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Abstract: Land-use/land cover change (LUCC) is an important problem in developing and under-
developing countries with regard to global climatic changes and urban morphological distribution.
Since the 1900s, urbanization has become an underlying cause of LUCC, and more than 55% of the
world’s population resides in cities. The speedy growth, development and expansion of urban centers,
rapid inhabitant’s growth, land insufficiency, the necessity for more manufacture, advancement
of technologies remain among the several drivers of LUCC around the globe at present. In this
study, the urban expansion or sprawl, together with spatial dynamics of Hyderabad, Pakistan over
the last four decades were investigated and reviewed, based on remotely sensed Landsat images
from 1979 to 2020. In particular, radiometric and atmospheric corrections were applied to these raw
images, then the Gaussian-based Radial Basis Function (RBF) kernel was used for training, within
the 10-fold support vector machine (SVM) supervised classification framework. After spatial LUCC
maps were retrieved, different metrics like Producer’s Accuracy (PA), User’s Accuracy (UA) and
KAPPA coefficient (KC) were adopted for spatial accuracy assessment to ensure the reliability of the
proposed satellite-based retrieval mechanism. Landsat-derived results showed that there was an
increase in the amount of built-up area and a decrease in vegetation and agricultural lands. Built-up
area in 1979 only covered 30.69% of the total area, while it has increased and reached 65.04% after
four decades. In contrast, continuous reduction of agricultural land, vegetation, waterbody, and
barren land was observed. Overall, throughout the four-decade period, the portions of agricultural
land, vegetation, waterbody, and barren land have decreased by 13.74%, 46.41%, 49.64% and 85.27%,
respectively. These remotely observed changes highlight and symbolize the spatial characteristics of
“rural to urban transition” and socioeconomic development within a modernized city, Hyderabad,
which open new windows for detecting potential land-use changes and laying down feasible future
urban development and planning strategies.

Keywords: LUCC retrieval via Landsat; supervised classification & machine learning; spatial dy-
namics & urban expansion; land-use types; developing city: Hyderabad (Pakistan)

1. Introduction

Urbanization symbolizes the development and modernization of cities and highlights
the movement of residents from rural to urban areas. Currently, more than half of the total
world population resides in cities [1]. Due to the increase in population, cities are rapidly
expanding in terms of physical infrastructures, and advancing in technological levels
during the recent few decades [2,3], with an attempt to create sustainable communities
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in long run [4]. Although these urbanization pathways have motivated the technological
breakthrough of modern societies and have led to transitions and variations of landscape
patterns and land covers of the individual city and spatial area [5–7], it also triggers various
devastating environmental effects, for example, environmental degradation in city areas,
the loss of agriculture land and groundwater depletion [8,9].

Overall, rapid urbanization observed worldwide can be categorized by demographic
attention and urban expansion [10], while urban expansion can further be categorized by
the form of land use; cross-land-use patterns; commercial development along highways;
and development of public service and culture [10,11], because urbanization processes are
usually closely interconnected with the economic, cultural, and political development of a
city, where the modifications and updating of local structures or landscapes could possibly
be in line with national or regional planning missions, as well as changes in land use
regulations [12–14]. For modernized regions, whenever urban economic development is
insufficient to maintain or support the employment and housing demands of new residents,
slums will be created, thus a series of large-scale settlements were established. During
the process, land use/land cover change (LUCC) must take place. Here, LUCC refers
to the impact of anthropogenic activities and disturbances on Earth’s surface, and the
corresponding human transformation could serve as the most direct indicator for charac-
terizing changes and modifications of natural features, as well as global environmental
and climatic changes [15,16]. Despite better use of available land for satisfying different
human needs, traditional landscape features and natural sceneries could have become
worsened, via the disintegration and heterogeneity of 3-dimensional structures [17,18], and
this could also affect the biodiversity and sustainable development of a city in both short
and long terms [19]. In particular, for developed countries like the United States, an urban
expansion that occurred at the expense of forests or woodlands in The San Antonio River
Basin, i.e., LUCC processes have imposed significant impacts on its ecosystem service
values [20], while the increase of urban land expansion has led to the losses of farmland as
stated in [2]. Further, the changes in land use in Dongtan (i.e., Chongming Island of China)
have imposed ecological impacts on the surrounding environment, and the construction
processes were not environmentally friendly nor sustainable [21]. Therefore, it is essential
to enumerate LUCC, for excavating indulgence of urban expansion, associated spatial dy-
namics, and potential impacts to the country or city development in different perspectives.
In particular, the most prominent indicator that could be traced is the excessive urban land
use and sprawl, which will likely expand in both qualitative and spatial extents [14,22].

With today’s rapid economic development and increased population, urbanization-
induced LUCC has dramatically increased and attracted public’s attention, thus relevant
studies have become hotspots particularly for future city planning [23]. As for developing
countries or cities, urbanization or LUCC usually take place around the central regions of
individual cities [24], thus wrinkle and induce long-lasting spatial discrepancies between
rural and urban areas. Such difference will be more obvious among space and time [10],
therefore, the study of LUCC and associated socio-economic impacts in developing and
under-developing countries or cities is of great significance. In this study, the changes
of spatial features within Pakistan, the 5th most populous country, are of paramount
interest [25]. In particular, changes in Hyderabad, the 2nd largest city of Sindh, which
is the most urbanized province of Pakistan are investigated and explored. This city has
undergone huge and continuous socio-cultural transitions since the past, and because
of the accelerated phase of industrialization, it has observed rapid and dynamic growth
in population and significant features of urban expansion [26]. Despite the achievement
of accelerated city development, excess urbanization and uneven urban growth patterns
within Hyderabad have also led to hastened and significant conversion of agricultural
practices and enhancement in vehicular traffic, which cause cultivated land loss, increased
noise, dust and air pollution within the neighborhood environment [27,28].

Due to the lack of long-term strategic planning, the absence of resources and proper
statistical centers for conducting spatial analyses in many developing cities like Hyder-



Remote Sens. 2021, 13, 3337 3 of 25

abad [29], LUCC and associated spatial updates can only be effectively quantified via
change detection approaches. Some commonly adopted assessment procedures include
transformation, post-classification and direct comparison, for example, by comparing the
difference in magnitude, nominal ratio, or regressive factors of time series plots retrieved
from multispectral channels [30], in a remote manner. Although some of these techniques
can expediently simplify the operational processes and supply change/non-change statis-
tics, they cannot provide information regarding the land cover categories, as well as the
detailed mechanism of these changes. Nevertheless, the post-classification approach can
remedy such deficiency, by classifying the desired attributes within two periods, then
conducting overlaying operations. However, errors in classification could proliferate and
magnify with aggregate processing steps [31]. Thus, a consistent, comprehensive and
continuous monitoring framework, remotely sensed datasets, and a relevant statistical
machine learning algorithm that can effectively govern the changes of land-use patterns
are particularly important for related studies and assessments.

