denotes the output of the t moment.

tX

A A A A A

A A A A A

A A A A A

th1h 2h 3h 1th +

1X 2X 3X 1tX +

...

Figure 2. Multilayered neural networks of LSTM.

Figure 2. Multilayered neural networks of LSTM.

Remote Sens. 2021, 13, 3328 4 of 15

The definition of the forget gate can be written as:

ft = σ(W f hht−1 + W f xxt + b f) (1)

where σ is the logistic sigmoid function, W f h, W f x are the weight matrix for transformation
of information from cell to gate vectors, ht−1 is the input of the previous time, xt is the
input of the current time, b f is the offset value of the forget gate, and ft is the forget gate of
the moment t. The forget gate combines the input ht−1 of the previous time with the input
xt of the current time to selectively forget the content.

The input gate can be shown as:

it = σ(Wihht−1 + Wixxt + bi) (2)

C̃t = tanh(Wchht−1 + Wcxxt + bc) (3)

where σ and tanh are activation functions, Wih, Wix, Wch, Wcx are weight matrixes, ht−1
is the input of the previous time, xt is the input of the current time, bi and bc are offset
values of the input gate, and it and C̃t are the input gates of the t moment. The input
gate combines the input ht−1 of the previous time with the input xt of the current time to
selectively remember the content.

The definition of the cell state update can be written as:

Ct = ftCt−1 + itC̃t (4)

where ft is the forget gate, Ct−1 represents the information of the previous moment on the
main line, and it is the input gate. C̃t denotes information that should be memorized at time
t, and Ct indicates the cell state of the main line. The main line cells selectively remember
and forget the current input information. Finally, the output gate can be obtained by:

Ot = σ(Wohht−1 + Woxxt + bo) (5)

ht = Ottanh(Ct) (6)

where σ and tanh are activation functions, Woh and Wox are weight matrixes, ht−1 indicates
the input of the previous time, xt is the input of the current time, bo denotes offset values
of the input gate, Ot represents the output gate, Ct is the cell state of the main line, and ht
denotes the output of the t moment.

2.2. Multi-Scale Sliding Window LSTM

The sliding window, usually when dealing with two-dimensional images, is widely
used in computer vision processing, such as in the fields of object detection and semantic
segmentation. In this study, the concept of the sliding window was applied to data prepro-
cessing. because GNSS coordinate time series are one dimensional, the sliding window
was reduced to one dimension to construct the data sets. Traditional data preprocessing
uses a single-scale sliding window to establish the initial data, as shown in Figure 3, among
which the length_x and length_y are unique. The current LSTM research on time series
uses a single-scale sliding window, or other transformations of the data. However, the
information captured by a single scale at each time has a fixed scale, and this method of
constructing a dataset is not perfect. The construction of the dataset may determine the
accuracy of the model training. In this study, we proposed the method of a multiscale
sliding window to input different scale information into the corresponding network, form a
unified dimension, and integrate the existing research into a unified processing framework.

Remote Sens. 2021, 13, 3328 5 of 15

Remote Sens. 2021, 13, x FOR PEER REVIEW 5 of 17

2.2. Multi-Scale Sliding Window LSTM
The sliding window, usually when dealing with two-dimensional images, is widely

used in computer vision processing, such as in the fields of object detection and semantic
segmentation. In this study, the concept of the sliding window was applied to data pre-
processing. because GNSS coordinate time series are one dimensional, the sliding window
was reduced to one dimension to construct the data sets. Traditional data preprocessing
uses a single-scale sliding window to establish the initial data, as shown in Figure 3,
among which the _length x and _length y are unique. The current LSTM research on time
series uses a single-scale sliding window, or other transformations of the data. However,
the information captured by a single scale at each time has a fixed scale, and this method
of constructing a dataset is not perfect. The construction of the dataset may determine the
accuracy of the model training. In this study, we proposed the method of a multiscale
sliding window to input different scale information into the corresponding network, form
a unified dimension, and integrate the existing research into a unified processing frame-
work.

'
1, _length xX '

1, _length yY

'
2, _length xX '

2, _length yY

'
, _n length xX '

, _n length yYCreate data by sliding window

'
3, _length xX '

3, _length yY

Single-Scale Sliding Window

Figure 3. Single-scale sliding window.

The GNSS coordinate time series are obtained and arranged in a unified dimension
according to the time sequence:

1 2 3 2 1, , ,..., , ,m m mx x x x x x− − , recorded as mX (7)

where m is the length of X . The interval of the GNSS time series should a adopt uni-
form dimension, such as seconds, minutes, hours, days, weeks, months, or years. The con-
struction the of multiscale sliding window is undertaken as follows:

Assume that the length of the front portion in the ith sliding window is _length xi ,
and the length of the back portion is _length yi . At each time, one unit is moved to se-
quentially construct the data, and the following conditions are required

(_ _) 1v m length xi length yi≤ − + + . The data formats are as follows:

1, _ 1, _

2, _ 2, _

, _ , _

,

,
...

,

i i
length xi length yi

i i
length xi length yi

i i
v length xi v length yi

X Y

X Y

X Y

 
 
 
 
 
 
 

 (8)

Figure 3. Single-scale sliding window.

The GNSS coordinate time series are obtained and arranged in a unified dimension
according to the time sequence:

x1, x2, x3, . . . , xm−2, xm−1, xm, recorded as Xm (7)

where m is the length of X. The interval of the GNSS time series should a adopt uniform di-
mension, such as seconds, minutes, hours, days, weeks, months, or years. The construction
the of multiscale sliding window is undertaken as follows:

Assume that the length of the front portion in the ith sliding window is length_xi,
and the length of the back portion is length_yi. At each time, one unit is moved to sequen-
tially construct the data, and the following conditions are required v ≤ m− (length_xi +
length_yi) + 1. The data formats are as follows:

Xi
1,length_xi, Yi

1,length_yi
Xi

2,length_xi, Yi
2,length_yi

. . .
Xi

v,length_xi, Yi
v,length_yi

 (8)

In the multiscale mode, k ≥ i ≥ 2, where k represents a total of k scales. length_x1,
length_x2, . . . , length_xk are not equal because it would be meaningless to construct
duplicate data sets. However, length_y1, length_y2, and length_yk are equal, which is
convenient for the final result of the weighting calculation.

