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Abstract: With the development of sensors and of the Internet of Things (IoT), smart cities can provide
people with a variety of information for a more convenient life. Effective on-street parking availability
prediction can improve parking efficiency and, at times, alleviate city congestion. Conventional
methods of parking availability prediction often do not consider the spatial–temporal features of
parking duration distributions. To this end, we propose a parking space prediction scheme called
the hybrid spatial–temporal graph convolution networks (HST-GCNs). We use graph convolutional
networks and gated linear units (GLUs) with a 1D convolutional neural network to obtain the spatial
features and the temporal features, respectively. Then, we construct a spatial–temporal convolutional
block to obtain the instantaneous spatial–temporal correlations. Based on the similarity of the parking
duration distributions, we propose an attention mechanism called distAtt to measure the similarity
of parking duration distributions. Through the distAtt mechanism, we add the long-term spatial–
temporal correlations to our spatial–temporal convolutional block, and thus, we can capture complex
hybrid spatial–temporal correlations to achieve a higher accuracy of parking availability prediction.
Based on real-world datasets, we compare the proposed scheme with the benchmark models. The
experimental results show that the proposed scheme has the best performance in predicting the
parking occupancy rate.

Keywords: hybrid spatial–temporal graph convolutional networks; on-street parking availability
prediction; parking occupancy rate; parking durations

1. Introduction

With the rapid growth of the population and the economy in today’s cities, the number
of vehicles in cities is rising and, with it, the demand for parking spaces. On-street parking
is often a more cost-effective choice than parking facilities, such as garages and off-street
parking bays. However, the number of on-street parking bays cannot keep up with the
rising demand of the rapid growth of vehicles. Therefore, it is even harder to find available
parking spaces, which makes parking an important issue that cannot be ignored today. On
average, parking coverage takes 31% of land use in big cities [1]. Moreover, for some big
cities, such as Los Angeles and Melbourne, the rates are up to 81% and 76%, respectively [2].
In many cities, smart parking is always an important issue to work on in both the research
field and in economic developments. On-street parking is often a cost-effective choice
compared to parking facilities, such as garages and off-street parking bays. However, with
the rapid development of the urban economy, the problem of finding suitable parking bays
has become more and more serious. First, the increasing number of motor vehicles has
increased the demand for parking spaces. Second, some on-street parking information is
not made public, and such information cannot be fully utilized, thus increasing the scarcity
of parking spaces. Finally, the efficiency of on-street parking management is not high
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enough, which further reduces the utilization efficiency of urban parking spaces. There is a
study showing that in big cities, on average, it takes nearly 20 min to find a free parking
space [3]. The above issues have caused on-street parking to a be problem in recent years.
To be specific, the difficulty in finding available parking spaces reduces the efficiency of
urban operations and causes much pollution. It is also one of the most important causes
of urban congestion [4]. It is reported that more than one-third of the traffic congestion in
urban areas is caused by looking for free parking spaces [5].

On-street parking availability prediction results can provide drivers with useful and
timely information and can help improve the utilization efficiency of urban parking spaces.
So, it is of great significance to make stable and effective predictions. In general, parking
availability prediction is one of the foundations of urban traffic control and guidance,
which is also one of the main functions of an Intelligent Transportation System (ITS).

Historical data are required in order to predict parking availability. In the past, due
to networks, equipment, and technical reasons, parking information was not completely
recorded. In recent years, with the rapid development of Internet-of-Things (IoT) technolo-
gies, many cities have built or are building monitoring systems to record real-time on-street
parking events. Such monitoring systems are networks of numerous in-ground sensors
[6,7]. With such monitoring systems, plenty of historical data from on-street parking events
are available to predict future parking availability.

Previous studies of prediction methods can be divided into two categories, which are
knowledge-driven methods and data-driven methods. Knowledge-driven methods require
suitable systematic programming and are suitable for some simple problems. However,
parking prediction is a complex problem. Firstly, parking data change rapidly; thus, it is
hard to model the parking prediction problem in big cities. Secondly, parking data are
affected by many factors. For example, the parking occupancy rate (POR) on weekdays
differs from that on weekends. Population distribution, schools, hospitals, etc. can also
affect parking.

For data-driven methods, there are two common kinds of approaches, i.e., the conven-
tional statistical approaches and machine learning approaches. The conventional statistical
approaches, e.g., the autoregressive integrated moving average model (ARIMA) [8], have
performed well in short-term prediction. However, due to the complexity of geographical
locations, there is a high complexity and too much uncertainty in parking prediction. There-
fore, for long-term prediction, conventional statistical approaches often fail to obtain a high
prediction accuracy. Moreover, higher prediction accuracy and more complex modeling can
be achieved by using machine learning methods, such as support vector regression (SVR)
[9] and the k-nearest neighbors algorithm (KNN) [10]. However, most machine learning
studies do not pay attention to the impact of contextual features of on-street parking bays,
which play an important role in predicting the POR.