Remote sensing (RS) approaches obtain data from the earth surface without involving
any direct contacts, and have shown capable performance in examining the land cover
changes, assessing urban LUCC and sustainability features within different spatial re-
gions [32–35], and even outlying future environmental and development policies [36].
Generally speaking, RS is a better means of extracting LUCC attributes because of the
higher frequency, wider field of view, and the availability of multi-spectral characteris-
tics [37], especially after the United States allowed public access and downloading of
Landsat datasets, as well as the corresponding time series retrieved by different algo-
rithms [38]. Commonly and freely available earth observing moderate-resolution Landsat
equipment, like Landsat 1/2/3 Multi-Spectral Scanner (MSS), Landsat 5 MSS and The-
matic Mapper (TM), Landsat 7 Enhanced Thematic Mapper plus (ETM), and Landsat 8
Operational Land Imager (OLI) [39], are all suitable for LUCC assessment, via retrieving
land-use characteristics based on the reflection of electromagnetic waves or eminence from
ground objects, then obtaining long-term monitoring through repeated and continuous
remote measurements, and eventually conducting data analyses and storage processes.
All these tools have enabled researchers to put emphasis on image-texturing and perform-
ing contextual and statistical analyses of neighboring pixels in available datasets, thus
enlightened the accuracies of image classification [40–42]. In recent decades, many re-
search studies have combined medium resolution imageries obtained from remote sensing
technologies, together with numerical and statistical algorithms to conduct a spatial and
temporal assessment of land cover changes, for example, Principal Component Analysis
(PCA) [43], Maximum Likelihood Classifier (MLC) and Support Vector Machine (SVM) [44],
as well as Random Forest (RF) approaches [45]. The estimated outputs are proficient in
identifying the spatial variabilities related to morphological structures of towns, such as
volume, density, and range of urbanized or rural areas [46,47].

So far, there is still very little research that highlights the processes and mechanisms
of changing land-use patterns, and land cover dynamics within South Asian countries in
recent decades, while only some qualitative conclusions have been reached. In particular,
the complicated spatial patterns of physical and social infrastructures within different
metropolitan cities of India, together with potential challenges of urban development were
well-remarked in [48], while geospatial techniques and supervised classification have been
employed to detect and assess the LUCC in Sikkim Himalaya, India, and revealed that the
proportion of impervious surface/built-up areas has increased during 1988–2017, and was
accompanied by the reduction of cropland and barren land within the spatial region [49].
Moreover, a case study conducted on Margallah Hills National Park, Islamabad has shown
that there was a decline in vegetation cover due to exotic species like paper mulberry [50],
while another recent study has investigated the land-use changes of Islamabad from
1992 to 2012 [51]. The conclusions are quite similar, that the proportions of cropland,
built-up areas and waterbodies have increased, and can be attributed to the decrease in
forest and barren land within the city [51]. Similar deduction has also been acquired in
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the Multan district of Pakistan, via the use of RS and GIS techniques [52]. Due to the
aforementioned spatial research gaps, and the fact that all anthropogenic processes are still
taking place in different municipalities of Pakistan, it is crucial to obtain fine-scale spatial
changing patterns in under-developing cities like Hyderabad. In this paper, Section 2
provides a brief overview of the study area, processing of different Landsat images, and the
retrieval of spatial dynamics (i.e., LUCC), via the combination of remote sensing, SVM and
geoprocessing techniques. Then, the classification of land covers and respective numerical
accuracies, temporal transitions and trends of land use during 1979–2020, together with
underlying geographical and historical reasons are provided in Section 3. The discussion of
spatial dynamics and relation with population changes, potential future connections with
meteorological changes and local air quality, comparison with similar studies, together with
some recommendations of future urban development of Hyderabad or similar developing
cities, are outlined in Section 4. Finally, Section 5 outlines the potential extension, outlook,
and the summary of this study.

2. Study Area, Datasets and Methodologies
2.1. Study Area

Hyderabad is the second-largest city in Sindh province, right after Karachi. The city
was founded in 1768, because the river Indus of Pakistan was changing course in 1757,
thus resulted in periodic flooding. Afterwards, the king Mian Ghulam Shah Kalhoro of
the Kalhora Dynasty has decided to shift the capital from Khudabad to a new one, which
was named “Hyderabad” [53]. In terms of geographical location, the city is situated at the
latitude of 25◦23′33′′ N and longitude of 68◦22′25′′ E, with an elevation of 13 m above sea
level (as shown in Figure 1 below). The city has a warm desert climate (Köppen BWh),
with hot environmental conditions throughout the entire year. The hottest duration of
the year is usually from mid-April to late June, before the onset of monsoons, and the
corresponding temperature in 2016 and 2017 reached 43 ◦C, as compared to its historical
record of 43.3 ◦C in 1973 [54]. Such high temperature and rapid increase in urban heat
island (UHI) could be attributed to the urban sprawl and transitions, as validated in many
studies [55–57]. In terms of social context, Hyderabad has main transportation junctions, in
particular, the two largest highways of Pakistan, namely the Indus Highway and National
Highway join exactly at Hyderabad. The industries of Hyderabad include textiles, sugar,
soap, ice, paper, pottery, cement, manufacturing of mirrors, plastics, tanneries, and hosiery
mills. In addition, the ornamental glass industry of Hyderabad is also very popular among
the Pakistan population [58,59], while the city itself also acts as the main commercial hub
for agricultural production of the contiguous zone.

2.2. Datasets

In this study, remotely sensed Landsat datasets were acquired from the United States
of Geological Survey (USGS, Reston, Virginia) [60]. Detailed descriptions of different
types of Landsat images, together with the acquisition time, and corresponding resolutions
are as shown in Table 1. Overall, 5 types of images were acquired from Multispectral
Scanner System (MSS) sensor [61], Operational Land Imager (OLI) [62,63], and The Landsat
Thematic Mapper (TM) sensor [64] of USGS, where the 151st path and the 42nd row pass
through Hyderabad. Images of different periods, i.e., 1979, 1990, 2000, 2010, and 2020 were
retrieved, which serve as objective representations of spatial land-use patterns within the
concerned decades. The acquisition time was sometime in September, when winter or
spring crops are usually the most vigorous. This is conducive and particularly useful in
distinguishing built-up areas from other land cover types. The Landsat sensors are usually
repeating its cycle on earth every 16 days, which is fine enough for observing long-term
land-use changes within a spatial region.



Remote Sens. 2021, 13, 3337 5 of 25

Figure 1. Geographical location of the study area—Hyderabad, Pakistan, together with the latest land-use distribution,
based on false color combination of Landsat datasets.

Table 1. Details of remote sensing datasets obtained from Landsat, their acquisition time, and corresponding resolutions of
images adopted in this study.

Landsat Dataset Description Acquisition
Time

Spatial
Resolution (m)

Temporal
Resolution

Landsat 3 MSS
With 5 spectral bands, one failed shortly after
launch (1 Visible Green, 1 Visible Red, and
2 Near-Infrared bands) [61]

9 September 1979 60 14 orbits per day

Landsat 5 TM
With 7 spectral bands, including a thermal band
(3 Visible, 2 Near-Infrared, 1 Thermal, and
1 Mid-Infrared bands) [64]

22 September 1990 30 (reflective);
120 (thermal)

16-day repeat cycle17 September 2000
28 August 2010

Landsat 8 OLI
With 9 spectral bands, including a pan ban
(3 Visible, 1 Red, 1 Near-Infrared, 2 SWIR,
1 Panchromatic (PAN), and 1 Cirrus bands) [63]

8 September 2020 30 (except Panchromatic band);
15 (Panchromatic) 16-day repeat cycle

MSS: Multispectral Scanner System; TM: Thematic Mapper; OLI: Operational Landsat Imager.