The constructed data set is shown in Equation (9) and Figure 4:
X1

1,length_x1, Y1
1,length_y1

X1
2,length_x1, Y1

2,length_y1
. . .
X1

u,length_x1, Y1
u,length_y1

,


X2

1,length_x2, Y2
1,length_y2

X2
2,length_x2, Y2

2,length_y2
. . .
X2

p,length_x2, Y2
p,length_y2

, . . . ,


Xk

1,length_xk, Yk
1,length_yk

Xk
2,length_xk, Yk

2,length_yk
. . .
Xk

q,length_xk, Yk
q,length_yk

 (9)

Remote Sens. 2021, 13, 3328 6 of 15Remote Sens. 2021, 13, x FOR PEER REVIEW 7 of 17

1
1, _ 1length xX 1

1, _ 1length yY

1
2, _ 1length xX 1

2, _ 1length yY

1
, _ 1u length xX 1

, _ 1u length yYCreate data by sliding window

1
, _ 1x length xX 1

, _ 1x length yY（1）
......

......

2
1, _ 2length xX 2

1, _ 2length yY

2
2, _ 2length xX 2

2, _ 2length yY

2
, _ 2plength xX 2

, _ 2p length yY

2
, _ 2x length xX 2

, _ 2x length yY
......

......

1, _
k
length xkX 1, _

k
length ykY

2, _
k
length xkX 2, _

k
length ykY

, _
k
qlength xkX , _

k
q length ykY

, _
k
x length xkX , _

k
x length ykY

......

......

......

（2）

（k）

Create data by sliding window

Create data by sliding window

Multi-Scale Sliding Window

Figure 4. Constructing data with k sliding windows of different scales.

Figure 4 is a schematic diagram of K sliding windows of different scales. It can be
seen that the sizes of the red sliding windows are different at different scales, and the sizes
of the blue sliding windows are the same.

Thus, an MSSW-LSTM algorithm for GNSS time-series prediction was proposed. The
overall processing flow of MSSW-LSTM is shown in Figure 5. First, the GNSS station co-
ordinate time series is obtained, and different datasets are constructed using the mul-
tiscale window. Following the construction of the datasets, the corresponding LSTM sub-
networks are established for each data set according to the actual situation of the data set.

Figure 4. Constructing data with k sliding windows of different scales.

Figure 4 is a schematic diagram of K sliding windows of different scales. It can be seen that
the sizes of the red sliding windows are different at different scales, and the sizes of the blue sliding
windows are the same.

Thus, an MSSW-LSTM algorithm for GNSS time-series prediction was proposed. The overall
processing flow of MSSW-LSTM is shown in Figure 5. First, the GNSS station coordinate time series
is obtained, and different datasets are constructed using the multiscale window. Following the
construction of the datasets, the corresponding LSTM subnetworks are established for each data set
according to the actual situation of the data set.

Remote Sens. 2021, 13, 3328 7 of 15

Remote Sens. 2021, 13, x FOR PEER REVIEW 8 of 17

Each LSTM sub network has its own weight matrix after training, adjustment, and
optimization. The trained parameters are saved, and the model of each subnetwork is

used for prediction. The prediction results of each subnetwork (1) 1r, subnetwork (2) 2r

,..., sub network (k) kr are then obtained.

Start

Subsequence (1) of
Sliding Window

Subsequence (2) of
Sliding Window

Subsequence (x) of
Sliding Window

Subsequence (k-1)
of Sliding Window

Subsequence (k) of
Sliding Window

Sub-Network (1)
of LSTM

Sub-Network (2)
of LSTM

Sub-Network (x)
of LSTM

Sub-Network (k-1)
of LSTM

Sub-Network (k)
of LSTM

Load model
prediction (1)

Load model
prediction (2)

Load model
prediction (x)

Load model
prediction (k-1)

Load model
prediction (k)

The Final Result is Obtained by Weighting the Prediction Outputs

End

... ...

... ...

... ...

Coordinate Time Series of GNSS Stations

1r 2r xr 1kr − kr

1w 2w xw 1kw − kw

R

Figure 5. Framework of the multiscale sliding window LSTM (MSSW-LSTM).

The final prediction value R is the weighted value of each subnetwork prediction
result, and the calculation formula is shown in Equation (10):

1 1 2 2 ... k kR r w r w r w= × + × + + × (10)

1 2 3 1... 1k kw w w w w−+ + + + + = (11)

where 1w , 2w ,…, 1kw − and kw are the weights of the prediction results from each
subnetwork. The sum of all weight values should be 1, as shown in Equation (11).

In general, if there is little difference between the subnetworks, the weight value of
each subnetwork should be the same, as shown in Equation (12).

1 2 3 1
1... k kw w w w w
k−= = = = = =

(12)

Figure 5. Framework of the multiscale sliding window LSTM (MSSW-LSTM).

Each LSTM sub network has its own weight matrix after training, adjustment, and
optimization. The trained parameters are saved, and the model of each subnetwork is used
for prediction. The prediction results of each subnetwork (1) r1, subnetwork (2) r2, . . . , sub
network (k) rk are then obtained.

The final prediction value R is the weighted value of each subnetwork prediction
result, and the calculation formula is shown in Equation (10):

R = r1 × w1 + r2 × w2 + . . . + rk × wk (10)

w1 + w2 + w3 + . . . + wk−1 + wk = 1 (11)

where w1, w2, . . . , wk−1 and wk are the weights of the prediction results from each subnet-
work. The sum of all weight values should be 1, as shown in Equation (11).

