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Abstract: This paper proposes an imaging algorithm for synthetic aperture radar (SAR) mounted
on a high-speed maneuvering platform with squint terrain observation by progressive scan mode.
To overcome the mismatch between range model and the signal after range walk correction, the range
history is calculated in local polar format. The Doppler ambiguity is resolved by nonlinear derotation
and zero-padding. The recovered signal is divided into several blocks in Doppler according to
the angular division. Keystone transform is used to remove the space-variant range cell migration
(RCM) components. Thus, the residual RCM terms can be compensated by a unified phase function.
Frequency domain perturbation terms are introduced to correct the space-variant Doppler chirp rate
term. The focusing parameters are calculated according to the scene center of each angular block
and the signal of each block can be processed in parallel. The image of each block is focused in
range-Doppler domain. After the geometric correction, the final focused image can be obtained by
directly combined the images of all angular blocks. Simulated SAR data has verified the effectiveness
of the proposed algorithm.

Keywords: synthetic aperture radar; maneuvering platform; squint mode; terrain observation by
progressive scan; nonlinear derotation; frequency perturbation

1. Introduction

In the past a few decades, the technology of synthetic aperture radar (SAR) has been
widely used in the field of geoscience and climate change research, environmental and
earth system monitoring [1]. As an active sensor, radar transmits wideband signal for
target detection and imaging [1–4]. It has an ability to get high resolution images in day
and night and all weather conditions [1]. SAR has been mounted on numerous platforms,
such as satellite, airplane, missiles, drones, and others. To get a well-focused SAR image,
the corresponding imaging algorithms need to be developed according to the platform
motion characteristics and the radar working mode. In most cases, the radar platform
moves with a straight flight track and the radar works at side-looking mode. For airborne
platforms, there are motion errors during a synthetic aperture which is usually caused by
the air turbulence. Some motion compensation and autofocusing methods are proposed
to handle this problem [5–7]. Recently, radar mounted on high-speed maneuvering
platform becomes a research hotspot [8–10]. It has several features that are different
from the common platform SAR imaging. One is the recorded data is usually part of the
full synthetic aperture. The speed of platform is over Mach 1. For real-time imaging,
the synthetic aperture time is usually less than a second. Thus, the SAR data is focused
in range-Doppler domain for more efficiency. Another feature is the nonlinear flight
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track. The deviation of flight track cannot be treated as motion errors. A higher orders
range model is needed when calculating the range history. The nonlinear flight track
will lead to complex range-azimuth coupling terms. In order to get a larger observation
area during a short time, the beam steering technique [11], such as terrain observation
by progressive scan (TOPS) is used during the synthetic aperture time. However, this
will cause Doppler ambiguity and more complex for the data focusing [12,13]. The radar
needs the ability to detect target which is at the side forward location. Thus, it usually
works at high squint mode [14,15]. Together with the nonlinear flight track, they cause
serious space-variation both in range envelop and Doppler parameters. It is essential
for researchers to develop an efficient and accurate imaging algorithm for a high-speed
maneuvering platform.

Range modeling is the foundation of imaging algorithm design. In [9–11], a fourth
order range model is used, and the platform is considered with constant acceleration.
To deal with the range–azimuth coupling caused by high squint mode, the range walk
correction (RWC) is a commonly used operation. It works by removing the linear term of
range cell migration (RCM) with reference to the scene center. However, this operation
will lead to a deviation of the range focusing position. It will cause a mismatch between
the range model and the signal after RWC. In [10], the range model has been updated
by variable substitution. The range model is then suitable for the azimuth processing.
Unfortunately, it will become more complex and bring in approximations, considering the
fourth order range model.

To get a large observation area during a limited synthetic aperture time, TOPS mode
has been used in maneuvering platform SAR imaging [14]. This technique also referred to
as beam steering [12] has been applied in satellite SAR imaging. The SAR data recorded in
TOPS mode need preprocessing steps [16–18] to recover the ambiguous Doppler signals.
This is caused by the beam scanning which leads to the Doppler variation during the
synthetic aperture time. When the platform speed is high, the Doppler expansion is
much larger. In [16,17], the signal is first multiplied by the derotation function and then
transformed into baseband. However, the signal is still ambiguous in time domain. When
time domain compensations are needed, the processing becomes complex.