To avoid being affected by cloudy scenes, there was no cloud coverage within all
images obtained from sensors onboard Landsat 3, 5 and 8. Thus, the changes observed via
Landsat roughly correspond to realistic environmental conditions and changes in land-use
patterns. Upon the acquisition of relevant datasets, the Fast Line-of-sight Atmospheric
Analysis of Hypercubes (FLAASH) algorithm developed by Exelis Visual Information
Solutions Inc., Boulder, CO, USA [65] was adopted to perform radiometric calibrations and
atmospheric correction, which can enhance data quality. A detailed user guide of FLAASH
can be found in [66].

Landsat datasets were commonly adopted in conducting studies related to urban
expansion and LUCC, because of its long-term and comprehensive digital record, together
with a medium spatial resolution, and comparatively consistent spectral and radiometric
resolutions, as illustrated in [67–69]. Spatial homogenization was conducted by project-
ing all available Landsat datasets of the interested area onto a common mesh produced
and pre-set within the ArcGIS platform, so that all datasets will eventually share similar
spatial resolutions for a fair comparison. Further, radiometric correction and cross-track
illumination tools of ENVI were adopted for radiometric homogenization [70]. Overall,
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the use of Landsat datasets is particularly beneficial and practical to detect any changes
within developing cities. Moreover, the urban environment is usually characterized by
highly heterogeneous surface covers, and the presence of substantial inter- and intra-pixel
changes. Thus, the competencies of change detection can essentially be explained and
traced, due to the sufficiently fine spatial resolution of digital images acquired in urban
areas [71].

2.3. Overview of Methodologies

Figure 2 below shows the overall flowchart and framework of this study, starting from
the acquisition of Landsat datasets (in Section 2.2), to image processing (Section 2.3.1), the
application of statistical classification algorithms (Section 2.3.2), post-classification proce-
dures (Section 2.3.2), then finally the approaches of conducting spatial LUCC assessments
(Section 2.3.3).

Figure 2. Overall Flowchart of this study—for LUCC spatial assessment in Hyderabad, with different components labelled
in different colors, and intermediate connection stated on top of arrows. FLAASH: Fast Line-of-sight Atmospheric Analysis
of Spectral Hypercubes; SVM: Support Vector Machine; ENVI: The Environment for Visualizing Images; GTP: Ground Truth
Points; LUCC: Land-use/Land Cover Change.

2.3.1. Image and Land-Use Classification Algorithms

In history, Level 1 of the Anderson classification system [72] was usually adopted for
interpreting Landsat-based data, because it can effectively reduce the potential errors of
misclassification, and the classification of different land-use categories can become more
trustworthy [73,74]. Land-use and land cover types here are divided into 5 key types,
namely built-up area (as indicated by impervious surface), agricultural land, vegetation,
waterbodies, and barren land [75], via remote sensing (RS) image classification techniques.
RS has been the most cost-effective and convenient manner for developing and analyzing
LUCC information, because attributes can be obtained without directly getting in touch
with the ground surface, therefore it has been used in many developing cities [32,71,76],
where sensors are always absent or insufficient in these places. In particular, Landsat
8 OLI RS-based datasets have been adopted to retrieve a total of 8 land cover classes
in Cambodia, Laos, Myanmar, Thailand, Vietnam, and other Southeast Asia countries
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with high accuracies [77], while SPOT-VEGETATION satellite data from 1998–2000 have
also been used to derive regional land-cover maps within South and Southeast Asia [78].
Normally, the classification mechanism can either be supervised or unsupervised, or a
combination of both, for example, the pre-processing of Landsat images via ISODATA
unsupervised classification [79], maximum likelihood supervised classification [75], and
iterative hybrid-classification approaches [80].

In this study, land-use features were categorized into 5 key types, namely built-up
area, agricultural land, vegetation, waterbody and barren land. In principle, further
categorization into more detailed counterparts like different kinds of agricultural features
could be conducted, but it is not necessary here. First, our study area, Hyderabad, is only
a small city of the Sindh Province, there is not much agricultural nor cultivation concept
within most city areas of Pakistan, therefore 5 land-use types are more than sufficient for
identifying LUCC. Second, built-up areas or impervious surfaces are mainly associated
with artificial structures like concrete, stone and rooftops, while barren land mostly refers to
places with thin soil, sand or rocks, for example, deserts and beaches, which are particularly
important in quantifying land-use changes of developing cities like Hyderabad. Therefore,
one could easily distinguish each type of more important land use within this city from
another. The use of “built-up area/impervious surface” and “barren land” have been
well adopted in recent LUCC studies, like in [81–83]. As for the classification of land
use, one may either refer to the peaks obtained from histograms of different acquired
Landsat images (see Table 1), which precisely categorized pixels into either land area and
waterbody [84], or determine from the spectral reflectance shown on the pixel spectral
curve of different bands, where built-up areas show high reflectance values in each band, as
compared to the relatively lower reflectance of agricultural land, vegetation, waterbodies,
and barren land pixels. An index called “Enhanced Normalized Difference Impervious
Surfaces index” has also been designed in [85] to distinguish different land-use types.

Apart from the comparison of reflectance values, the supervised statistical learning
algorithm, namely the Support Vector Machine (SVM) was applied in this study to identify
each land-use type to its highest accuracy. In recent years, the capabilities of SVM and
associated statistical analyses have been shown practical and useful in different applications
and scenarios [84,86–88]. For each land-use type, sufficient number of training samples was
first collected by visual interpretation. As aforementioned, a reasonable spectral signature
is the one such that the confusion between any mapped land covers is minimal [89], then
the acquired Landsat datasets were classified using SVM, with the appropriately selected
statistical kernel, based on respective mathematical properties. Details of the use of SVM
are described in Section 2.3.2.

2.3.2. Support Vector Machine (SVM) Algorithm and Post-Classification

Adopting SVM approaches for multisource classification is convenient and accurate
especially in remote sensing applications [90]. It pursues to find out an optimal hyper-
plane between different classes of data via a minimal number of training samples. Such
hyperplane maximizes the boundaries in between classes, and “support vectors” are re-
garded as the data points that lie closest to the hyperplane, and are treated as the training
dataset [91,92]. These data are then projected from the input space to another higher
dimensional feature space, so that a linearly separable output dataset can be obtained.
Such projection process relies on the use of an appropriate kernel function, introduction of
a penalty or regularization parameter for data fitting purposes [84]. Detailed mathematical
formulation of SVM is as explained in [93]. In our study, the Gaussian-based Radial Basis
Function (RBF) was adopted for training in the SVM algorithm. RBF works well in all appli-
cations, as validated in [94], while “Gaussian” distribution possesses nice and symmetrical
mathematical properties, and the width σi of individual basis function φi is relatively easier
to control [95], as compared to other options, like multiquadratic or inverse kernels.

The non-linear RBF model can be fully described by 4 parameters, namely (1) basis
function (φ(.)); (2) center of basis function (µ); (3) width of basis function (σ); and
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(4) weight associated with the respective basis function (w). Assuming that there are N
n-tuple

(
xj, yj

)
(i.e., an input vector x of dimension n − 1, and the corresponding output

scalar y), and K basis functions in overall, the functional form of RBF is as shown in
Equation (1) below.