In general, if there is little difference between the subnetworks, the weight value of
each subnetwork should be the same, as shown in Equation (12).

w1 = w2 = w3 = . . . = wk−1 = wk =
1
k

(12)

It should be noted that the MSSW-LSTM method has significant flexibility. For exam-
ple, LSTM networks may be the same or different, and may consistent of a single layer or
multiple layers. This flexibility is beneficial for researchers, who are able to select the most
appropriate network model according to their own dataset characteristics and utilize the
advantages of the network model.

Remote Sens. 2021, 13, 3328 8 of 15

2.3. Evaluation Criteria

To quantitatively evaluate the prediction accuracy of our proposed model, some
indexes are used to calculate the difference between the real value and the predicted value.
Here, the root mean square error (RMSE) and the mean absolute error (MAE) are used to
evaluate the prediction accuracy [37], and the corresponding formulas are shown as below.

RMSE =

√
1
N
∗∑N

i=1 (yi −
_
y i)

2
(13)

MAE =
1
N
∗∑N

i=1

∣∣∣yi −
_
y i

∣∣∣ (14)

where N is the number of datasets, and yi are true values and
_
y i are predicted values.

3. Data and Processing Strategy
3.1. MSSW-LSTM Process Strategy

The data processing strategy proposed in this paper is shown in Figure 6a, and the
main steps of the MSSW-LSTM algorithm are described in Table 1.

Remote Sens. 2021, 13, x FOR PEER REVIEW 9 of 17

It should be noted that the MSSW-LSTM method has significant flexibility. For ex-
ample, LSTM networks may be the same or different, and may consistent of a single layer
or multiple layers. This flexibility is beneficial for researchers, who are able to select the
most appropriate network model according to their own dataset characteristics and utilize
the advantages of the network model.

2.3. Evaluation Criteria
To quantitatively evaluate the prediction accuracy of our proposed model, some in-

dexes are used to calculate the difference between the real value and the predicted value.
Here, the root mean square error (RMSE) and the mean absolute error (MAE) are used to
evaluate the prediction accuracy [37], and the corresponding formulas are shown as below.

2
1

1 * ()N
i ii

RMSE y y
N =

= − 

(13)

1

1 * N
i ii

MAE y y
N =

= − 

(14)

where N is the number of datasets, and iy are true values and iy


 are predicted val-
ues.

3. Data and Processing Strategy
3.1. MSSW-LSTM Process Strategy

The data processing strategy proposed in this paper is shown in Figure 6a, and the
main steps of the MSSW-LSTM algorithm are described in Table 1.

Building Multi-Scale Sliding
Window

Multi-LSTM Model Construction

Multi-Mode Construction
Prediction

Start

Weighted Summation of
Each Predition

End

Coordinate Time Series of GNSS
Stations

Start

Subsequence (1)
of 10 - 1

Subsequence (2)
of 15-1

Subsequence (3)
of 20-1

Sub-Network (1)
of LSTM (10)

Sub-Network (2)
of LSTM (15)

Sub-Network (3)
of LSTM (20)

Load model
prediction (1)

Load model
prediction (2)

Load model
prediction (3)

Weighted Summation of Three Network Prediction Ouputs

End

Coordinate Time Series of XJSS Stations

(a) (b)

Figure 6. (a) Flowchart of MSSW-LSTM; (b) data processing of XJSS using MSSW-LSTM Figure 6. (a) Flowchart of MSSW-LSTM; (b) data processing of XJSS using MSSW-LSTM.

Remote Sens. 2021, 13, 3328 9 of 15

Table 1. Training the MSSW-LSTM algorithm.

Step Description

1

The GNSS coordinate time series is obtained by actual observation or solution,
which should have dimensional consistency, such as weeks, days, hours, seconds.

• Preparation of the data

2

The new sub-sequence is constructed by MSSW. Each sub-sequence can be divided
into training and validation datasets.

• Preparation of the multiscale sliding windows
• Define the training and validation dataset
• Data regularization

3

The sub-LSTM network is constructed for each corresponding data set, and the
constructed network is trained and saved separately. In practice, to reduce running
time and computing space, the network model should be simple and practical.

• Define each LSTM layer and cell number
• Define hyperparameters for each net

4

Training and preserving network structures
The final prediction result is obtained by weighted summation.

• Apply the well-trained networks to prediction
• Define weighted values and calculate

Figure 6b shows the specific method of using the MSSW-LSTM algorithm to process
the XJSS station. Three sliding windows with different scales were used to preprocess the
GNSS time series. Accordingly, three sub-sequence sets were obtained, and three different
LSTM networks were then established. For specific processing, please refer to Section 3.2.

3.2. MSSW-LSTM Processing for the XJSS Station

To more accurately verify the effectiveness of the MSSW-LSTM algorithm, we directly
selected a real dataset, rather than simulated one, with a long time span. Through screening,
a daily coordinate time series of the XJSS station in the Up component, representing a total
of 1000 epochs with high data integrity, was finally selected as the experimental data. The
data collection period was from 20,110,412 to 20,140,206, and data were obtained from
the China Earthquake Networks Center. The overall data processing flow is shown in
Figure 6b.

The experimental data x1, x2, x3, x4, x5, . . . , x997, x998, x999, x1000 can be recorded
as X1000.