In recent years, deep learning methods have achieved great success in parking avail-
ability prediction. For example, long short-term memory (LSTM) [11,12], a variant of the
recurrent neural network (RNN), is good at processing time-series data, such as POR data.
However, parking availability prediction is not only a time-series problem, but it also
shows a strong spatial correlation. Specifically, the parking conditions of parking areas
are influenced by those of other parking areas. When many vehicles are parking in one
parking area, other vehicles tend to park in another more available parking areas. It is hard
for RNN-based methods to take advantage of spatial features. Instead, the combination
of LSTM and convolutional neural networks (CNNs) [13] can be used to take advantage
of temporal features and extract spatial features for predictions [14]. These methods can
only be used for Euclidean data, such as images and voice signals; however, like traffic
networks and social networks, on-street parking areas are distributed in a non-Euclidean
space. Therefore, the above-mentioned methods still do not predict the POR of parking
areas very well.

Recently, some prediction approaches based on the graph theory that can be used for
non-Euclidean structures, such as traffic flow data, have been proposed [15–17]. However,
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these methods treat spatial correlations and temporal correlations separately. Therefore,
the spatial–temporal correlations still need to be solved. In addition, these methods
involve high computational complexity and, thus, require too much time for training.
Spatio-temporal graph convolutional networks (STGCNs) [18] can jointly extract spatial
and temporal features from the input and reduce the computational complexity with the
first-order approximation of the Laplacian [19]. However, these traffic flow predictions
only focus on instantaneous spatial–temporal correlations. For POR prediction tasks, they
involve long-term spatial–temporal correlations, which means that spatial features are
closely related to the periods of parking durations. For example, in rural areas, the parking
durations may be longer, whereas in an urban area or the central business district (CBD) of
a city, drivers often tend to spend less time in parking.

In this paper, we propose a hybrid spatial–temporal scheme that combines the in-
stantaneous spatial–temporal correlations and the long-term spatial–temporal correlations.
Specifically, we propose a novel deep learning architecture, the hybrid spatial–temporal
graph convolutional networks (HST-GCNs). In this architecture, we first construct a tempo-
ral gated convolutional block (TGCB), which contains gated linear units (GLUs) and a 1D
CNN, to capture the temporal features. Then, we construct a graph convolutional block by
using graph convolution networks (GCNs) to capture the global spatial contextual features.
In order to extract the instantaneous spatial–temporal correlations, we construct a spatial–
temporal convolutional block, which contains two temporal gated convolutional blocks
and one graph convolutional block in the middle, to control the inputs and outputs of the
graph. Additionally, an attention mechanism called distAtt is added to the graph to model
the spatial correlations. The attention mechanism can measure the similarity of parking
duration distributions and add long-term spatial–temporal correlations to the HST-GCN
architecture. To test the scheme, we collected real parking datasets from Melbourne in
2017. The datasets were affected by many factors, such as schools, hospitals, weather, and
residential areas. Since it is difficult to consider single factors while keeping other factors
constant, we considered these variables as an indivisible whole. Our experiments and
our evaluation of the datasets show that the proposed HST-GCN framework outperforms
state-of-the-art baselines when predicting the POR of areas with different time horizons. In
summary, this paper makes the following contributions:

• We propose the hybrid spatial–temporal graph convolutional network (HST-GCN)
framework for parking availability prediction. In the HST-GCNs, we adopt a 1D
convolution and gated linear units (GLUs) to model instantaneous temporal features
and use graph convolutional networks (GCNs) to capture the global spatial features.
Then, we use the spatial–temporal convolutional block to capture the instantaneous
spatial–temporal correlations.

• We propose a distAtt graph attention network and integrate distAtt into the spatial–
temporal convolutional block, which also adds long-term spatial–temporal correla-
tions into the HST-GCN architecture and helps obtain a stable prediction result.

• We conducted extensive experiments on a large-scale real-world dataset, and the
experimental results demonstrated that the proposed framework outperformed state-
of-the-art baselines when predicting the POR of areas with different time horizons.

The remainder of the paper is organized as follows. In Section 2, we introduce some
baseline and graph-based prediction methods. In Section 3, we introduce the preliminaries
of the study, including the definition of POR, graph construction, parking duration dis-
tributions, and problem definition. In Section 4, we introduce the designed scheme for
predicting the POR. In Section 5, based on the real-world datasets, we carry out experiments
to evaluate the performance of the proposed scheme. Finally, in Section 6, we present our
conclusions and future work.



Remote Sens. 2021, 13, 3338 4 of 20

2. Related Work
2.1. Parking Availability Prediction

Parking availability prediction issues have been studied for years. The statistical mod-
els used for parking availability prediction include the historical average (HA), ARIMA [20],
and linear regression (LR) [21]. These methods perform well in short-term predictions.
However, there is too much uncertainty and complexity in parking events, thus making it
unsuitable for these methods to perform long-term prediction tasks.

Machine learning methods can solve more complex problems. Therefore, they are also
used for parking availability prediction. Bock et al. [22] used a two-step approach to predict
parking space availability by using SVR methods, which showed a better performance
than that of the one-step SVR model. Vlahogianni et al. [23] proposed a neural network
(NN)-based model—called multi-layer perception (MLP)—to predict the occupancy rate of
parking spaces. This model captured the temporal evolution of parking occupancy and
accurately predicted occupancy up to half an hour ahead. Zheng et al. [24] performed a
comparative analysis of the regression tree, NN, and SVR methods for the prediction of the
POR and found that the regression tree method outperformed the other two algorithms
that they evaluated. However, these machine learning methods did not jointly consider
spatial–temporal patterns.