ŷ = f (x) =
K

∑
i=1

wiφi(x) =
K

∑
i=1

wiφ

(
‖ x− µi ‖

σi

)
(1)

Here, any input vector x = (x1, x2, . . . , xn−1) is transformed into another K-dimensional
vector, i.e., φ = (φ1(x), φ2(x), . . . , φK(x)) through the RBF model, and ŷ represents the
estimate of output, which is expressed as the linear combination of all available K basis
functions, with individual weights wi. It should be noted that except weights, other param-
eters would constitute the non-linearity of the RBF model. The mathematical formulation of
the basis function of Gaussian RBF is as shown in Equation (2). Corrected definitions of the
parameters in this equation will increase the accuracy of SVM classification; in particular,
the categorization of land cover types in this study.

φ(r) = φ

(
‖ x− µ ‖

σ

)
= exp

(
− r2

2

)
(2)

Although SVM was originally developed for binary classifications, multi-class prob-
lems are often encountered in our daily lives, especially in applications related to environ-
mental retrievals. Thus, scientists have extended the basic binary SVM methodology to
form a multi-class classifier, as illustrated in [96,97]. Thus, it is applicable for the classifica-
tion of land-use types, as well as detecting temporal and spatial changes of land covers,
which are of practical interest within the study, especially for developing cities.

In this study, SVM with 10-fold cross-validation was applied, i.e., all pixels of every
original Landsat image were randomly partitioned into 10 equal sized subsets of pixels.
Nine of these subsets were used for training, and the output was being validated by the
remaining subset. The entire process was repeated for 10 times, and results were averaged
to retrieve the outputs.

Afterwards, in the post-classification stage, majority analysis and the process of
dividing clump classes and sieve classes have been performed in ENVI Classic 5.3, with the
aim of obtaining statistical advancement. Following the approach of [75], polygon layers
of land-use characteristics and categorization were converted into raster layers via the GIS
platform, and data were also resampled to respective Landsat resolutions (as shown in
Table 1). Thus, the categorization of land cover types can be processed for temporal and
spatial assessments, and the historical advancement of a developing city can also be traced
and monitored, based on remotely sensed approaches.

2.3.3. Accuracy Assessment of LUCC Classification

As a whole, a number of polygons were selected in ArcGIS, from the processed
remotely sensed Landsat datasets during each of the 5 acquisition periods. Then, the
land cover classification maps of 1979, 1990, 2000, 2010, and 2020 were retrieved, via the
combination of supervised classification and SVM approach.

To conduct an objective accuracy assessment of SVM approach in LUCC classification,
selected Ground Truth Points (GTP) within the region of interest (ROI) (i.e., Hyderabad,
Pakistan) were obtained from all 5 Landsat images (see Table 1) via stratified random
sampling [75], with the respective number of GTP of each land-use type stated in Table 2.
In this study, we name agricultural land as “A”, vegetation as “V”, built-up area as “BU”,
waterbody as “W”, and barren land as “B”. To ensure the reliability of all these GTPs, the
Google Earth Engine has been used for conducting ground verification within Hyderabad.
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Table 2. The number of Ground Truth Points (GTP) of each land-use type selected from each Landsat image. The numerical
figures inside the bracket represent the year of attainment of datasets.

Land-Use Type Image (1979) Image (1990) Image (2000) Image (2010) Image (2020)

Agricultural land (A) 1150 1500 1980 2200 3564
Vegetation (V) 950 1800 2100 2477 2798

Built-up area (BU) 1500 4034 5060 7895 8787
Waterbody (W) 780 2430 2675 2786 2850
Barren land (B) 550 680 1130 1230 1233

The selection of GTP within image samples was conducted in ENVI Classic 5.3,
based on each unclassified Landsat image, and the confusion matrix derived from post-
classification processing of previously classified images. Throughout this process, several
metrics have been adopted to conduct overall accuracy assessment with respect to land-use
categorization, namely (1) Producer’s Accuracy (PA); (2) User’s Accuracy (UA); (3) Overall
Accuracy (OA); and (4) KAPPA coefficient (KC). These metrics have been widely acceptable
and applicable in previous studies [98–100]. Selected results and conclusions obtained from
previous studies of Pakistan, based on satellite derivation and image processing retrieval,
were also used for temporal comparison and will be discussed in Section 4.2 of this paper.

Next, to better illustrate the concepts of PA, UA and OA respectively, Table 3 and
the 3 mathematical formulas thereafter (i.e., Equation (3)) show the representations and
calculations of these metrics. Notations in each of these equations are in line with that
shown in Table 3. In particular, based on [98], a producer is interested to know how well
the desired land-use characteristics is being classified, thus PA can serve as the probability
that a reference pixel could be correctly classified, i.e., expressed as the total number of
correct pixels of a specific land-use type divided by the total number of pixels within that
land-use type, as derived from the referenced dataset. Next, UA is a representative figure
of reliability, and can be expressed as the ratio of total number of correct pixels of a specific
land-use type to the total number of pixels being classified within that land-use type [101].
OA can simply be obtained by dividing the total number of pixels that are being accurately
classified by the total number of pixels within the entire study.

(a) Producer′s Accuracy (PA) of the kth land-use type xkk
∑5

i=1 xik

(b) User′s Accuracy (UA) of the kth land-use type xkk
∑5

j=1 xkj

(c) Overall Accuracy (OA) of classification x11+x22+x33+x44+x55
∑5

j=1 ∑5
i=1 xij

(3)

Table 3. An illustration of how Producer’s Accuracy (PA), User’s Accuracy (UA), and Overall Accuracy (OA) are obtained
from the classification of land use types in this study.

Referenced Data (Land-Use Types)

A V BU W B Row Total ∑R

Classified Data
(Land

Use Types)

A x11 x12 x13 x14 x15 ∑5
j=1 x1j , x1+

V x21 x22 x23 x24 x25 ∑4
j=1 x2j , x2+

BU x31 x32 x33 x34 x35 ∑4
j=1 x3j , x3+

W x41 x42 x43 x44 x45 ∑4
j=1 x4j , x4+

B x51 x52 x53 x54 x55 ∑5
j=1 x5j , x5+

Column Total
∑C

5
∑

i=1
xi1

, x+1

5
∑

i=1
xi2

, x+2

5
∑

i=1
xi3

, x+3

5
∑

i=1
xi4

, x+4

5
∑

i=1
xi5

, x+5

5
∑

j=1

5
∑

i=1
xij

A: Agricultural land, V: Vegetation, BU: Built-up area, W: Waterbody, B: Barren land; ,: defined as.
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For example, the PA and UA of the classification of agricultural land in Hyderabad,
Pakistan are x11/ ∑5

i=1 xi1 and x11/ ∑5
j=1 x1j, respectively. Using the same table, another

discrete multivariate mathematical approach of accuracy assessment is named KAPPA [102].
The KAPPA coefficient (KC) based on the notations of Table 3 is expressed as in the first
equal sign of Equation (4), where N represents the total number of observations, xk+ and
x+k are the total number of data in the kth row and the kth column respectively [103]. If
KC is being interpreted in a probabilistic manner, such quantity can simply be expressed
as in the second half of Equation (4), where Pagree and Pchance are the proportion (or
probability) of pixels being correctly classified, in which the agreement of classification is
of expected value [104]. Having a KC of higher than 0.8 could be interpreted as “almost
perfect” in classification, because around 64%–100% of data are reliable, while a value
of 0.61–0.79 implicates “substantial” accuracy. In contrast, for KC values below 0.2, the
classification approach can be described as “poor”, because only at most 4% of data are
considered as reliable [100].