Then, we preprocessed the data and constructed a multiscale sliding window to form
a new sub-sequence. Here, we first provide two definitions. The fixed sliding window
length is the length of the training data entered at each time, and the predicted length
denotes the data label, which represented the true value. In total, three sliding windows
were constructed, as follows:

1. The fixed sliding window length was 10, and the predicted length was 1;
2. The fixed sliding window length was 15, and the predicted length was 1;
3. The fixed sliding window length was 20, and the predicted length was 1;

As shown below, the first sub-sequence had a fixed sliding window of 10 and a data
label length of 1, resulting in the construction of 990 available datapoints:

[x1, x2, x3, x4, x5, x6, x7, x8, x9, x10]
[x2, x3, x4, x5, x6, x7, x8, x9, x10, x11]
. . .
[x989, x990, x991, x992, x993, x994, x995, x996, x997, x998]
[x990, x991, x992, x993, x994, x995, x996, x997, x998, x999]

 and


x11
x12
. . .
x999
x1000

 (15)

Remote Sens. 2021, 13, 3328 10 of 15

The second sub-sequence had a fixed sliding window of 15 and a data label length of 1, resulting
in the construction of 985 available datapoints, namely:

[x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11, x12, x13, x14, x15]
[x2, x3, x4, x5, x6, x7, x8, x9, x10, x11, x12, x13, x14, x15, x16]
. . .
[x984, x985, x986, x987, x988, x989, x990, x991, x992, x993, x994, x995, x996, x997, x998]
[x984, x985, x986, x987, x988, x989, x990, x991, x992, x993, x994, x995, x996, x997, x998, x999]

 and


x16
x17
. . .
x999
x1000

 (16)

Similarly, the third sub-sequence had a fixed sliding window of 20 and a data label
length of 1, resulting in the construction of 980 available datapoints, namely:

[x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11, x12, x13, x14, x15, x16, x17, x18, x19, x20]
[x2, x3, x4, x5, x6, x7, x8, x9, x10, x11, x12, x13, x14, x15, x16, x17, x18, x19, x20, x21]
. . .
[x979, x980, x981, x982, x983, x984, x985, x986, . . . , x993, x994, x995, x996, x997, x998]
[x980, x981, x982, x983, x984, x985, x986, . . . , x993, x994, x995, x996, x997, x998, x999]

 and


x21
x22
. . .
x999
x1000

 (17)

During training, data normalization cannot be ignored. To ensure the stability of the
data, they were preprocessed and normalized, and the attributes were scaled to between
0 and 1.

x′ = (x− x.min)/(x.max− x.min) (18)

Following preparation of the datasets, they were divided into a training set and a
validation set. Usually, the training set comprised 70% of the data and the verification
set the remaining 30%. In our case, there were 990, 985, and 980 sub-sequence datasets
in the first, second, and third groups, respectively. To ensure that prediction results of
the three networks can be used when the final verification set is weighted, the number
of verification sets should be consistent; thus, the final number of verification sets was
294 (980 × 0.3 = 294). The specific number of datapoints is shown in Table 2.

Table 2. Number of training and validation datapoints.

Sub-Sequence (1) Sub-Sequence (2) Sub-Sequence (3)

Total 990 985 980
Training 696 691 686

Validation 294 294 294

Following the compilation of the dataset, the LSTM networks were constructed. In this
experiment, a total of three sub-sequences were constructed, so three LSTM networks were
required to be established correspondingly. The construction of the network should set
reasonable parameters according to the actual situation. Through preliminary experiments,
we found that the single-layer LSTM network was sufficient to train and simulate data.
Therefore, to save operating costs and calculation space, a smaller model should be used in
practice. The parameters of the three LSTM networks constructed in this study are shown
in Table 3.

Table 3. Hyperparameter set.

Sub-LSTM(1) Sub-LSTM(2) Sub-LSTM(3)

Layers 1 1 1
Hidden Cells 10 15 20
Learning Rate 0.01 0.01 0.01
Train Window 10 15 20

Predict Window 1 1 1
Epochs 5000 5000 5000

The numbers of hidden cells in the three subnetworks were 10, 15, and 20, respectively.
It should be noted that it was coincidental that the number of hidden cells was consistent

Remote Sens. 2021, 13, 3328 11 of 15

with the size of the training window. The learning rate and epoch of the three networks
were the same, i.e., 0.01 and 5000, respectively, and the Adam Optimizer was chosen as the
stochastic optimization algorithm.

4. Experimental Result and Analysis
4.1. Experiment Results of Three Networks

In this study, data were collected from the XJSS station. The specific data preparation
and distribution are shown in Table 2. The main hyperparameters of the three networks
are shown in Table 3.

The training and prediction results of these three neural networks with different
settings using different scale windows are shown in Figures 7–9, respectively.

Remote Sens. 2021, 13, x FOR PEER REVIEW 12 of 17

set reasonable parameters according to the actual situation. Through preliminary experi-
ments, we found that the single-layer LSTM network was sufficient to train and simulate
data. Therefore, to save operating costs and calculation space, a smaller model should be
used in practice. The parameters of the three LSTM networks constructed in this study are
shown in Table 3.

Table 3. Hyperparameter set.

 Sub-LSTM(1) Sub-LSTM(2) Sub-LSTM(3)
Layers 1 1 1

Hidden Cells 10 15 20
Learning Rate 0.01 0.01 0.01
Train Window 10 15 20

Predict Window 1 1 1
Epochs 5000 5000 5000

The numbers of hidden cells in the three subnetworks were 10, 15, and 20, respec-
tively. It should be noted that it was coincidental that the number of hidden cells was
consistent with the size of the training window. The learning rate and epoch of the three
networks were the same, i.e., 0.01 and 5000, respectively, and the Adam Optimizer was
chosen as the stochastic optimization algorithm.

4. Experimental Result and Analysis
4.1. Experiment Results of Three Networks

In this study, data were collected from the XJSS station. The specific data preparation
and distribution are shown in Table 2. The main hyperparameters of the three networks
are shown in Table 3.

The training and prediction results of these three neural networks with different set-
tings using different scale windows are shown in Figures 7–9, respectively.

(a) (b)

Figure 7. (a) Training loss curve; (b) data training and prediction of XJSS using LSTM Net(1).