In recent years, deep learning methods have been widely used for parking availability
prediction. Arjona et al. adopted the gated recurrent unit (GRU), a recurrent neural network
method, for parking availability prediction according to a real scenario in the city of Riyadh.
Shao et al. [12] proposed an LSTM model to predict parking multiple steps ahead and used
the historical on-street POR in a specific region and the probability of car leaving to predict
the parking availability in the future. However, the spatial correlations in the above studies
were ignored.

2.2. Graph-Based Methods for Predictions

Graph-based methods can convert non-Euclidean data, which cannot be directly
processed by classical CNN methods, into graph structure data, and then use the data
for prediction. Therefore, graph-based methods have recently attracted much attention
in the traffic prediction domain. Yang et al. [25] proposed a model that leveraged graph-
convolutional neural networks (GCNNs) to extract the spatial relations of traffic flow in
large-scale networks and utilized LSTM to capture the temporal features. Their model
showed a better performance than that of the baselines, including the multi-layer LSTM
and least absolute shrinkage and selection operator (LASSO). However, their model still
could not extract the spatial and temporal correlations jointly. Li et al. [17] proposed
a model named the diffusion convolutional recurrent neural network (DCRNN), which
modeled the traffic flow as a diffusion process to predict the traffic flow. This model could
incorporate both spatial and temporal dependency to enhance prediction performance.
Zhao et al. [15] proposed a temporal graph convolutional network (T-GCN) for traffic
prediction. They combined a GCN with a gated recurrent unit (GRU) to capture spatial
and temporal correlations. Yu et al. [18] proposed a framework, the spatio-temporal graph
convolutional networks (STGCNs), for forecasting traffic flow. The framework effectively
captured comprehensive spatio-temporal correlations jointly by modeling multi-scale
traffic networks and improved the training efficiency by using Chebyshev polynomial
approximation and first-order approximation [19].

2.3. Attention Mechanisms on Graphs

Attention mechanisms have many benefits on graphs, including efficient computation
and parallelization across all nodes in the graph. They also do not require knowledge of
the entire graph structure up front [26]. Therefore, they have been widely used in recent
prediction studies. Guo et al. [27] proposed the attention-based spatial–temporal graph
convolutional network (ASTGCN) model, which adopted a spatial–temporal attention
mechanism to capture dynamic spatial–temporal correlations and solve traffic flow forecast-



Remote Sens. 2021, 13, 3338 5 of 20

ing problems. Zheng et al. [28] then proposed the graph multi-attention network (GMAN)
for traffic condition prediction. The model adapted an encoder–decoder architecture, which
consisted of multiple spatio-temporal attention blocks. This structure could model the
impact of the spatio-temporal factors on traffic conditions. Huang et al. [29] proposed a
long short-term graph convolutional network (LSGCN) model for traffic prediction. In
this model, a new graph attention network called cosAtt was proposed. Unlike traditional
graph attention networks (GATs) [26], which need to learn the similarity value by using
the attention function, the LSGCN used a stable similarity value in the cosAtt mechanism,
which could help obtain a more stable result.

However, differently from traffic flow, which changes in real time, parking events
sometimes do not change much with the passing of time. Like the parking occupancy
rate (POR) of an area at any time, which is related to the location and is influenced by the
adjacent area, the duration of a parking event is also related to the locations. Therefore, in
parking availability prediction problems, the long-term spatial–temporal correlations need
to be considered. Motivated by the studies mentioned above, we propose a hybrid spatial–
temporal graph convolutional network for modeling the instantaneous spatial–temporal
correlations, as well as the long-term spatial–temporal correlations.

3. Preliminaries

In this section, we first define the parking occupancy rate (POR), graph construction,
the parking duration distribution, and the attention on graphs, after which we will define
the problem.

3.1. Parking Occupancy Rate

In general, drivers are not very familiar with specific parking bays in cities. In other
words, it is difficult for a driver to choose and find a single available parking bay out of
all bays in a large city. Therefore, after obtaining the predicted POR of a single parking
bay, we are supposed to pay more attention to the POR of areas and further assess their
parking availability.

Predicting parking availability requires a certain amount of historical sensor
data [12,23,30]. Sensor data at different times can be constructed as time-series data; i.e.,
the future parking availability is predicted based on the sensor data collected from several
previous time steps. Considering the computational complexity and practical effects of
this process, we sampled the timeline into 5-min intervals. In previous studies [25,31],
the POR of a parking bay was defined over a period of time. However, the POR is an
instantaneous value, so each time corresponds to a POR value. Thus, the above meth-
ods may not obtain accurate prediction results. In this paper, we used the instantaneous
parking status captured by sensors to describe the POR. Let A = {1, . . . , a, . . . , A} be the
set of the areas in a city, where A is the number of areas. Then, for an area a(a ∈ A),
let aB = {a1, . . . , ab, . . . , aB} be the set of the bays in this area, where B is regarded as
the number of bays in area a. For a single parking bay, we denote its occupied status or
unoccupied status as simply 1 or 0, respectively. At time t, the status of a parking bay
ab(ab ∈ aB) can be denoted as oab

t . The POR of an area a at time t is computed as follows:

oa
t =

∑B
i=1 oai

t
B

. (1)

3.2. Graph Construction

There are strong spatial correlations and complex contextual relationships in parking
occupancy availability. Specifically, the POR of an area is affected by another nearby area.
This influence will decline as the distance between the two areas increases.