KC =
N ∑5

k=1 xkk −∑5
k=1(xk+·x+k)

N2 −∑5
k=1(xk+·x+k)

=
Pagree − Pchance

1− Pchance
(4)

3. Results
3.1. Accuracy Assessment of Land Cover Classification Maps from 1979–2020

To evaluate the applicability of SVM classification and post-classification techniques
for retrieving reasonably accurate LUCC maps, a number of training samples were selected
from the Landsat datasets in each of the 5 years. The parameters introduced in Section 2.3.3
(i.e., PA, UA, OA, and KC) were adopted for accuracy assessments, upon the comparison
with selected GTPs. Table 4 shows the PA and UA of each of the five land-use types during
each year within this study, together with respective OA and KC. Overall, the spatial
retrieval framework (shown in Figure 2) is highly reliable and could provide insights with
regard to the changes of land use during recent decades. In particular, the PA and UA of all
land-use types in 1979 were above 80%, while for all other years, the respective accuracies
were all higher than 90%. The discrepancy among accuracies of these years can mainly
be attributed to the much smaller number of GTPs (of mainly vegetation, built-up area,
and waterbody) in 1979, as compared with any of the other 4 years. Further numerical
information has been illustrated in Table 2. Moreover, as indicated by the high PAs and
UAs, the retrievals of all land-use types were very accurate, especially for built-up areas
and barren land, with all numerical figures from 1990 onwards exceeding 95%. Despite
the high accuracies obtained among all land-use types, the PA of waterbody in 2010 was
only 92.65%; while PAs and UAs of agricultural land (95.69% and 92.33%) and vegetation
(92.65% and 90.37%) in 1990 were also relatively lower, especially when compared with
corresponding retrieval of built-up areas, waterbody and barren land within the same year.
This may again be caused by the sharp increase in the number of GTP selected as built-up
areas, for 1990 and 2010 Landsat images (shown in Table 2), while barren land, vegetation
and waterbody have less GTP in general.

In terms of OA and Kappa index agreement, the performance in 1990, 2000, 2010
and 2020 were almost the same, with a consistently high numerical value. As for 1979,
although the respective OA and KC were relatively lower, with values of 87.45% and
0.81, the accuracy of our newly established retrieval algorithm, in particular, the use of
the SVM approach and associated kernels, can actually be guaranteed, after taking into
account that the number of GTP from the 1979 dataset is much lower than all the other four
retrieved periods. To summarize, the OA and KC of all 5 years are around 96.10% and 0.94
respectively, which further provide confidence in using this remotely sensed and statistical
framework for detecting future changes of urban land-use patterns and morphologies.
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Table 4. Accuracy Assessment of retrieved LUCC Maps in 1979, 1990, 2000, 2010, and 2020 respectively, based on selected
Ground Truth Points (GTP) from Landsat images, and the framework as outlined in Figure 2. The numerical figures of
Producer Accuracy (PA) and User Accuracy (UA) are categorized according to the 5 key land-use types in this study.

Year Metrics Agricultural Land Vegetation Built-Up Area Waterbody Barren Land

1979

Producer Accuracy (PA) 88.56 91.66 86.97 87.92 95.64
User Accuracy (UA) 80.48 88.88 81.76 83.79 93.55

Overall Accuracy (OA) 87.45
Kappa Coefficient (KC) 0.81

1990

Producer Accuracy (PA) 95.69 92.65 97.88 98.56 98.99
User Accuracy (UA) 92.33 90.37 96.33 97.00 97.06

Overall Accuracy (OA) 98.08
Kappa Coefficient (KC) 0.97

2000

Producer Accuracy (PA) 98.66 97.77 98.79 96.87 99.54
User Accuracy (UA) 97.23 96.00 97.02 95.44 98.97

Overall Accuracy (OA) 98.88
Kappa Coefficient (KC) 0.98

2010

Producer Accuracy (PA) 98.15 99.09 98.77 92.65 96.98
User Accuracy (UA) 97.77 98.33 97.52 96.76 98.99

Overall Accuracy (OA) 97.77
Kappa Coefficient (KC) 0.97

2020

Producer Accuracy (PA) 98.89 99.76 97.66 98.99 95.87
User Accuracy (UA) 97.66 99.00 96.87 96.34 99.09

Overall Accuracy (OA) 98.33
Kappa Coefficient (KC) 0.97

Note: All numerical figures are corrected to 2 decimal places.

3.2. Spatial and Temporal Trends of Land Cover from 1979–2020

Figure 3 illustrates the spatial land cover classification maps of Hyderabad in 1979,
1990, 2000, 2010, and 2020 respectively, with each land-use type indicated in different
colors, while Figure 4 shows the corresponding areas of each land-use type in each of the
5 investigated years, with the temporal changes clearly indicated by the bar charts.

As observed from the spatial plot back in 1979, a similar number of pixels retrieved
from Landsat was classified as built-up area and vegetation respectively, followed by
barren land and agricultural land, then eventually waterbody. Extreme urban expansion
in different places of north-eastern, central and west Hyderabad took place during the
1979–1990 and 1990–2000 periods. As a result, the built-up area has become the major land-
use type starting from 2000 onwards. In particular, barren land in central and north-eastern
Hyderabad, together with vegetation in eastern areas, were gradually replaced by built-up
areas. The proportion of pixels being classified as “agricultural land” and “waterbody”
have decreased during the two 10-year periods as well. During the 1990–2000 period,
built-up area has formally replaced vegetation, and has become the majority land-use
type of Hyderabad, while the spatial coverage of barren land and waterbody continued to
decrease, at the same time accompanied by the slight increment of agricultural land pixels.
Starting from 2010 onwards, the amount of barren land pixels has become negligible, and
only remained in the southernmost areas of Hyderabad, however the amount of waterbody
increased by 74.6% when compared to the quantity in 2000. The coverage of built-up area
continued to increase, as accompanied by the obvious decrement of vegetation pixels upon
retrieval. As of 2020, almost two-thirds of the pixels were classified as “built-up area”,
as compared to less than one-third back in 1979. The temporal transition and temporal
trend observed can be considered as a proper evidence of urban land expansion during the
recent decades, which took place within different parts of Hyderabad, particularly in the
central, central-west and north-eastern parts of the city.
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Figure 3. Land cover classification maps of Hyderabad during 1979, 1990, 2000, 2010 and 2020, respectively, as retrieved
from Landsat images, and via the statistical and data analytic framework illustrated in Figure 2.

Figure 4. Spatial areas allocated for each of the 5 key land-use types of Hyderabad during 1979, 1990, 2000, 2010, and 2020.
Exact spatial areas are represented as bars.

To acquire a better understanding of the inter-conversion and temporal transition
of land-use types within the past few decades, the corresponding transition matrix that
includes the conversion rates in between any two out of the five major land-use types
is as shown in Table 5. The numerical figures further reveal the increase of coverage
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of built-up area during the past four decades, from 52.88 km2 in 1979 to 112.28 km2 in
2020. The observed increase in built-up area was originated from all other four land-use
types—agricultural land (11.39 km2), vegetation (28.00 km2), waterbody (10.19 km2), and
barren land (20.21 km2). In contrast, 2.77 km2, 4.79 km2, 2.43 km2 and 0.17 km2 of built-up
area have been converted into agricultural land, vegetation, waterbody, and barren land
respectively during the last four decades, based on the SVM-based retrieval algorithm
in this study. Within the same temporal period, the proportion of vegetation area has
decreased from 47.51 km2 to 25.45 km2, with 8.42 km2, 28.00 km2, 1.07 km2 and 0.16 km2

areas being converted into agricultural land, built-up area, waterbody, and barren land
throughout all years. Further, part of the built-up land area was converted into other
four land-use types. This implicates that the exchange between land use for different
practical purposes has actually taken place from time to time, while the increase of built-up
area in 2020 was not totally comprised of the transition from vegetation, but rather the
combined effects of all other four land-use types, for the purpose of urban development
and expansion, human settlements, and gradual transition to a modernized city in the
long run.