In the first experiment, a sliding window of 10-1 and 10 hidden cells of the single-
layer LSTM were used as the network framework. The loss curve is shown in Figure 7a.
We can observe that after 5000 training runs, the loss curve dropped to around 0.006. The
training results and prediction results are shown in Figure 7b. The blue curve represents
the original value, comprising 990 groups of data in total, the red curve denotes the

Figure 7. (a) Training loss curve; (b) data training and prediction of XJSS using LSTM Net(1).

In the first experiment, a sliding window of 10-1 and 10 hidden cells of the single-layer
LSTM were used as the network framework. The loss curve is shown in Figure 7a. We can
observe that after 5000 training runs, the loss curve dropped to around 0.006. The training
results and prediction results are shown in Figure 7b. The blue curve represents the original
value, comprising 990 groups of data in total, the red curve denotes the training neural
network, containing 696 groups of data, and the magenta curve shows the remaining
294 groups of data for prediction.

In the second experiment, a sliding window of 15-1 and 15 hidden cells of the single-
layer LSTM were used as the network framework. The loss curve is shown in Figure 8a.
We can observe that after 5000 training runs, the loss curve dropped to around 0.002. The
training results and prediction results are shown in Figure 8b. The blue curve represents
the original value, comprising a total of 985 groups of data, the red curve denotes the
training neural network, containing 691 groups of data, and the magenta curve shows the
remaining 294 groups of data for prediction.

In the third experiment, a sliding window of 20-1 and 20 hidden cells of the single-
layer LSTM were used as the network framework. The loss curve is shown in Figure 9a.
After 5000 training runs, the loss curve dropped to below 0.001. The training results and
prediction results are shown in Figure 9b. The blue curve represents the original value,
comprising a total of 980 groups of data, the red curve denotes the training neural network,
containing 686 groups of data, and the magenta curve shows the remaining 294 groups of
data for prediction.

Remote Sens. 2021, 13, 3328 12 of 15

Remote Sens. 2021, 13, x FOR PEER REVIEW 13 of 17

training neural network, containing 696 groups of data, and the magenta curve shows the
remaining 294 groups of data for prediction.

(a) (b)

Figure 8. (a) Training loss curve; (b) data training and prediction of XJSS using LSTM Net(2).

In the second experiment, a sliding window of 15-1 and 15 hidden cells of the single-
layer LSTM were used as the network framework. The loss curve is shown in Figure 8a.
We can observe that after 5000 training runs, the loss curve dropped to around 0.002. The
training results and prediction results are shown in Figure 8b. The blue curve represents
the original value, comprising a total of 985 groups of data, the red curve denotes the
training neural network, containing 691 groups of data, and the magenta curve shows the
remaining 294 groups of data for prediction.

(a) (b)

Figure 9. (a) Training loss curve; (b) data training and prediction of XJSS using LSTM Net(3)

In the third experiment, a sliding window of 20-1 and 20 hidden cells of the single-
layer LSTM were used as the network framework. The loss curve is shown in Figure 9a.
After 5000 training runs, the loss curve dropped to below 0.001. The training results and
prediction results are shown in Figure 9b. The blue curve represents the original value,
comprising a total of 980 groups of data, the red curve denotes the training neural network,
containing 686 groups of data, and the magenta curve shows the remaining 294 groups of
data for prediction.

Figure 8. (a) Training loss curve; (b) data training and prediction of XJSS using LSTM Net(2).

Remote Sens. 2021, 13, x FOR PEER REVIEW 13 of 17

training neural network, containing 696 groups of data, and the magenta curve shows the
remaining 294 groups of data for prediction.

(a) (b)

Figure 8. (a) Training loss curve; (b) data training and prediction of XJSS using LSTM Net(2).

In the second experiment, a sliding window of 15-1 and 15 hidden cells of the single-
layer LSTM were used as the network framework. The loss curve is shown in Figure 8a.
We can observe that after 5000 training runs, the loss curve dropped to around 0.002. The
training results and prediction results are shown in Figure 8b. The blue curve represents
the original value, comprising a total of 985 groups of data, the red curve denotes the
training neural network, containing 691 groups of data, and the magenta curve shows the
remaining 294 groups of data for prediction.

(a) (b)

Figure 9. (a) Training loss curve; (b) data training and prediction of XJSS using LSTM Net(3)

In the third experiment, a sliding window of 20-1 and 20 hidden cells of the single-
layer LSTM were used as the network framework. The loss curve is shown in Figure 9a.
After 5000 training runs, the loss curve dropped to below 0.001. The training results and
prediction results are shown in Figure 9b. The blue curve represents the original value,
comprising a total of 980 groups of data, the red curve denotes the training neural network,
containing 686 groups of data, and the magenta curve shows the remaining 294 groups of
data for prediction.

Figure 9. (a) Training loss curve; (b) data training and prediction of XJSS using LSTM Net(3).

During the training of the neural network, the lower the loss value, the better. Al-
though a smaller loss value indicates a stronger fitting performance of the neural network
to the training data, it also results in less generalization ability. In practical application, the
hyperparameters can be adjusted according to the data and the neural network structure;
for example, a loss value of around 0.005 can maintain a good fit and generalization ability.
In addition, the use of 5000 training runs in this experiment was also based on empirical
values obtained after multiple training runs.

4.2. Experiment Summary

By weighted summation of the three groups of prediction results, 294 corresponding
MSSW-LSTM prediction results were obtained, as shown in the Figure 10 below.

Figure 10 shows the comparison between the forecast results of MSSW-LSTM (blue)
and the actual time series (red). It can be seen that MSSW-LSTM forecast results are
consistent with the true values.

Remote Sens. 2021, 13, 3328 13 of 15

Remote Sens. 2021, 13, x FOR PEER REVIEW 14 of 17

During the training of the neural network, the lower the loss value, the better.
Although a smaller loss value indicates a stronger fitting performance of the neural
network to the training data, it also results in less generalization ability. In practical
application, the hyperparameters can be adjusted according to the data and the neural
network structure; for example, a loss value of around 0.005 can maintain a good fit and
generalization ability. In addition, the use of 5000 training runs in this experiment was
also based on empirical values obtained after multiple training runs.