To accurately predict the POR of an area, there are two problems that need to be
studied: (i) For each area, how the contextual information is extracted; (ii) how the POR
is predicted based on historical data. To solve these problems, we first constructed an
unconnected graph by using the POR of each area. Specifically, the POR of each area is
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regarded as the vertices of the graph. The relationship of two different areas, which can be
described by their distance, can be regarded as the edges of the graph.

Let Gt be the graph at sample time t. It can be expressed as Gt = (Vt, E , W), where Vt
is the set of vertices of the graph at sample time t, E is the set of edges of the graph, and
W ∈ RA×A is the weight matrix of the graph. Based on Gt, the weight of the edge that links
the i-th and j-th vertices is expressed as

wij =

exp
(
−

d2
ij

σ2

)
, for i 6= j and exp

(
−

d2
ij

σ2

)
≥ ε,

0, otherwise.
(2)

where dij is the distance between the geometric centers of the i-th area and the j-th area, ε

is the gate for deciding on the density of W, and σ2 is used to control the distribution of W.

3.3. Parking Duration Distribution

For a parking event, the parking duration can be short or long. However, for an
area, the distribution of the parking durations is often exponential [6]. Figure 1 shows
the distributions of parking durations in two different areas in Melbourne in July 2017,
and Figure 2 shows the distributions of the parking durations in the Queensberry area
in different months. We can observe that there are tiny differences in the distributions of
parking durations in different areas, and there are also different distributions in different
months. However, no matter how the location and time change, the distributions are
all basically exponential. Therefore, we can use the probability density function of the
exponential distribution, which is defined as

f (x) =

{
λe−λx, x > 0,
0, otherwise.

to approximate the distributions of the parking durations in different areas, where λ is a
parameter of the function. The distributions of the parking durations in different areas
include a long-term spatial–temporal correlation. Specifically, similarly to the POR of
an area at a different sample time, the duration distributions are also temporal, and are
affected by contextual spatial features, such as the distances between the two areas.
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Figure 1. The distributions of the parking durations in two different areas (Mint and Queensberry) in Melbourne in July 2017.
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Figure 2. The distributions of the parking durations in the Queensberry area in Melbourne in each month of 2017.

The size of parameter λ of the function can be used to measure the closeness of the
relationship between two areas. The absolute value of the difference in two parameters
|λi − λj| is denoted as

(
dij
)

λ
. We call this difference the “distribution distance”. Similarly

to the weight matrix in Section 3.2, we can obtain another weight matrix based on the
“distribution distance”. The weight based on the “distribution distance” of the i-th and j-th
areas Wλ is expressed as

(wλ)ij =

exp
(
− (dij)

2
λ

σ2
λ

)
, for i 6= j,

0, otherwise.
(3)

where σ2
λ is a parameter used for controlling the distribution of Wλ.

3.4. Problem Definition

Based on the definition of the graph of the POR of the areas, we predict the POR of
areas in the next H time steps based on the observations in the previous M time steps. The
problem can be formulated as

ôt+1, . . . , ôt+H = arg max
ot+1,...,ot+H

{log Pr(ot+1, . . . , ot+H |ot−M+1, . . . , ot)}, (4)

where ot ∈ RA and ôt ∈ RA are the observation vector and the prediction vector of all of
the areas at sample time t, respectively. Pr(·|·) is the conditional probability function.

4. Methodology

In this section, we introduce the HST-GCNs that are designed in our paper to pre-
dict the POR. As shown in Figure 3, the HST-GCN model includes three main blocks:
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the graph convolutional block, the temporal gated convolutional block (TGCB), and the
spatial–temporal convolutional block (STCB). Each STCB includes two TGCBs together
with a graph convolutional block in the middle.

t
𝑜𝑜𝑡𝑡−𝑀𝑀+1𝑏𝑏𝑙𝑙𝑘𝑘 , . . . , 𝑜𝑜𝑡𝑡𝑏𝑏𝑙𝑙𝑘𝑘

1-D
Convolution

GLU

TGCB

TGCB

Graph Convolution

W
𝑜𝑜𝑏𝑏𝑙𝑙𝑘𝑘+1

𝑜𝑜𝑏𝑏𝑙𝑙𝑘𝑘

STCB

Output Layer

𝑜̂𝑜

(𝑜𝑜𝑡𝑡−𝑀𝑀+1, … 𝑜𝑜𝑡𝑡−1, 𝑜𝑜𝑡𝑡 )

STCB

distAttWλ ⨀ 𝑜𝑜𝑏𝑏𝑏𝑏𝑏𝑏+1′

𝜎𝜎

𝜎𝜎(Q)

P

𝑜𝑜𝑏𝑏𝑙𝑙𝑘𝑘

( 64)inC =

( 16)inC =

( 64)inC =TGCB

distAtt

⨀

⨀

STCB

Wλ

𝜎𝜎

𝜎𝜎

Figure 3. The framework of the proposed HST-GCN model. � refers to the element-wise Hadamard product and σ(·) refers
to the sigmoid function.