Table 5. Transition Matrix of 5 Land Cover Types in Hyderabad from 1979 to 2020.

Final: 2020
Initial: 1979 Agricultural

Land (km2)
Vegetation

(km2)
Built-Up

Area (km2)
Waterbody

(km2)
Barren Land

(km2)
Total in 2020

(km2)

Agricultural land (km2) 7.57 8.42 2.77 0.81 1.92 21.43

Vegetation (km2) 5.45 9.78 4.79 2.16 3.27 25.45

Built-up area (km2) 11.39 28.00 42.49 10.19 20.21 112.28

Waterbody (km2) 0.28 1.07 2.43 4.50 0.68 8.96

Barren Land (km2) 0.08 0.16 0.17 0.03 3.76 4.19

Total in 1979 (km2) 24.84 47.51 52.88 17.95 29.13 173.02

∆LUCC (km2) from SVM −3.41 −22.06 59.40 −8.99 −24.94

∆LUCC from Landsat
Images (km2) −3.15 −21.91 59.65 −8.96 −25.73

∆LUCC: Change in Land-use/Land Cover Change; SVM: Support Vector Machine Mechanism (based on the framework of Figure 2).

Further, the area being allocated as waterbody also decreased during the 1979–2020
period, based on the SVM-based retrieval, from 17.95 km2 to 9.04 km2. The majority of
these regions (10.19 km2) were being converted into built-up areas as expected, while
on the other hand, not many other land-use types were converted into waterbodies after
40 years. This may be due to the booming of real estates, and the construction of different
infrastructures within Hyderabad throughout recent years, for example, a new international
airport, electronic and manufacturing hubs were built [105]. As a result, environmental
and hydrological degradation of water bodies took place, especially within urban areas of
the city [105]. As for the barren land area, it decreased from 29.13 km2 to 4.19 km2 during
the past 40 years. Most of them were converted into built-up areas, while the increment
of barren land was minimal (i.e., 0.08 km2, 0.16 km2, 0.17 km2 and 0.03 km2 constituted
from the other four land-use types respectively) in reality, i.e., almost no agricultural land,
vegetation, built-up area and waterbody areas were converted into barren land during the
1979–2000 period. The reduction of agricultural land in the Indus Plains of Pakistan due to
environmental and socioeconomic changes has also been confirmed and well-validated
in [106].

Figure 5 shows the thematic change maps of induced LUCCs throughout each of
these four periods, with 10 or 11 years being considered in each analyzed period. Based
on the spatial retrieval results obtained via SVM and post-processing, the numbers of
vegetation and built-up area pixels during 1979–1990 were similar, and far exceeded the
other three land-use types. The southern part of Hyderabad remained as barren land,
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while the trajectory of waterbody was obvious, joining from the northern west end to the
southern east end, and was accompanied by some scattered waterbody in the far northern
end of the city. However, such scattered waterbody area has gradually been developed
into agricultural land and vegetation during the 1979–1990 period, then to the built-up
area starting from 2000 onwards. Moreover, from 1990 onwards, most parts of Hyderabad
were classified as built-up areas; while the barren land in its southern-most area was first
converted into waterbody during the 1990–2000 period, then either remained as waterbody,
or further converted into the built-up area from 2000 onwards. It is interesting to note
that during 2000–2010, many pixels in the northern end changed from barren land to
built-up area, while pixels right above the waterbody trajectory were converting from
waterbody to built-up area, which clearly showcased the urban development within these
areas. Afterwards, some pixels on the southern west that were classified as agricultural
land in 2010 were also transformed into built-up area during the 2010–2020 period. Overall,
as of 2020, most parts of Hyderabad were classified as “built-up or impervious surface”,
together with the allocation of some vegetation areas in the south-eastern part of the city.
The use of the waterbody “lane” remained until now, while very few pixels have converted
back from built-up area to vegetation use, which were scattered in different parts of the
city without prescribed spatial patterns.

Figure 5. The thematic change maps of land-use patterns in Hyderabad throughout four different periods, namely 1979–1990,
1990–2000, 2000–2010 and 2010–2020, as retrieved from remote sensing approaches. Each color shown on the maps indicates
the respective changes of LUCC.

3.3. Reasons for Spatial Transitions of LUCC in Hyderabad

From the spatial classification results of LUCC during different stages of the 1979–2020
period, it has been properly justified and illustrated that significant changes of land-
use types have actually taken place in different parts of Hyderabad (as highlighted in
Section 3.2). Generally, the prompt increase with regard to the area of built-up land was
accompanied by the corresponding reduction of agricultural land, vegetation, waterbody,
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and barren land areas during various transitional stages. The key spatial changes of built-
up area were eminent and obvious during the last 40 years, which has increased by more
than twice in terms of the original area. Such rapid development and spatial expansion
took place because of several reasons: (1) Hyderabad is the second largest city of the Sindh
Province, and Sindh is the most urbanized province in Pakistan. The city itself consists of
a very historical background and is comprised of many commercial and industrial units.
Thus, people living in the interior of the city are always directly linked with Hyderabad,
and they travelled from their rural hometown to the city for acquiring daily life goods
and necessities; (2) Better employment opportunities were provided in Hyderabad in
recent years, and the city was equipped with a well-established education system and
the provision of better health facilities, thus leading to higher living standard around the
entire community. The migration ratio from rural to city region has also been continuously
increasing, in an exponential manner, because of the more convenient geographical position
and better liveability conditions around central Hyderabad. The majority of these migrants
aim to strive for better financial and socio-economic status, and get benefited from the more
comprehensive health facilities; (3) The continued increase of population within Hyderabad
and surrounding areas led to increased demands of new human settlements. Thus, urban
planning and the constructions of new residential housings, industrial and commercial
hubs have converted different flat land components and other land-use types into built-
up areas. In particular, agricultural land and vegetation area declined from 24.84 km2

and 47.51 km2 in 1979 to 21.43 km2 and 25.45 km2, respectively, within the investigated
40-year period; barren land area covered 29.13 km2 of the total area of Hyderabad back
in 1979 according to Landsat retrieved results, but suffered from a sharp decline to only
4.19 km2 in 2020. These are accompanied by the decreasing trend of waterbody areas
within Hyderabad, where significant reduction (from 17.95 km2 in 1979 to 8.96 km2 in 2020)
could be observed and detected via remotely sensed means and the SVM-based retrieval
algorithm proposed in this study. All these took place as a kind of government’s response to
cope with different demands and spatial flow patterns, for example, the increased demand
of new settlements from citizens, and the movement of humans and service centers of
necessities from rural to urban regions that “build up” the entire city, which also indirectly
boost up its economic development. This “undesirable but modernized” phenomenon
could actually be reflected from the increase in Urban Sprawl Index (USI) during 2011–2015
(i.e., 48.1), as compared with the value of 10.0 during 1991–2001, as obtained via pattern
analysis of urban sprawl effects within consistent time intervals [107]. The expansion of
the city and the transition of land-use or land cover types have actually constituted the
prompt increment of built-up area, and are generally in line with the trends observed in
other developed cities [108,109]. The major driving forces are again to acquire better living
qualities, more sustainable environmental conditions, and more importantly, children can
receive education under a more established system, while adults can gain better and wider
employment scopes in the long run.