Space-variant terms correction is a key processing step for the imaging algorithm.
The space-variation of range envelop and azimuth phase both need to be considered.
Nonlinear chirp scaling (NCS) methods [19–25] are widely used in squint SAR imaging.
In [19], the RCM is expressed and analyzed in range-Doppler by Taylor series. The
scaling factor is used to correct space-variant terms. The following methods, like [20]
and [22–25] have developed the method to be more accurate. Higher order scaling
factors are used to make the NCS method suitable for different applications. The NCS
can also be applied to correct the space-variant azimuth phase [21]. By introducing
scaling factors in azimuth time or Doppler domain, the space-variant terms can be
corrected in another domain. However, the method is limited when applied to the TOPS
SAR signal processing, because the signal is ambiguous in time domain. Another method
for space-variation correction is resampling [26,27]. By changing the sampling interval,
the space-variation can be corrected. The method needs interpolation operations which
is computational complex. However, both NCS and resampling cannot remove all the
space-variant components in Doppler chirp rate and third order terms at the same time.
Usually, the space-variant component in third order term is remained [14]. In [11], the
signal is divided into several blocks in Doppler to weaken the azimuth dependence.
However, the signal needs to be combined before the final azimuth focusing which will
reduce the processing efficiency.
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In this paper, an imaging algorithm for high-speed maneuvering platform SAR with
squint TOPS mode is proposed. The range history is calculated in local polar format coor-
dinate. It is accurate and exactly matched with the signal after RWC without any variable
substitution. To make the signal unambiguous in Doppler, the signal is first multiplied
by the nonlinear derotation function. Then, the signal is recovered by zero-padding in
Doppler and time domain phase compensation. The recovered signal is unambiguous
both in time and Doppler domain. To weaken the influence of space-variation in third
order term, the signal is divided into several blocks according to the angular division.
Different from the existed methods, the data of each angular block can be processed in
parallel. There is no need to combine the signal before the final focusing. The space-variant
range envelop is removed by keystone transform (KT). Thus, the RCM can be corrected by
unified phase function with reference to the scene center of each angular block. Because
the space-variation of third order term can be neglected in a block, only the space-variant
components in Doppler chirp rate term need to be considered. By introducing perturbation
terms in Doppler, the space-variant components can be compensated in time domain. Then,
the signal can be focused in Doppler after time domain deramp. The focusing parameters
are all calculated with reference to the scene center of each angular block. The final focused
image can be obtained by directly combining all the angular block images.

This paper is organized as follows. Section 2 gives the expressions of range history
in local polar format. The accuracy of the proposed range model and space-variation
properties are also analyzed. Section 3 is the proposed imaging algorithm based on angular
division. Section 4 shows the experiments of simulated SAR data. The main processing
steps have all been verified. Section 5 provides some discussions on the advantages of the
proposed method. Section 6 conclude the paper.

2. Signal Model and Properties
2.1. Range Model in Local Polar Format Coordinate

The imaging geometry of maneuvering platform SAR with squint TOPS mode is

shown in Figure 1. The platform moves along the curve
_

ACD with velocity vector
V =

(
vx, vy, vz

)
while the beam is scanning from Qs to Qe with a constant angular speed

ω. B is an arbitrary point on the flight track corresponding to azimuth tine ta. C(0, 0, H) is
the platform position at azimuth time ta = 0. During the following imaging processing,
the signal spectrum is divided into several blocks corresponding to different angular areas.
T is an arbitrary target within the angular area i whose center yaw angle is θi. According
to the local polar format definition in [14], the reference range of T is Ri. So, the slant range
of T can be expressed as

RT,i(ta; Ri, ∆θ) =

∣∣∣∣ →BT
∣∣∣∣ ≈ Ri +

4

∑
n=1

kn,i(Ri, ∆θ)tn
a (1)

where kn,i(Ri, ∆θ) = (1/n!)(dnRT,i(ta; Ri, ∆θ)/dtn
a )|ta=0 is the nth-order deviation at ta = 0

corresponding to angular area i. In each angular area i, an arbitrary target can be expressed
with the reference range Ri and an angular deviation ∆θ. The slant range terms kn,i are
space-variant with Ri and ∆θ which are the range and azimuth space-variation, respectively.
The range-variation can be overcome by range blocking and chirp scaling methods [19].
For azimuth processing, more accurate phase compensations are needed, especially for the
Doppler parameters.
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Figure 1. Imaging geometry of maneuvering platform SAR with TOPS mode.