4.1. Graph Convolutional Block

Since the classical CNN method cannot directly process the on-street parking data that
exists in a non-Euclidean space, we use the graph Gt constructed in Section 3.2 to extract
the global contextual information of parking areas.

There are two approaches to generalizing CNNs to structured data forms. One is
the spatial approach, and the other is the spectral approach. The spatial approach can
be adopted on the graph by construction, which faces a great challenge when matching
local neighborhoods [32]. It expands the spatial definition of convolution on the graph [33].
The latter defines a convolutional theorem based on the Fourier transform to apply the
convolutions in spectral domains [32]. Moreover, we adopt an enhanced spectral method
proposed by Defferrard et al. [34] to model the relationships of nearby parking areas. This
enhanced spectral method reduces the evaluation complexity to linearity from O(n2) and
can also match local neighborhoods.

Using the spectral approach, the symmetric normalized Laplacian matrix is defined
as L = IA − D−

1
2 WD−

1
2 ∈ Rn×n, where IA ∈ Rn×n is the identity matrix, W is the weight

matrix defined in Section 3.2, and D ∈ Rn×n is the diagonal degree matrix with Dii = ∑j wij.
As L is symmetric and positive-semidefinite, it can be expressed as L = UΛUT, where Λ is
the diagonal matrix of eigenvalues of L, and U is the matrix made up of eigenvectors of L.
The graph convolution operator (∗)G is defined as

(x ∗Θ)G = U(UTΘ)�(UTx), (5)

where x is the input filtered by kernel Θ, and � is the element-wise Hadamard product.
After filtering x with Θ, the output can be expressed as

y = Θ(L)x = Θ(UΛUT)x = UΘ(Λ)UTx, (6)

where Θ(Λ) is the kernel of the graph.
Based on Equation (6), we create the graph convolutional block to process the input

of a graph. Though graphs can be processed in the spectral domain, the computational
complexity is high (O2) [32]. Furthermore, there is no spatial localization in the kernel. In
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other words, the kernel mentioned in Equation (5) is a global fully connected convolution
kernel. In our graph convolutional block, to localize the kernel and reduce the number of
parameters, a polynomial filter is applied, which is shown as

Θ(Λ) =
K−1

∑
k=0

αkΛk, (7)

where αk is the coefficient of Λk. K is the kernel size of the graph convolution, and
determines the maximum radius of the convolution from the central nodes. After applying
the polynomial filter, the number of parameters of the kernel is reduced from A (A is the
number of areas) to K, due to which the learning complexity is also reduced from O(n2) to
linearity. Based on [35], the kernel can be replaced by the Chebyshev polynomials. The
Chebyshev polynomials are shown as

T0(x) = 1, T1(x) = x, (8)

Tn+1(x) = 2xTn(x)− Tn−1(x). (9)

Replacing the kernel with the Chebyshev polynomials, the kernel can be rewritten as

Θ(Λ) ≈
K−1

∑
k=0

βkTk(Λ̃), (10)

where βk is the coefficient of Tk(Λ̃), Tk(·) is the Chebyshev polynomial of order k, and Λ̃ is
the reshaped diagonal matrix of eigenvalues, which is expressed as Λ̃ = 2Λ/λmax − IA.
Here, λmax is the largest eigenvalue of L. Let L̃ = 2L/λmax − IAB ; then, Equation (10) can
be rewritten as

y =
K−1

∑
k=0

βkTk(L̃)x, (11)

where y is the output.
Though the output can be obtained using the Chebyshev polynomials, there are

still K items in Equation (11). Therefore, to further decrease the complexity, we use
the 1st-order approximation [19] in our proposed model. Specifically, on the condition
that the convolutional filter functions can be recovered [19], the order of the layer-wise
convolution operation in Equation (10) can be limited to (K− 1) = 1; i.e., all nodes exploit
the information from the (K-1)-order (1-order) neighborhoods. In this way, a linear function
on the graph Laplacian spectrum can be obtained. Based on this, Equation (11) is thus
approximated as

y =
K−1

∑
k=0

βkTk(L̃)x

= (β0T0(L̃))x + (β1T1(L̃))x

= β0x + β1 L̃x,

(12)

where β0, β1 are two parameters of the kernel. By further assuming that λmax ≈ 2,
Equation (12) is simplified as

y ≈ β0x + β1

(
2

λmax
L− IA

)
x

≈ β0x− β1

(
D−

1
2 WD−

1
2

)
x.

(13)

To reduce the number of parameters, let β = β0 = β1. To stabilize the numerical
performances and avoid exploding/vanishing gradients, W and D are normalized by
W̃ = W + IA and D̃ii = ∑j W̃ij, respectively. The output is rewritten as
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y = βx + β
(

D−
1
2 WD−

1
2

)
x

= β
(

D̃−
1
2 W̃D̃−

1
2

)
x.