4. Discussions
4.1. Urban Growth and Spatial Dynamics of Hyderabad and Neighboring Cities in Recent Decades

Hyderabad attained its unique spatial dynamics during its urban expansion processes.
According to traditional analyses of urban expansion, urban growth types or development
patterns of a city can generally be categorized into three quantitative manners, namely
infilling, edge expansion, and leapfrog expansion [110]. As illustrated in Section 3.2,
spatial expansion mainly took place within the central areas of Hyderabad, and more
land covers along the mainstream were converted into built-up areas throughout different
temporal periods. Previous studies have also shown that there were sharp contrasts
in spatial dynamics in different cities of Pakistan, based on respective economic and
geographical conditions [111,112]. In particular, infilling and leapfrog were the main urban
growth patterns in polycentric development cities like Karachi and Lahore [113], whereas
leapfrog was the prominent form of urban expansion in medium development cities like
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Multan [114]. In addition to these historical observations, it is also noticed that the spatial
expansion patterns surrounding the urban center of Hyderabad were generally dominated
by infilling, for example, the tower market and Gari Khata; while for neighboring areas of
central Hyderabad like Latifabad and Qasimabad, leapfrog dominates throughout all years.

The discrepancies of urban expansion modes and the formation of impervious sur-
face or built-up area were attributed to historical reasons [115]. In the early 1980s, the
transportation network and some other basic infrastructures have already been built in
the neighboring areas of the central Hyderabad, then the infrastructural development in
the next 40 years has filled this piece of the land with roads, connecting junctions between
roads, and various types of groundworks. Overall, the general urban growth patterns of
Hyderabad itself are mainly comprising of both infilling and expansion, while the leapfrog
tracts shown are indicators of land development processes of selected neighboring regions.
All these urban expansion and transition work were compelled and coordinated by the
local government and real estate enterprises [48]. Figure 6 shows the changes in the spatial
distribution of built-up area within Hyderabad from 1979 to 2020, which shows that the
majority of development processes could actually be traced back to two different periods,
namely, 1979–1990 and 2000–2010. In particular, the amount of built-up area had a tremen-
dous increase in central Hyderabad in 1990, as compared with the spatial plot in 1979, but
was still scattered in nature. During the 1990–2000 period, the built-up areas were concen-
trated at both northern, central and southern Hyderabad of Pakistan. For the 2000–2010
period, major construction and expansion groundwork took place and were implemented
in the north-eastern Hyderabad, while some built-up area in the south-eastern Hyderabad
were recovered as vegetation, as observed in the 2010’s plot of both Figures 3 and 5. As
of 2020, two-thirds of the pixels of the Hyderabad region were considered as “built-up
area”. The dotted blue lines in Figure 7 show the corresponding time-trend of amount of
built-up area retrieved from Landsat images, which again verifies that major city expansion
processes actually took place at different stages in the previous four decades, to fulfill
different human and society needs, and such process is continuous in nature.

Figure 6. Spatial Distribution of built-up area from 1979–2020, within major parts of Hyderabad, Pakistan. The figures are
retrieved and computed via remote sensing and SVM approaches.
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Urban expansion of Hyderabad, Pakistan during the recent 40 years could actually
be attributed to many different socio-economic factors, for example, population changes,
economic and financial developments, industrialization, availability of transportation
network, and physiography of the concerned spatial region [116–118]. Nevertheless,
increase in population is the foremost and the most crucial reason, which took place
because of two major reasons, namely (1) the natural increase in population that cannot
be controlled; and (2) rural-to-urban migration caused by different push and pull factors,
for example, the lack of economic security, unemployment, and political persecution in
rural regions, as compared with the prosperity and ample employment opportunities in
urbanized areas of Hyderabad. Figure 7 also shows the population changes of the city
from 1950 to now, based on official statistical figures obtained from the local government
website [119], as indicated by orange solid lines. It was observed that the population was
only 232,000 in 1950, but increased by more than seven times by 2020, to 1,850,000, and
a consistent increase in population could be found throughout all recent seven decades,
and the increment starting from 1980 was faster than previous decades, which indirectly
explains the spatial expansion of built-up areas in Hyderabad, Pakistan.

Figure 7. Area of built-up land (left) and Population figures (right) in Hyderabad throughout the 1979–2020 and 1950–2020
periods, respectively. Population figures were obtained from Pakistan Bureau of Statistics [118], and both the blue and
oranges lines are obtained based on the assumption that the amount of built-up area and population figures increase
uniformly during each 10-year period.

Apart from population increase, industrial development has also played a dynamic
role in the urban expansion of Hyderabad. 75% of the industrial area in Sindh is located
in the Karachi and Hyderabad regions [120], and more than 250 industrial units estab-
lished under the Sindh industrial trading estate in 1950 were situated at the outskirts of
Hyderabad [121]. These industrial units focused on the production and selling of textiles,
sugar, soap, ice, pottery and cement, as well as the manufacturing of mirrors, tanneries and
hosiery mills. Moreover, Hyderabad is also very famous for its ornamental glass industry,
and is the main commercial hub of agricultural production within Pakistan. Economic
growth, together with the increase in GDP per capita and working population, generate
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huge demands for new settlements of individuals. As a result, transportation routes were
constructed and operated, so that citizens can easily travel to and from city areas and
countryside, thus contribute to the linear urban expansion of Hyderabad. Further, the
addition of roads in these geographical areas is actually a remarkable indicator of urban
expansion, and can be effectively projected and displayed, via remotely sensed approaches,
as shown in other case studies [122,123]. Nevertheless, due to the imperfect and deficient
political administration, and the shortage of robust strategies for future planning, there is
no rigorous and permissible agenda laid down in terms of city development. On top, many
local developers will simply retain their properties and utilize their possession and land for
making more profits, while businessmen will look for suitable speculation opportunities,
thus the transformation of land-use types in Hyderabad has taken place in an abandoned
but hostile manner.

4.2. Comparison with Previous Studies and Connection with Local Environmental Changes

Despite very few studies have focused on LUCC of Hyderabad, our satellite-based
retrieved land cover maps are generally in line with previous studies. For example, based
on our study, the amount of agricultural land retrieved from Landsat images in 2020 was
21.43 km2, as compared to 24.84 km2 in 1979, and 11.39 km2 of vegetation area have been
converted into built-up area, while similar spatial transformation trend was obtained for
vegetation areas (see Table 5). Such observation is in line with the conclusion obtained
in [106,124], where [124] shows that 70% of agricultural land in Hyderabad district have
been sold out, and converted into urbanized areas during 1981–2017; and [106] verified
that the amount of agricultural land in Indus Plains has reduced by 9% in past 20 years,
mainly due to socioeconomic and environmental factors like land ownership, lack of
basic facilities, and the transition of the city to urbanized use and commercial purposes.
Landsat datasets, together with geospatial and image processing techniques, have also been
adopted for detecting land-use changes within different time periods. In particular, a study
in Faisalabad, Pakistan has observed a tremendous increase in urban built-up area (i.e.,
impervious surface) during two highlighted periods, from 1980 to 2000 (by 30%), and from
2000 to 2005 (by 12%) respectively, and these built-up land have continuously engulfed
agricultural land from 1980 to 2010 [125]; while another study that combines Landsat-5
TM multispectral image, Landsat-8 OLI multispectral image and Markov model produced
LUCC maps of District Lahore, Pakistan during 1988–2016, at 30 m spatial resolution, and
verified that the reduction of agricultural land, vegetation, waterbodies and barren land,
have indirectly constituted the increase of built-up areas during the entire period [126].
All these temporal trends and conclusions of previous studies exactly match with results
obtained in this research, although some of these studies emphasized on detecting LUCC
in neighboring cities of Pakistan.