2.2. Space-Variation of Doppler Parematers

The azimuthal space-variation of slant range terms in (1) need to be considered in the
following processing. kn,i(Ri, ∆θ)(n = 1, 2, 3, 4) are expanded at ∆θ = 0 as

kn,i(Ri, ∆θ) ≈
4−n

∑
m=0

knm,i(Ri)∆θm (2)

where knm,i(Ri) = (1/m!)[dnkn,i(Ri, ∆θ)/d∆θ]|∆θ=0. k1,i(Ri, ∆θ) is the linear term which
will affect the azimuth focusing position. It is also the main component of RCM. k2,i(Ri, ∆θ)
is the Doppler chirp rate term which directly affect the azimuth focusing quality. k3,i(Ri, ∆θ)
and k4,i(Ri, ∆θ) are higher order terms. They usually affect the sidelobe level of a focused
point. There are approximation errors in (2) when calculating the slant range terms. The
corresponding phase errors can be expressed as

φn,i(Ri, ∆θ) =
4π

λ

[
kn,i(Ri, ∆θ)−

4−n

∑
m=0

knm,i(Ri)∆θm

]
(Ta/2)n(n = 1, 2, 3, 4) (3)

Some simulations are made to calculate the approximation errors with the system
parameters in Table 1.

Table 1. System parameters.

Parameters Value

Carrier frequency 15 GHz
Range bandwidth 50 MHz

Pulse width 10 µs
Height 16.5 km

Center slant range 30 km
Center yaw angle 50◦

Center squint angle 39.8◦

Time duration 0.6 s
Steering angle 42.13◦~57.87◦

Range swath 5 km
Azimuth swath 6.88 km

(vx, vy, vz) (−40, 1300, −600) m/s
(ax, ay, az) (−15, −30, −35) m/s2
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As the simulation results shown in Figure 2, the approximation errors in k3,i(Ri, ∆θ)
and k4,i(Ri, ∆θ) can be neglected, for the maximum phase error is less than π/4. How-
ever, the expressions for k1,i(Ri, ∆θ) and k2,i(Ri, ∆θ) are not accurate enough, as shown in
Figure 2a,b. In order to overcome this problem, angular division is used during the range
cell migration correction (RCMC) and azimuth focusing. By dividing the whole steering
angle into three parts, the approximation errors can be significantly reduced. As the simu-
lation results shown in Figure 3, the approximation errors of k1,i(Ri, ∆θ) and k2,i(Ri, ∆θ)
have been decreased to a value much less than π/4. So, the expressions in (2) are accurate
enough for the following signal processing based on the angular division method.

Another advantage of the angular division method is the space-variation of k3,i(Ri, ∆θ)
can also be neglected. For the existed space-variation correction methods [10,14], the space-
variation of k2,i(Ri, ∆θ) and k3,i(Ri, ∆θ) cannot be removed at the same time. Usually only
the space-variation of k2,i(Ri, ∆θ) is compensated. However, to get a well-focused image,
the space-variation of k3,i(Ri, ∆θ) also needs to be considered. As the simulation results
shown in Figure 4a, the variation cannot be neglected, for the maximum phase value is
greater than π/4. After angular division method, the space-variation can be neglected
as the results shown in Figure 4b. Furthermore, there is no need for the azimuth signal
combination. Therefore, the data of different angular blocks can be processed in parallel.
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3. Imaging Algorithm

In this section, an imaging algorithm based on angular division is proposed. Figure 5
shows the flow charts of the algorithm. The SAR data is first multiplied by the unified
RWC and nonlinear derotation function. Then, the signal is unambiguous in Doppler.
After zero-padding and phase compensation, the signal is recovered in both time and
Doppler domain. The signal is divided into several blocks in Doppler according to the
angular division. For angular data block i, the data is compensated by the residual
RWC function. The space-variant RCM components are removed by KT. The RCM is
then corrected by a unified function. For the azimuth focusing, frequency perturbation
terms are introduced to correct the space-variant Doppler chirp rate. All the focusing
parameters are calculated according to the scene center of each angular block and the data
can be processed in parallel. Each angular block i is focused in range-Doppler domain.
The final focused SAR image can be obtained by the combination of all the angular block
images after geometric correction.
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Figure 5. Flow chart of the proposed algorithm.

3.1. Spectrum Recovering and Angular Division

By a range Fourier transform, the signal in range frequency domain can be expressed as

Ss( fr, ta; R, ∆θ) = Wr( fr)wa(ta)φcp( fr, ta; R, ∆θ) (4)

where Wr( fr) is the range envelop function in frequency domain. wa(ta) is the azimuth
beam window. φcp( fr, ta; R, ∆θ) is the range-azimuth coupling phase term which can be
expressed as

φcp( fr, ta; R, ∆θ) = exp
(
−jπ

f 2
r

Kr

)
exp

[
−j

4π

c
( fc + fr)RT(ta; R, ∆θ)

]
(5)

where RT(ta; R, ∆θ) is the slant range in (1) without angular division. The corresponding
coefficients are kn(R, ∆θ) and knm(R).