(14)

By using the 1st-order approximation strategy in our graph convolutional block, the
accuracy of the output is slightly reduced. However, the computational complexity has
been greatly reduced, which is efficient for large-scale graphs.

4.2. Temporal Gated Convolutional Block

To extract the temporal features and capture the dynamic behavior of POR data, we
construct a temporal gated convolutional block (TGCB). As Figure 3 shows, the TGCB
contains a 1D CNN with a Kt-width kernel followed by gated linear unit (GLU), which
works as follows. For the entire graph, the input contains M historical observations of
A nodes. The input is Y = {y1, y2, · · · , ya, · · · , yA} ∈ RA×M×Cin , where Cin is the size of
the input of the feature maps (Cin = 1 in this study). We use the convolutional kernels
Γ ∈ RKt×Cin×Cout to obtain a single convolutional output result Z = [φψ] ∈ RA×(M−Kt+1)×2Cout ,
where Cout is the size of the feature maps generated by the GLU. φ and ψ are two equal
parts of the output through the 1D convolutional layer, serving as the inputs of the gates in
the GLU, respectively. The temporal gated convolution T is expressed as

(Γ ∗Y)T = φ� σ(ψ), (15)

where Γ is the kernel of temporal convolution. Y is the input of temporal convolution.
σ(ψ) is the sigmoid function for controling φ. As the temporal convolution explores Kt
neighbors of input elements, it shortens the length of sequences by Kt − 1 each time. When
the input dimension is less than the output dimension, the input will be filled with enough
zeros to match the length of the output. Finally, based on Equation (15) and the GLU, we
create the TGCB. Differently from RNNs, which maintain a hidden state of the entire past
and therefore make it difficult to perform parallel computations within a sequence, the
convolutional networks in the TGCB do not depend on the computation results of previous
time steps, which allows parallelization of computation during training and helps increase
the computing speed.

4.3. Spatial–Temporal Convolutional Block

To combine the temporal POR data and spatial-featured graph, as shown in Figure 3
(left), we construct the Spatial–Temporal Convolutional Block (STCB) blk, which consists
of two TGCBs and a graph convolutional block in the middle. The TGCB and the graph
convolutional block are used to extract temporal correlations and spatial correlations,
respectively. Let oblk be the input of all the historical observations used for prediction; the
output oblk+1, which passes by one STCB blk, is computed as

oblk+1 = (Γblk
l ∗ ReLU

(
Θblk ∗

(
Γblk

u ∗ oblk
)
T

)
G
)
T

, (16)

where Γblk
u and Γblk

l are the upper and lower temporal kernels with block blk, Θblk is
the spectral kernel of graph convolution, and ReLU (·) indicates the rectified linear unit
function [36]. Following this, to achieve parallelization over input with fewer parameters
and a faster training speed, a temporal convolutional layer and a fully connected layer are
added to the two stacked STCBs, where the temporal convolutional layer is used to map
the output. Then, we can obtain an output Z ∈ RA. Thus, the predicted value ô can be
calculated with a linear transform through the fully connected layer.

4.4. Hybrid Spatial–Temporal Correlations

To extract both the instantaneous and the long-term spatial–temporal correlations, we
consider the POR data and the distance between the areas as the first spatial–temporal
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relationship. The similarity of the parking duration distributions serves as the second
spatial–temporal relationship. To illustrate this long-term relationship, we use the weight
matrix Wλ generated by Equation (3). For the purpose of considering the two spatial–
temporal correlations together, we add the weight matrix Wλ to the STCB block.

There is a long-term spatial–temporal relationship in the graph. Similarly to the
distance between the areas, the similarity of parking duration distributions of the areas
is also important contextual information. However, the impacts of the similarities of the
parking duration distributions on areas are quite different. We adopt the idea of the graph
attention networks (GATs) [26] in order to assign different levels of importance of the
similarities of the parking duration distributions to different nodes within a neighborhood
while dealing with neighborhoods with different distances.

Graph attention networks (GATs), which operate on graph-structured data, leverage
masked self-attentional layers and can solve several challenges of spectral-based graph
neural networks. The input of a GAT is a set of features of nodes, which can be denoted
as Q = {~q1, · · · ,~qi, · · · , ~qA}, where ~qa ∈ RFin , and Fin is the number of features of each
node. The output is also a set of features of nodes, denoted as Q′ = ~q′1, · · · ,~q′i, · · · , ~q′A,
where ~q′a ∈ RFout , and Fout is the number of output features of each node. We denote
WF ∈ RFin×Fout as the attentional featured weight matrix of all nodes. The attention
coefficients are computed as

eij = Att(WF~qi, WF~qj), (17)

where Att(·) is the attention mechanism operation function. Let Ni be the neighbors of
node i (that connect with node i directly). Then, we normalize the attention coefficients
using the softmax function:

γij = softmaxj
(
eij
)
=

exp
(
eij
)

∑k∈Ni
exp(eik)

. (18)