Further, a possible future extension of the current study is to evaluate the impacts of
urbanization on meteorological changes within our atmosphere, in particular, the changes
in temperature and urban heat island (UHI) effects induced. Numerous research studies
have obtained a promising correlation between the two quantities, for example, every
10% increase in the impervious surface area detected via Landsat in Xiamen city, China
has been associated with an increase in land surface temperature of 0.41–0.91 K during
summers [81]; maximum increase in temperature (of 1 ◦C) was found over regions of the
greatest urbanization in the Greater Phoenix region from 1973–2001, based on Landsat
images and Regional Atmospheric Modelling System of 2-km grid spacing, as compared
to the mean regional temperature increase of 0.12 ◦C within the entire region [127]. On
top, based on the simulation results of the Weather Research and Forecasting Model (WRF)
in arid Phoenix, AZ, USA, metropolitan area, urban development and construction of
built-up areas could lead to an increase of nighttime temperatures by up to 10 K, while
maximum temperature increase during the daytime could reach 2–4 K when vegetation
areas were gradually converted into built-up areas [128]. Urban forms could also impact
future thermal environment, where a dispersed city is capable of reducing mean UHI
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intensity, but at the same time imposes larger thermal loading within regional scale, as
compared with more compact spatial areas [129]. Thus, corresponding assessments of
temperature change caused by urbanization processes are important, because associated
climatic variations could easily reduce thermal comfort, and trap pollutants within street
canyons, especially in metropolitan cities, as a result causing devastating health impacts to
residents. Therefore, on top of monitoring temperature changes within urbanized areas, one
should also focus on evaluating how changing land-use patterns, local traffic and mobility
conditions, and meteorological conditions could affect pollutant distributions at fine spatial
resolutions, via satellite remote sensing techniques and modelling approaches [130–132].

4.3. Recommendations of Future Urban Planning in Hyderabad

Urban expansion, on one side, satisfies human needs and provides more available
space for human settlements, which likely alleviates public health challenges, enhances
environmental sustainability and economic productivity [133] in the long run; but on
another side, the phenomenon of urban expansion and fragmentation can potentially cause
different ecological and environmental problems, for example, the severe loss of natural
grassland, cropland and prairie [134], trapping of CO2 and heat energy within urban
environment, atmospheric pollution problems [135] and human discomfort [136]. Thus, it
is of paramount importance to improve the resilience and sustainability of urban land-use
planning and related implementations at an earlier stage, with the aim of maintaining
spatial equities within the rural and urban counterparts of developing cities, overcoming
associated socio-economic challenges in an innovative manner, and promoting smart city
development in long run. The connections between different perspectives of neighborhood
environmental conditions and health impacts could also be effectively quantified based on
prescribed city-based indices [137].

First, the key approach of monitoring urban expansion lies in reducing spatial dis-
crepancies of any construction projects. In particular, land-use strategies should aim at
minimizing urban-rural inequalities, preventing the loss of open countryside, and main-
taining urban-rural unity. One could learn experience from more developed cities like
Singapore, Japan and Hong Kong, by promoting mixed land-use within a single building
(e.g., with commercial zones downstairs, and residential zones situated upstairs [138]),
implementing the revitalization of shrinking cities and communities, or even aging districts,
buildings, and heritages [139,140]. In addition, upgrading local economies and provision
of all service to neighboring rural regions could also achieve spatial equity, in terms of
regional development, land administration, and the uniformity of policies.

Second, for developing cities like Hyderabad, and many other cities of Pakistan, many
socio-economic problems have arisen due to the continuous and rapid increase in popu-
lation, especially in areas situated near the town center. This includes housing shortages,
suffering from unemployment, and even water and energy crises. The local administration
committees and governmental departments should take immediate actions to resolve all
these problems. Some potential approaches include the selection of appropriate venues
for housing construction, or for infrastructural development. The desired area should be
kept away from existing industrial zones to avoid any potential environmental threats,
but has to be situated near the capital territory to cope with the shortfall of housing in
Hyderabad. On top, raw materials allied industries should also be positioned around the
desired housing areas, with the aim of creating sufficient employment opportunities and
reducing poverty.

To integrate better technologies and construction standards from developed cities,
Hyderabad could also encourage more foreign and local investors to support its housing
development projects, as well as the construction of bridges, roads, and public facilities.
With these, more advanced technologies and innovative ideas can be incorporated into
building a more sustainable and universally compatible city [4]. Environmental impact
assessment (EIA) should regularly be conducted in different parts of Hyderabad, or in
any neighboring cities and towns, so that the actual environmental and social impacts
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of each large-scale construction or infrastructural project can be better reviewed and
monitored [141]. With such environmental information on hand, mitigation measures
can be effectively implemented to minimize associated health risks. More importantly,
respective environmental informatics should be delivered to the general public based on
the open data initiatives, with the aim of enhancing sustainability of the city in foreseeable
future [142].

5. Conclusions

In this study, the assessment of urban expansion and changing land-use types in
Hyderabad in recent decades were conducted via remote sensing, image processing and
statistical machine learning approaches. Temporal variations and spatial maps of different
LUCC types from 1979–2020 were retrieved, in every 10-year period interval. In particular,
the amount of built-up area was rapidly increasing during the 1979–2000 and 2000–2010
periods, from 52.88 km2 (account for 30.69% of areas in Hyderabad) in 1979 to 112.28 km2

(account for 65.04% of areas in Hyderabad) in 2020; while areas allocated for agricultural
land, vegetation, waterbody, and barren land purposes continuously decreased, by a total
of 13.74%, 46.41%, 49.64%, and 85.27%. Such conclusion is supported by several previous
research of LUCC in Hyderabad, or in neighboring cities and towns of Pakistan. Further,
an average of exceeding 90% accuracy in terms of Producer Accuracy (PA), User Accuracy
(UA), Overall Accuracy (OA), and Kappa coefficient (KC) was obtained during all five time
periods when Ground Truth Points (GTP) were adopted for validation.

Till now, very little research has been conducted with regard to the spatial dynamics
and mechanism of LUCC changes in cities of Hyderabad; however, the continued increase
of population, rural-to-urban migration, as well as industrial and socioeconomic develop-
ments could lead to many potential social and environmental problems, like rural-urban
inequalities, excessive traffic emission, air and noise pollution, huge meteorological fluctu-
ations, and improper use of existing available land. This study has opened a new window
of detecting LUCC changes in developing cities via remotely sensed and pixel-based clas-
sification approaches, and can provide insights for conducting impact assessments, for
better urban planning and environmental control. Further, the pixel-based image analytic
framework of this study could also allow the integration of historical imageries and ancil-
lary GIS data layers, for facilitating improved land-use classifications, monitoring change
detection outputs, and making wiser infrastructural decisions. As a result, gaining a better
overview of the historical and potential future development of the city could introduce a
new milestone, in terms of technological advancement and smart urban governance.
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