The spectrum bandwidth of the TOPS SAR echo signal is constructed by two parts, the
resolution bandwidth and the beam steering bandwidth. As the time-frequency diagram
shown in Figure 6a, the resolution bandwidth is much smaller than the bandwidth caused
by beam steering. The total Doppler bandwidth is much larger than the system PRF
which will lead to Doppler ambiguity. The time-frequency line of beam steering can be
calculated by

Lt f (ta; R) = − 2
λ

dRT(ta; R, ∆θ)

dta

∣∣∣∣
∆θ=ωta

= − 2
λ

[
l0(R) + l1(R)ta + l2(R)t2

a + l3(R)t3
a

]
(6)

where ln(R)(n = 0, 1, 2, 3) is corresponding to the slope of time-frequency line. l0(R) is the
Doppler deviation caused by squint mode. It can be removed by unified RWC and range
compression. The compensation function can be derived as
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Hun−rwc/rc

(
ta; Rre f

)
= exp

[
j
4π( fr + fc)

c
k10

(
Rre f

)
ta

]
exp

(
jπ

f 2
r

Kr

)
(7)

l1(R) is the linear component caused by beam steering. Usually, this term can be compen-
sated by linear derotation [17], as shown in Figure 6b. However, by nonlinear derotation,
the required system PRF can be further reduced. The compensation function can be
formed as

Hnl−rot

(
ta; Rre f

)
= exp

[
j
π

λ

(
2l1
(

Rre f

)
t2
a +

4
3

l2
(

Rre f

)
t3
a + l3

(
Rre f

)
t4
a

)]
(8)

(7) and (8) are both calculated with reference to the scene center corresponding to Rre f . The
time-frequency diagram of signal after nonlinear derotation is shown in Figure 6c. The
time-frequency line in (6) becomes

L′t f (ta; R) = − 2
λ

[
l′0(R) + l′1(R)ta + l′2(R)t2

a + l′3(R)t3
a

]
(9)

where l′n(R) = ln(R)− ln
(

Rre f

)
is the residual component after nonlinear derotation.
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Figure 6. Spectrum recovering analysis by the time-frequency diagrams. (a) Echo signal. (b) Signal
after RWC and linear derotation. (c) Signal after nonlinear derotation and zero-padding. (d) Recov-
ered signal.



Remote Sens. 2021, 13, 3329 9 of 20

It can be noticed that the signal is unambiguous in Doppler. Thus, the Doppler interval
can be extended by zero-padding after an azimuth Fourier transform. In order to get the
numbers of zero-padding, the Doppler bandwidth of echo signal and signal after nonlinear
derotation need to be calculated. According to (6), the Doppler bandwidth can be derived
as the beam steering bandwidth:

Ba = Lt f (Ta/2; Rmax)− Lt f (−Ta/2; Rmin) (10)

Similarly, the signal Doppler bandwidth in Figure 6c can be expressed as

B′a = L′t f (Ta/2; Rmax)− L′t f (−Ta/2; Rmin) (11)

So, the number of zero-padding can be derived with considering the sampling redundancy:

N0 = 1.2
(

B′a/Ba − 1
)

PRF · Ta (12)

Furthermore, the azimuth sampling frequency has been extended as

PRF′ = B′a/Ba · PRF (13)

The new azimuth time and frequency have changed to t′a and f ′a, respectively.
Then, the signal is transformed into azimuth time domain. A phase function is needed

to compensate the influence caused by the nonlinear derotation in (8). The function can be
formed as

Hcmp

(
t′a; Rre f

)
= H∗nl−rot

(
t′a; Rre f

)
= exp

[
−j

π

λ

(
2l1
(

Rre f

)
t′a

2
+

4
3

l2
(

Rre f

)
t′a

3
+ l3

(
Rre f

)
t′a

4
)]

(14)

After phase compensation, the signal is unambiguous in Doppler, as shown in Figure 6d.
Then, the signal can be divided into several blocks in Doppler according to the angular

division. As shown in Figure 7a, the observation area is divided uniformly into n blocks.
Each block has a same yaw angle. There is a mapping relation between the yaw angle
and the Doppler, as shown in Figure 7b. For block i, the corresponding support region in
Doppler can be easily found. To avoid resolution loss in the margin area, the selected data
support region in Doppler is a bit larger than the calculated one. So, there is no need for
the signal to be recombined before azimuth focusing. The signal after angular division can
be processed in parallel without resolution loss.
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Figure 7. Angular division analysis. (a) Block division in angular domain. (b) Mapping relation
between yaw angle and Doppler.
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3.2. Residual RWC and Space-Variant RCMC