The normalized attention coefficients are used to compute a linear combination of the
features corresponding to them in order to serve as the final output features for every node:

~q′i = σ

(
∑

j∈Ni

γijWF~qj

)
, (19)

where σ(·) is the activation function [26].
However, the similarity value eij in the GAT is not very stable, since it is learned

from the attentional weight matrix WF and the attention function shown in Equation (17),
rather than a fixed value. Motivated by the cosAtt method proposed by [29], which
adopts a global GAT to learn the similar conditions of any two roads of a traffic network
instead of neighbors in graph attention networks, we propose a distAtt method to measure
the similarity of parking duration distributions. The distAtt method is based on the
“distribution distance” mentioned in Section 3.3, in which distAtt is defined as

eij =
|λi − λj|∥∥max{λi, λj}

∥∥ (20)

γij = sigmoid
(
eij
)

(21)

distAtti = ∑
j∈Ñi

γijλjwλ ij (22)

where Ñi is all of the nodes except node i, and wλ ij is the “distribution distance” weight
matrix Wλ between node i and j. The sigmoid function is the activation function, which
can prevent denominator underflow and crashing of the program when the number of
nodes is huge. In addition, by adopting the distAtt method, unlike the value of eij in GAT,
the value of eij becomes relatively stable and is adjusted only by the weight matrix Wλ (i.e.,
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wλ ij). Combining the output oblk+1 and the distAtti ∀i, we can obtain the final attentional

output oblk+1′.

4.5. Loss Function

In this study, we use L2 loss to measure the performance of the proposed model,
which is defined as

L(ŷ; Wθ) = ∑
t
‖ŷ(ot−M+1, . . . , ot, Wθ)− ot+1‖2, (23)

where Wθ represents all trainable parameters, ŷ(·) is the prediction value, and ot+1 denotes
the ground truth.

In this paper, the entire process of the parking occupancy prediction is illustrated by
Algorithm 1.

Algorithm 1 POR Prediction Algorithm

Input: The arrival and departure events of the sampled parking bays and the vector of
sampled time t = {t1, t2, · · · , tn}, where n is 8928;

Output: The evaluation metric, i.e., the mean absolute error (MAE), root mean square
error (RMSE), and mean absolute percentage error (MAPE)

1: for all a ∈ A do
2: calculate the distance of two different bays;
3: calculate the “distribution distance” mentioned in Section 3.3 to represent the simi-

larity of parking duration distributions of two different parking bays;
4: end for
5: create the distance weight matrix W by using Equation (2);
6: create the “distribution distance” weight matrix Wλ by using Equation (3);
7: for each time t ∈ [1, n] do
8: for all a ∈ A do
9: predict the POR of area a with the HST-GCN model;

10: end for
11: end for
12: collect all of the predicted values and the real values for each area with Equation (1);
13: compute the MAE, RMSE, and MAPE using the above predicted and real values with

the formulas in Equations (24)–(26);
14: return MAE, RMSE, and MAPE

5. Experiments

In this section, we conduct experiments to evaluate the proposed parking occupancy
prediction scheme by using real-world datasets. The two datasets used in this paper are
from the open data platform of Melbourne [6,37]. One dataset (dataset I) is a map indicating
the positions of all 4657 parking bays and 33 areas in the city of Melbourne, as shown in
Figure 4. The other dataset (dataset II) records all of the parking events of every parking
bay in the city of Melbourne in 2017. In dataset II, the parking data were already influenced
by many factors, such as schools, hospitals, weather, and residential areas. In other words,
the parking data were influenced by the activities of all people in Melbourne. It is difficult
to consider a single factor while keeping other factors constant. In addition, parking events
are affected by these factors jointly. Modeling the parking events in several areas and
using the datasets generated by simulations may verify the effects of a single factor on the
experimental results, but they do not represent the true situation. Therefore, we considered
these factors as an indivisible whole. The main features of dataset II are shown in Table 1.
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Figure 4. A map of the distribution of parking bays and areas in Melbourne.

Table 1. Features of the Melbourne parking bay dataset (dataset II).

Feature Description

Area City area—used for administrative purposes.
ArriveTime Date and time that the sensor detected that a vehicle was located over it.

DepartureTime Date and time that the sensor detected that a vehicle was no longer located over it.
StreetMarker The street marker that was located next to the parking bay with a unique ID for the bay.

DurationSeconds Time difference between arrival and departure events (measured in seconds).
Vehicle Present Representing whether there was a vehicle present.

Longitude Geographical information
latitude Geographical information

5.1. Data Pre-Processing
5.1.1. Data Selection

As Figure 2 shows, the distributions of the parking durations in different months are
similar. Therefore, a random selection for one month has little effect on the experimental
results. In our experiments, we randomly chose one month from the raw data, which
ranged from 1 July 2017 to 31 July 2017. Differently from some studies [12,24], the parking
data on weekends and evenings were included.