4.2. Experiment Summary
By weighted summation of the three groups of prediction results, 294 corresponding

MSSW-LSTM prediction results were obtained, as shown in the Figure 10 below.

Figure 10. Comparison of MSSW-LSTM prediction and the true values.

Figure 10 shows the comparison between the forecast results of MSSW-LSTM (blue)
and the actual time series (red). It can be seen that MSSW-LSTM forecast results are
consistent with the true values.

To quantitatively evaluate the prediction accuracy of our proposed model, indexes
(RMSE and MAE) were used to calculate the difference between the real and predicted
values. In the three LSTM experiments, the network model was obtained by training
nearly 700 datapoints, and the remaining 294 datapoints were predicted. The statistical
results are shown in Table 4, among which the RMSE of LSTM(1), LSTM(2), and LSTM(3)
are 3.2292, 4.1424, and 3.9810, respectively, and the MAE of these three experiments are
2.4252, 3.0239, and 3.0679.

Table 4. Performance comparison of traditional LSTM and proposed MSSW-LSTM.

 RMSE MAE
LSTM(1) 3.2292 2.4253
LSTM(2) 4.1434 3.0239
LSTM(3) 3.9810 3.0679

MSSW-LSTM 3.1628 2.3864

We can observe that, although the network model may become more complex, the
RMSE and MAE may not necessarily decrease. For example, although LSTM(2) is more
complex than LSTM(1), its RMSE value is greater. It is obvious that both RMSE and MAE
of MSSW-LSTM reach the best values. Specifically, RMSE is reduced by 2.1%, 23.7%, and
20.1% and MAE is decreased by 1.6%, 21.1%, and 22.2%, respectively.

In theory, through a single network, it is difficult to achieve optimal results even after
multiple training runs. However, the MSSW-LSTM algorithm can combine the

Figure 10. Comparison of MSSW-LSTM prediction and the true values.

To quantitatively evaluate the prediction accuracy of our proposed model, indexes
(RMSE and MAE) were used to calculate the difference between the real and predicted
values. In the three LSTM experiments, the network model was obtained by training nearly
700 datapoints, and the remaining 294 datapoints were predicted. The statistical results are
shown in Table 4, among which the RMSE of LSTM(1), LSTM(2), and LSTM(3) are 3.2292,
4.1424, and 3.9810, respectively, and the MAE of these three experiments are 2.4252, 3.0239,
and 3.0679.

Table 4. Performance comparison of traditional LSTM and proposed MSSW-LSTM.

RMSE MAE

LSTM(1) 3.2292 2.4253
LSTM(2) 4.1434 3.0239
LSTM(3) 3.9810 3.0679

MSSW-LSTM 3.1628 2.3864

We can observe that, although the network model may become more complex, the
RMSE and MAE may not necessarily decrease. For example, although LSTM(2) is more
complex than LSTM(1), its RMSE value is greater. It is obvious that both RMSE and MAE
of MSSW-LSTM reach the best values. Specifically, RMSE is reduced by 2.1%, 23.7%, and
20.1% and MAE is decreased by 1.6%, 21.1%, and 22.2%, respectively.

In theory, through a single network, it is difficult to achieve optimal results even after
multiple training runs. However, the MSSW-LSTM algorithm can combine the advantages
of multiple networks and the data characteristics at different scales. The principle of this
advantage is that the framework adopts the idea of measurement adjustment.

5. Discussion and Conclusions

In this study, a new forecasting framework, named MSSW-LSTM, comprising a multi-
scale sliding window (MSSW) and LSTM, was proposed for predicting GNSS time series.
In the data preprocessing stage, the multiscale sliding window is used to form different
training subsets, which can effectively extract the feature relationship under different scales,
and facilitates mining the deep features of the data. The LSTM network can then effectively

Remote Sens. 2021, 13, 3328 14 of 15

avoid the problem of gradient disappearance in the process of parameter solving. The
MSSW-LSTM can use multiple LSTM networks to make simultaneous predictions, and
obtains final results by weighting.

To verify the effectiveness of the MSSW-LSTM algorithm, 1000 daily solutions of the
XJSS station in the Up component were selected for prediction experiments. The results
of three groups of controlled experiments showed that the RMSE was reduced by 2.1%,
23.7%, and 20.1%, and MAE was decreased by 1.6%, 21.1%, and 22.2%, respectively. The
experimental results showed that the proposed framework has a higher prediction accuracy
and a smaller error.

It should be noted that the MSSW-LSTM method has significant flexibility. Researchers
can easily construct appropriate subspace subsets formed by multiscale windows according
to different data characteristics. In addition, LSTM networks may be the same or different,
and may comprise single layer or multiple layers. This feature is beneficial to researchers
for the selection of the most appropriate network model according to their own dataset
characteristics, and for use of the advantages of the network model. MSSW-LSTM is a
general framework for prediction that can be extended to other fields, such as traffic flow
prediction, weather forecasting, and air quality forecasting.

Author Contributions: Conceptualization, J.W. and W.J.; methodology, J.W. and W.J.; software, J.W.;
validation, J.W. and Z.L.; formal analysis, J.W. and Z.L.; investigation, J.W. and Y.L.; resources, J.W.;
data curation, J.W.; writing—original draft preparation, J.W. and Z.L.; writing—review and editing,
J.W., Z.L. and Y.L.; All authors have read and agreed to the published version of the manuscript.

Funding: This study is partially supported by the Natural Science Innovation Group Foundation of
China (No. 41721003), and National key R&D Program of China (2018YFC1503601).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: The authors gratefully acknowledge the China Earthquake Networks Center,
National Earthquake Data Center (http://data.earthquake.cn, accessed on 16 August 2021) for
providing GNSS data.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Geoffrey, L.; Blewitt, D. Effect of annual signals on geodetic velocity. J. Geophys. Res. Solid Earth 2002, 107, ETG 9-1–ETG 9-11.
2. Ohta, Y.; Kobayashi, T.; Tsushima, H.; Miura, S.; Hino, R.; Takasu, T.; Fujimoto, H.; Iinuma, T.; Tachibana, K.; Demachi, T.; et al.