After angular division and aforementioned processing steps, the phase in (5) becomes

φcp,i
(

fr, t′a; Ri, ∆θ
)
= exp

{
−j

4π

c
( fc + fr)

[
Ri + k′1,i(Ri, ∆θ)t′a + k2,i(Ri, ∆θ)t′a

2
+ k30,i(Ri)t′a

3
+ k40,i(Ri)t′a

4
]}

(15)

According to the simulation results in Figures 2 and 4, the third and the fourth order
terms are processed as constant components. k′1,i(Ri, ∆θ) = k1,i(Ri, ∆θ)− k10

(
Rre f

)
is the

residual linear component after the unified RWC in Equation (7). Figure 8 shows the RCM
lines of targets TA, TB and TC which share a same reference range. There are still residual
RWC components, as shown in Figure 8a. The signal after angular division needs to be
processed with reference to the scene center of each angular block. So, the residual RWC
need to be compensated by the function:

Hres−rwc,i
(
t′a
)
= exp

{
j
4π( fr + fc)

c

[
k10,i

(
Rre f ,i

)
− k10

(
Rre f

)]
t′a

}
(16)

Then, the linear term becomes k′′1,i(Ri, ∆θ) = k1,i(Ri, ∆θ) − k′10

(
Rre f ,i

)
. It can be

noticed that there are still space-variant terms remained. As shown in Figure 8b, the RCM
lines of TA and TC cannot be corrected by a same function with reference to TB. In order to
remove the space-variant components, KT is applied by interpolating the signal into a new
time interval. The mapping relation can be expressed as

t′a = t′′a fc/( fr + fc) (17)

where t′′a is the azimuth time after KT. The corresponding azimuth frequency is f ′′a . After
KT, the phase terms in (15) becomes

φcp,i
(

fr, t′′a ; Ri, ∆θ
)

= exp
{
− 4π

c

[
( fr + fc)Ri + fck′′1,it

′′
a +

f 2
c k2,i

( fc+ fr)
t′′a

2 − f 3
c k3,i

( fc+ fr)
2 t′′a

3 − f 4
c k4,i

( fc+ fr)
3 t′′a

4
]}

= φrcm,i
(

fr, t′′a ; Ri, ∆θ
)
φsrc,i

(
fr, t′′a ; Ri, ∆θ

)
φaz,i

(
t′′a ; Ri, ∆θ

) (18)

where

φrcm,i
(

fr, t′′a ; Ri, ∆θ
)
= exp

{
4π

c
fr

[
−Ri + k2,i(Ri, ∆θ)t′′a

2
+ 2k3,i(Ri, ∆θ)t′′a

3
+ 3k4,i(Ri, ∆θ)t′′a

4
]}

(19)

φsrc,i
(

fr, t′′a ; Ri, ∆θ
)
= exp

{
− 4π

c fc
f 2
r

[
k2,i(Ri, ∆θ)t′′a

2
+ 3k3,i(Ri, ∆θ)t′′a

3
+ 6k4,i(Ri, ∆θ)t′′a

4
]}

(20)

φaz,i
(
t′′a ; Ri, ∆θ

)
= exp

{
−4π fc

c

[
Ri + k′′1,i(Ri, ∆θ)t′′a + k2,i(Ri, ∆θ)t′′a

2
+ k3,i(Ri, ∆θ)t′′a

3
+ k4,i(Ri, ∆θ)t′′a

4
]}

(21)

φcp,i
(

fr, t′′a ; Ri, ∆θ
)

is the coupling phase term which can be decomposed into three terms.
φrcm,i

(
fr, t′′a ; Ri, ∆θ

)
is the RCM component. φsrc,i

(
fr, t′′a ; Ri, ∆θ

)
is the secondary range

compression (SRC) term which is caused by the KT. φaz,i
(
t′′a ; Ri, ∆θ

)
is the azimuth phase

term. It can be noticed that the linear RCM term including the space-variant components
have been removed. The remained RCM and SRC terms can be compensated with reference
to the scene center of each angular block. The compensation function can be formed as

Hrcm/src,i( fr, ta) = exp
{
− 4π

c fr

[
k20,i

(
Rre f ,i

)
t′′a

2
+ 2k30,i

(
Rre f ,i

)
t′′a

3
+ 3k40,i

(
Rre f ,i

)
t′′a

4
]}

exp
{

4π
c fc

f 2
r

[
k20,i

(
Rre f ,i

)
t′′a

2
+ 3k30,i

(
Rre f ,i

)
t′′a

3
+ 6k40,i

(
Rre f ,i

)
t′′a

4
]} (22)