Quasi real-time fault model estimation for near-field tsunami forecasting based on RTK-GPS analysis: Application to the 2011
Tohoku-Oki earthquake (Mw 9.0). J. Geophys. Res. Solid Earth 2012, 117. [CrossRef]

3. Deng, L.; Jiang, W.; Li, Z.; Chen, H.; Wang, K.H.; Ma, Y.F. Assessment of second-and third-order ionospheric effects on regional
networks: Case study in China with longer CMONOC GPS coordinate time series. J. Geod. 2017, 91, 207–227. [CrossRef]

4. Bevis, M.; Alsdorf, D.; Kendrick, E.; Fortes, L.P.; Forsberg, B.; Smalley, R.; Becker, J. Seasonal fluctuations in the mass of the
Amazon River system and Earth’s elastic response. Geophys. Res. Lett. 2005, 32. [CrossRef]

5. Montillet, J.P.; Williams, S.; Koulali, A.; McClusky, S.C. Estimation of offsets in GPS time-series and application to the detection of
earthquake deformation in the far-field. Geophys. J. Int. 2015, 200, 1207–1221. [CrossRef]

6. Meng, X.; Roberts, G.W.; Dodson, A.H.; Cosser, E.; Barnes, J.; Rizos, C. Impact of GPS satellite and pseudolite geometry on
structural deformation monitoring: Analytical and empirical studies. J. Geod. 2004, 77, 809–822. [CrossRef]

7. Yi, T.H.; Li, H.N.; Gu, M. Experimental assessment of high-rate GPS receivers for deformation monitoring of bridge. Meas. J. Int.
Meas. Confed. 2013, 46, 420–432. [CrossRef]

8. Yu, J.; Meng, X.; Shao, X.; Yan, B.; Yang, L. Identification of dynamic displacements and modal frequencies of a medium-span
suspension bridge using multimode GNSS processing. Eng. Struct. 2014, 81, 432–443. [CrossRef]

9. Xi, R.; Jiang, W.; Meng, X.; Zhou, X.; He, Q. Rapid initialization method in real-time deformation monitoring of bridges with
triple-frequency BDS and GPS measurements. Adv. Space Res. 2018, 62, 976–989. [CrossRef]

10. Chen, Q.; Jiang, W.; Meng, X.; Jiang, P.; Wang, K.; Xie, Y.; Ye, J. Vertical deformation monitoring of the suspension bridge tower
using GNSS: A case study of the forth road bridge in the UK. Remote Sens. 2018, 10, 364. [CrossRef]

http://data.earthquake.cn
http://doi.org/10.1029/2011JB008750
http://doi.org/10.1007/s00190-016-0957-y
http://doi.org/10.1029/2005GL023491
http://doi.org/10.1093/gji/ggu473
http://doi.org/10.1007/s00190-003-0357-y
http://doi.org/10.1016/j.measurement.2012.07.018
http://doi.org/10.1016/j.engstruct.2014.10.010
http://doi.org/10.1016/j.asr.2018.06.018
http://doi.org/10.3390/rs10030364

Remote Sens. 2021, 13, 3328 15 of 15

11. Altamimi, Z.; Rebischung, P.; Métivier, L.; Collilieux, X. ITRF2014: A new release of the International Terrestrial Reference Frame
modeling nonlinear station motions. J. Geophys. Res. Solid Earth 2016, 121, 6109–6131. [CrossRef]

12. Li, Z.; Chen, W.; van Dam, T.; Rebischung, P.; Altamimi, Z. Comparative analysis of different atmospheric surface pressure
models and their impacts on daily ITRF2014 GNSS residual time series. J. Geod. 2020, 94, 1–20. [CrossRef]

13. Zhang, J.; Bock, Y.; Johnson, H.; Fang, P.; Williams, S.; Genrich, J.; Wdowinski, S.; Behr, J. Southern California permanent GPS
geodetic array: Error analysis of daily position estimates and site velocities. J. Geophys. Res. Solid Earth 1997, 102, 18035–18055.
[CrossRef]

14. He, X.; Montillet, J.P.; Fernandes, R.; Bos, M.; Yu, K.; Hua, X.; Jiang, W. Review of current GPS methodologies for producing
accurate time series and their error sources. J. Geodyn. 2017, 106, 12–29. [CrossRef]

15. Klos, A.; Olivares, G.; Teferle, F.N.; Hunegnaw, A.; Bogusz, J. On the combined effect of periodic signals and colored noise on
velocity uncertainties. GPS Solut. 2018, 22, 1–13. [CrossRef]

16. Hinton, G.E.; Salakhutdinov, R.R. Reducing the Dimensionality of Data with Neural Networks. Science 2006, 313, 504–507.
[CrossRef]

17. Rumelhart, D.E.; Hinton, G.E.; Williams, R.J. Learning representations by back-propagating errors. Nature 1986, 323, 533–536.
[CrossRef]

18. Elman, J.L. Finding structure in time. Cogn. Sci. 1990, 14, 179–211. [CrossRef]
19. Bengio, Y.; Simard, P.; Frasconi, P. Learning long-term dependencies with gradient descent is difficult. IEEE Trans. Neural Netw.

1994, 5, 157–166. [CrossRef]
20. Hochreiter, S.; Schmidhuber, J. Long short-term memory. Neural Comput. 1997, 9, 1735–1780. [CrossRef]
21. Freeman, B.S.; Taylor, G.; Gharabaghi, B.; Thé, J. Forecasting air quality time series using deep learning. J. Air Waste Manag. Assoc.