After RCM and SRC compensation and a range inverse Fourier transform, the signal
can be expressed as

ssi
(
tr, t′′a ; Ri, ∆θ

)
= sinc

[
Br

(
tr −

2Ri
c

)]
wa(ta)φaz,i

(
t′′a ; Ri, ∆θ

)
(23)
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It can be seen in (23) that the targets sharing a same reference range have been focused
into a same range cell. There is no mismatch between the range focused position and the
azimuth phase [10] which is an advantage over the conventional RWC based methods.
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3.3. Aizmuth Fousing

The phase terms in (21) are space-variant with the ∆θ. k′′2,i(Ri, ∆θ) is the Doppler chirp
rate term which will directly affect the azimuth focusing quality. Figure 9 shows the time-
frequency lines of targets TA, TB and TC which are in a same range cell. The slope of the
time-frequency line mainly corresponding to the Doppler chirp rate which are γA, γB and
γC. In order to remove the space-variation of Doppler chirp rate, frequency perturbation
terms are introduced. By an azimuth Fourier transform, the signal is transformed into
Doppler domain:

φaz,i
(

f ′′a ; Ri, ∆θ
)
= exp

{
j

4

∑
n=2

κn,i(Ri, ∆θ)
(

f ′′a + fdc,i
)2
}

(24)

where fdc = 2k′′1,i(Ri, ∆θ)/λ is the residual Doppler center after residual RWC of block i.
The constant phase term in (24) is neglected, for it has no influence on the azimuth focusing.
κn,i(n = 2, 3, 4) can be expressed as

κ2,i(Ri, ∆θ) = πλ
4k2,i(Ri ,∆θ)

κ3,i(Ri, ∆θ) =
πλ2k3,i(Ri ,∆θ)

16k3
2,i(Ri ,∆θ)

κ4,i(Ri, ∆θ) =
−πλ3k4,i(Ri ,∆θ)

64k4
2,i(Ri ,∆θ)

(25)

By introducing the frequency perturbation terms, the space-variation of k2,i(Ri, ∆θ)
can be removed in time domain. The perturbation function can be formed as
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Hptb,i
(

f ′′a
)
= exp

[
j
(

αi f ′′a
3
+ βi f ′′a

4
)]

(26)

where αi and βi are coefficients to be determined. Multiplying (26) with (24), the signal is
then transformed into azimuth time domain:

φaz,i
(
t′′a ; Ri, ∆θ

)
= exp

(
j

4

∑
n=1

Dn,i(Ri, ∆θ)t′′a
n
)

(27)

where Dn(n = 1, 2, 3, 4) is the coefficients after frequency perturbation which can be ex-
pressed as:

D1,i(Ri, ∆θ) = − 4πk′′1,i(Ri ,∆θ)

λ − 48πk′′1,i
2
(Ri ,∆θ)k2,i(Ri ,∆θ)α

λ3 +
128πk′′1,i

3
(Ri ,∆θ)k2,i(Ri ,∆θ)β

λ4

D2,i(Ri, ∆θ) = − 4πk2,i(Ri ,∆θ)
λ − 96πk′′1,i(Ri ,∆θ)k2

2,i(Ri ,∆θ)α

λ3 +
384πk′′1,i

2
(Ri ,∆θ)k2

2,i(Ri ,∆θ)β

λ4

D3,i(Ri, ∆θ) = − 4πk3,i(Ri ,∆θ)
λ − 64πk3

2,i(Ri ,∆θ)α

λ3 +
512πk′′1,i(Ri ,∆θ)k3

2,i(Ri ,∆θ)β

λ4

D4,i(Ri, ∆θ) = − 4πk4,i(Ri ,∆θ)
λ +

256πk4
2,i(Ri ,∆θ)β

λ4

(28)

The space-variation of D3,i(Ri, ∆θ) and D4,i(Ri, ∆θ) are neglected for the perturbation
terms are small. For further analysis, D2,i(Ri, ∆θ) is expanded as Taylor series at ∆θ = 0.
The first and second order coefficients can be derived as

D21,i(Ri) = −
4πk21,i(Ri)

λ − 96πk11,i(Ri)k2
20,i(Ri)α

λ3

D22,i(Ri) = −
4πk22,i(Ri)

λ − 96πk20,i(Ri)[k12,i(Ri)k20,i(Ri)+2k11,i(Ri)k21,i(Ri)]α
λ3

+
384πk2

11,i(Ri)k2
20,i(Ri)β

λ4

(29)

To remove the space-variant terms, D21,i(Ri) and D22,i(Ri) are set to be zero. So αi
and βi can be derived as

αi = −
λ2k21,i(Ri)

24k11,i(Ri)k2
20,i(Ri)

βi =
k22,i(Ri)λ

3

96k2
11,i(Ri)k2

20,i(Ri)
− k2

21,i(Ri)λ
3

48k2
11,i(Ri)k3

20,i(Ri)
− k12,i(Ri)k21,i(Ri)λ

3

96k3
11,i(Ri)k2

20,i(Ri)

(30)

After the frequency perturbation, the Doppler chirp rate of targets with same reference
range are corrected to a same value, as shown in Figure 9b. Then, they can be compensated
by a unified deramp function which can be formed as

Hderamp,i
(
t′′a ; Ri

)
= exp

[
j
4πk20,i

λ
t′′a

2
+ j

(
4πk30,i

λ
+

64πk3
20,iα

λ3

)
t′′a

3
+ j

(
4πk40,i

λ
−

256πk4
20,iβ

λ4

)
t′′a

4
]

(31)

The deramp function is derived according to the constant parts of D2,i(Ri, ∆θ),
D3,i(Ri, ∆θ) and D4,i(Ri, ∆θ) in (28). After deramp operation, the time-frequency lines
are compensated to be perpendicular to the f ′′a axis, as shown in Figure 9c. Finally, by an
azimuth Fourier transform, the 2-D focused image can be obtained as

sSi
(
tr, f ′′a

)
= sinc

[
Br

(
tr −

2Ri
c

)]
sinc

[
Ta

(
f ′′a −

D1,i(Ri, ∆θ)

2π

)]
(32)
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3.4. Geometric Correction

The image of each angular block is focused in range-Doppler domain, as derived in
(32). There is geometric distortion in azimuth. According to (28), the Doppler focused
position is modulated by ∆θ, α and β. Assuming an arbitrary target in an angular block
with coordinate (x, y). The corresponding yaw angle can be calculated as θ = atan(y/x).
Comparing θ with θi of each block, the block number of the target can be found. So, the
reference range and angular deviation of target (x, y) in block i can be derived as

Ri =
√

x2 + y2 + H2; ∆θ = atan(y/x)− θi (33)

The signal is divided in Doppler according to the angular division. Thus, there are
some overlaps of different data blocks in Doppler. The final SAR image can be obtained by
the direct combination of all angular block images.

4. Experimental Results

In this part, some experiments are made based on the parameters in Table 1 and the
geometry in Figure 10. The key processing steps have been verified as follows.
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4.1. Correction of Space-Variant RCM

In order to verify the method of space-variant RCMC, several targets with different
reference range are selected. The target distribution geometry is shown in Figure 10a.
Target A, B and C are located at near, center and far reference ranges, respectively. Then,
two different RCMC methods are used. The simulation results are shown in Figure 11. By
time domain RCMC without KT, there are still space-variant RCM components remained.
It can be noticed in Figure 11a,c that the residual RCM is much larger than a range cell. By
the proposed RCMC method, the space-variant RCM can be fully removed. The RCM can
be accurately compensated, as shown in Figure 11d,f.
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4.2. Performance of Geometric Correction and Azimuth Focusing

To verify the effectiveness of geometric correction, 9 × 9-point targets matrix with a
distribution area of 5 km × 5 km are used. Nine targets are selected and the distribution
geometry is shown in Figure 10b. By dividing the targets into three angular blocks,
the imaging results are shown in Figure 12. Because the azimuth focusing position is
modulated by the frequency perturbation terms, there is obvious geometric distortion
in each angular block image. The geometric correction results of angular block images
are shown in Figure 13a–c. According to the coordinates of selected targets—A1(26, 26),
C1(2526, 26), A2(26, 426), C2(2526, 426), A3(26, 826) and C3(2526, 826)—the geometry
distortion within each block has been corrected. By directly combining the angular block
images, the final focused image can be obtained, as shown in Figure 13d. To check the
image distortion in the final image, targets A1, C1, B2, C1 and C3 are selected in Figure 12.
Their locations in Figure 13d are (26, 26), (2526, 26), (1276, 1276), (26, 2526) and (2526, 2526).
The resolution cell of the interpolated image in Figure 13 are 2 m × 2 m. It can be found
that the geometric distortion is controlled within one resolution cell.
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A comparison is made to verify the effectiveness of the proposed method. The method
in [10] is chosen as a reference. Considering the method is not designed to process TOPS
SAR data. Processing steps of the proposed methods are used except the signal model.
By the reference method, the signal model is low accurate after variable substitution. To
evaluate the focusing performance, 2-D contour images of nine targets selected in Figure 10
are shown in Figures 14 and 15. Like the contour images in [28], the 2-D resolution is visible
from the figure. The space-variant components of the third-order term are still remained.
This will lead to azimuth defocusing in edge area, as shown in Figure 14. Compared
with the reference method, the proposed range model can be directly matched with the
signal after RWC which is more accurate than the reference one. The variation of the
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third-order phase term can be compensated as constant term within each angular block. So,
the azimuth focusing performance can be improved, as shown in Figure 15. Furthermore,
the 2-D PSLR, ISLR and IRW of these targets processed by the two methods are calculated,
as listed in Tables 2 and 3.
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Figure 14. Contour images of point targets selected in Figure 12 with contour lines at −3, −15 and −30 dB by the reference
method. (a) Contour image of A1. (b) Contour image of A2. (c) Contour image of A3. (d) Contour image of B1. (e) Contour
image of B2. (f) Contour image of B3. (g) Contour image of C1. (h) Contour image of C2. (i) Contour image of C3.
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Figure 15. Contour images of point targets selected in Figure 12 with contour lines at −3, −15 and −30 dB by the proposed
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Table 2. PSLR, ISLR and IRW of selected targets in Figure 10b by the reference method.