2018, 68, 866–886. [CrossRef]
22. Karevan, Z.; Suykens, J. Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Netw. 2020,

125, 1–9. [CrossRef]
23. Tian, Y.; Pan, L. Predicting short-term traffic flow by long shortterm memory recurrent neural network. In Proceedings of the

2015 IEEE International Conference on Smart City/SocialCom/SustainCom (SmartCity), Chengdu, China, 19–21 December 2015;
IEEE: Piscataway, NJ, USA, 2015; pp. 153–158.

24. Xing, Y.; Yue, J.; Chen, C.; Cong, K.L.; Zhu, S.L.; Bian, Y.K. Dynamic Displacement Forecasting of Dashuitian Landslide in China
Using Variational Mode Decomposition and Stack Long Short-Term Memory Network. Appl. Sci. 2019, 9, 2951. [CrossRef]

25. Xing, Y.; Yue, J.; Chen, C. Interval Estimation of Landslide Displacement Prediction Based on Time Series Decomposition and
Long Short-Term Memory Network. IEEE Access 2020, 8, 3187–3196. [CrossRef]

26. Xie, P.; Zhou, A.; Chai, B. The Application of Long Short-Term Memory(LSTM) Method on Displacement Prediction of Multifactor-
Induced Landslides. IEEE Access 2019, 7, 54305–54311. [CrossRef]

27. Wang, J.; Nie, G.; Gao, S.; Wu, S.; Li, H.; Ren, X. Landslide Deformation Prediction Based on a GNSS Time Series Analysis and
Recurrent Neural Network Model. Remote Sens. 2021, 13, 1055. [CrossRef]

28. Yang, B.; Yin, K.; Lacasse, S.; Liu, Z.Q. Time series analysis and long short-term memory neural network to predict landslide
displacement. Landslides 2019, 16, 677–694. [CrossRef]

29. Tan, T.N.; Khenchaf, A.; Comblet, F.; Franck, P.; Champeyroux, J.M.; Reichert, O. Robust-Extended Kalman Filter and Long
Short-Term Memory Combination to Enhance the Quality of Single Point Positioning. Appl. Sci. 2020, 10, 4335. [CrossRef]

30. Jiang, C.; Chen, S.; Chen, Y.; Zhang, B.; Feng, Z.; Zhou, H.; Bo, Y. A MEMS IMU De-Noising Method Using Long Short Term
Memory Recurrent Neural Networks (LSTM-RNN). Sensors 2018, 18, 3470. [CrossRef]

31. Kim, H.U.; Bae, T.S. Deep Learning-Based GNSS Network-Based Real-Time Kinematic Improvement for Autonomous Ground
Vehicle Navigation. J. Sens. 2019, 2019, 1–8. [CrossRef]

32. Tao, Y.; Liu, C.; Chen, T.; Zhao, X.W.; Liu, C.Y.; Hu, H.J.; Zhou, T.F.; Xin, H.Q. Real-Time Multipath Mitigation in Multi-GNSS
Short Baseline Positioning via CNN-LSTM Method. Math. Probl. Eng. 2021, 2021, 1–12.

33. Hoang, M.T.; Yuen, B.; Dong, X.; Lu, T.; Westendorp, R.; Reddy, K. Recurrent Neural Networks for Accurate RSSI Indoor
Localization. IEEE Internet Things J. 2019, 6, 10639–10651. [CrossRef]

34. Fang, W.; Jiang, J.; Lu, S.; Gong, Y.; Tao, Y.; Tang, Y.; Yang, P.; Luo, H.; Liu, J. A LSTM Algorithm Estimating Pseudo Measurements
for Aiding INS during GNSS Signal Outages. Remote Sens. 2020, 12, 256. [CrossRef]

35. Redmon, J.; Farhadi, A. YOLO9000: Better, Faster, Stronger. In Proceedings of the IEEE Conference on Computer Vision & Pattern
Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 6517–6525.

36. Ren, S.; He, K.; Girshick, R.; Girshick, R.; Sun, J. Faster R-CNN: Towards Real-Time Object Detection with Region Proposal
Networks. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 39, 1137–1149. [CrossRef]

37. Plutowski, M.; Cottrell, G.; White, H. Experience with selecting exemplars from clean data. Neural Netw. Off. J. Int. Neural Netw.
Soc. 1996, 9, 273–294. [CrossRef]

http://doi.org/10.1002/2016JB013098
http://doi.org/10.1007/s00190-020-01370-y
http://doi.org/10.1029/97JB01380
http://doi.org/10.1016/j.jog.2017.01.004
http://doi.org/10.1007/s10291-017-0674-x
http://doi.org/10.1126/science.1127647
http://doi.org/10.1038/323533a0
http://doi.org/10.1207/s15516709cog1402_1
http://doi.org/10.1109/72.279181
http://doi.org/10.1162/neco.1997.9.8.1735
http://doi.org/10.1080/10962247.2018.1459956
http://doi.org/10.1016/j.neunet.2019.12.030
http://doi.org/10.3390/app9152951
http://doi.org/10.1109/ACCESS.2019.2961295
http://doi.org/10.1109/ACCESS.2019.2912419
http://doi.org/10.3390/rs13061055
http://doi.org/10.1007/s10346-018-01127-x
http://doi.org/10.3390/app10124335
http://doi.org/10.3390/s18103470
http://doi.org/10.1155/2019/3737265
http://doi.org/10.1109/JIOT.2019.2940368
http://doi.org/10.3390/rs12020256
http://doi.org/10.1109/TPAMI.2016.2577031
http://doi.org/10.1016/0893-6080(95)00099-2

	Introduction
	Methodology
	LSTM
	Multi-Scale Sliding Window LSTM
	Evaluation Criteria

	Data and Processing Strategy
	MSSW-LSTM Process Strategy
	MSSW-LSTM Processing for the XJSS Station

	Experimental Result and Analysis
	Experiment Results of Three Networks
	Experiment Summary

	Discussion and Conclusions
	References