Target
Range Azimuth

PSLR(dB) ISLR(dB) IRW(m) PSLR(dB) ISLR(dB) IRW(m)

A1 −13.26 −10.97 2.68 −5.74 −7.02 2.18
A2 −13.23 −10.98 2.68 −13.10 −10.52 1.85
A3 −13.21 −10.92 2.68 −8.48 −6.59 2.01
B1 −13.23 −10.98 2.68 −7.65 −5.89 2.01
B2 −13.14 −10.89 2.67 −13.24 −10.70 1.89
B3 −13.24 −10.97 2.68 −8.43 −6.34 1.97
C1 −13.19 −10.95 2.68 −7.37 −5.73 2.06
C2 −13.18 −10.97 2.68 −13.21 −10.65 1.85
C3 −13.25 −10.96 2.68 −7.04 −5.28 2.10
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Table 3. PSLR, ISLR and IRW of selected targets in Figure 10b by the proposed method.

Target
Range Azimuth

PSLR(dB) ISLR(dB) IRW(m) PSLR(dB) ISLR(dB) IRW(m)

A1 −13.26 −10.97 2.68 −12.81 −10.30 1.85
A2 −13.23 −10.98 2.68 −13.10 −10.52 1.85
A3 −13.21 −10.92 2.68 −13.30 −10.79 1.89
B1 −13.23 −10.98 2.68 −13.25 −10.77 1.89
B2 −13.14 −10.89 2.67 −13.24 −10.70 1.89
B3 −13.24 −10.97 2.68 −13.14 −10.59 1.89
C1 −13.19 −10.95 2.68 −13.14 −10.64 1.85
C2 −13.18 −10.97 2.68 −13.21 −10.65 1.85
C3 −13.25 −10.96 2.68 −12.92 −10.41 1.85

5. Discussion

This paper is based on previous works [14]. It provides another solution for high-
speed maneuvering SAR imaging in TOPS mode. For the focusing performance, methods
proposed in the two papers are in a same category. However, several main procedures
are different: the preprocessing steps and the processing architecture. Signal ambiguity in
Doppler is a feature of TOPS SAR data. The preprocessing steps in [14] is designed with
reference to the methods in [16,17]. The key idea is to extend the data support region in
Doppler by sacrificing that in azimuth time. It causes extra processing complexity when
performing KT and other time domain compensations. For the method in this paper,
the signal is unambiguous both in azimuth time and Doppler. So, the compensation
functions can be easily applied without restrictions. A disadvantage is that the zero-
padding increases the computational complexity. Thus, the parallel processing architecture
is used to accelerate the data processing. It also has the potential ability to achieve higher
focusing performance when the azimuth swath is larger.

6. Conclusions

This paper proposed an imaging algorithm for high-speed maneuvering platform
SAR with squint TOPS mode. The range model is formed in local polar format which can
overcome the mismatch between the range model and the signal after RWC. The Doppler
folded signal is recovered by nonlinear derotation and zero-padding. The signal is then
divided into several blocks according to the angular block division and can be processed
in parallel. By KT, the space-variant RCM components are removed. Then, frequency
perturbation terms are introduced to compensate the Doppler chirp rate variation. The
focusing parameters are calculated according to the scene center of each angular block.
Finally, the geometric distortion of each angular block is corrected by 2-D interpolation.
The final focused image can be obtained by directly combining all the angular block images.
Simulated SAR data has verified the effectiveness of the proposed algorithm.
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