5.1.2. On-Street Parking Occupancy Rate

According to the arrival time and departure time in each parking bay recorded in
dataset II, we can obtain the parking status of each parking bay at each sample time. Then,
we calculate the POR (parking occupancy rate) of each area using Equation (1). Dataset II
comprises all parking events, including arrivals and departures; thus, we can accurately
capture the parking state at any time. Therefore, the POR data that we calculate are always
real data.
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Dataset II is aggregated for every 5 min; thus, there are 288 (24 × 60 ÷ 5) time slots in
every day. Correspondingly, every bay contains 288 parking occupancy rate (POR) values
per day. Then, the POR can be expressed by an ordered integer ηt, e.g., t = 00:00 as ηt = 0
and t = 13:30 as ηt = 162 (13 × 12 ÷ 6). All of the POR values are generated as time series.

5.1.3. The Weight Matrix

Based on the definitions of wij in Section 3.2, the distance weight matrix can be calculated
by using Equation (2), the parameters of which are detailed as follows. ε and σ2 are assigned
to 0.5 and 5, respectively. As for the “distribution distance” weight matrix Wλ, the parameter
σ2

λ is set to 5× 10−4. The visualizations of W and Wλ are shown in Figures 5 and 6.
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Figure 5. The heat map of the visualization of the weighted matrix W, which is determined by the
distance between the two areas. The color of the heat map indicates the weight values of the two
parking areas, which can be calculated by using Equation (2).
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Figure 6. The heat map of the visualization of the weighted matrix Wλ, which is determined by the
“distribution distance” between the two areas. The color of the heat map indicates the weight values
of the two parking areas, which can be calculated by using Equation (3).
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5.2. Experimental Setting
5.2.1. Evaluation Metric

To better illustrate the performance of our scheme, we use the following evaluation
metrics for occupancy prediction.

• Mean absolute error (MAE):

MAE =
1
N
×

N

∑
n=1
|ŷn − yn|. (24)

• Root mean square error (RMSE):

RMSE =

√
∑N

n=1(ŷn − yn)
2

N
. (25)

• Mean absolute percentage error (MAPE):

MAPE =
1
N

N

∑
n=1

∣∣∣∣ ŷn − yn

yn

∣∣∣∣× 100%. (26)

Here, yn and ŷn are the actual value and the predicted value, respectively, and N is
the number of samples.

5.2.2. Prediction Models

The models considered in our paper include linear models and deep learning models.

• HA: The historical average, which models the POR as a seasonal process and uses
a weighted average of previous seasons as the prediction. The period used is one
week, and the prediction is based on aggregated data from previous weeks. For
example, the prediction at 8:00 a.m. for this Monday is the average parking occu-
pancy rate (POR) at 8:00 a.m. on all previous Mondays. Since the historical average
method does not depend on short-term data, its performance is invariant for different
prediction horizons.

• ARIMA: The autoregressive integrated moving average (ARIMA) [20] model, which
is also known as an integrated moving average autoregressive model, is one of the
time-series forecasting analysis methods.

• LSTM: In the long short-term memory model [7], the temporal correlations are taken
into account. However, the spatial correlations are not captured.

• DCRNN: The diffusion convolution recurrent neural network [17], which uses a
bidirectional graph random walk to model spatial dependency and a recurrent neural
network to capture the temporal dynamics.

• STGCN: The spatio-temporal graph convolutional network [18], which combines
graph convolutional networks and temporal gated networks to capture spatial–
temporal correlations.

• ASTGCN: The attention-based spatial–temporal graph convolution network [27],
which combines the spatial–temporal attention mechanism and the spatial–temporal
convolution to capture the dynamic spatial–temporal correlations.

5.2.3. Details of the Experiment

• All of the experiments were performed on a Windows 10 platform (CPU: AMD Ryzen
7 3700X 8-Core Processor @ 3.60 GHz, GPU: GeForce GTX 1650 SUPER).

• Though parking events have different characteristics between weekdays and week-
ends, to keep the data uniform, we considered all of July to evaluate the performance
of the proposed scheme. At any sample time, all of the models used the previous
60 min (i.e., M = 12) of observed data points to predict parking conditions in the next
15, 30, and 60 min (i.e., H = 3, 6, 12).
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• In the HST-GCN model, the channels of the three layers in the STCB were set to 64, 32,
and 64, respectively. Furthermore, the graph convolution kernel size K and temporal
convolution kernel size Kt were set to 3.

• For the Chebyshev polynomial approximation in the proposed scheme, we trained
our models by minimizing the mean square error using RMSProp [38] for 100 epochs
with a batch size of 64. The initial learning rate was 10−3 with a decay rate of 0.5
after every 10 epochs. The proportion of training, validation, and testing parts of the
datasets were split to 23:4:4.

• To show the effects of our distAtt mechanism, we created a new model named HST-
GCN∗, which replaced the distAtt mechanism with a GAT for comparison.

5.3. Experimental Results

The results of the prediction performance of our scheme and the benchmark models
are shown in Table 2. They show that, generally speaking, the state-of-the-art deep learning
performed better than the classical statistical model, i.e., the ARIMA model. Since the
ARIMA and LSTM models could not capture complex spatial–temporal correlations, the
two models did not perform well. As for the state-of-the-art deep learning models, they
paid attention to both spatial and temporal features. However, the DCRNN model did not
capture the spatial and temporal features at the same time; it performed worse than other
spatial–temporal models, i.e., the STGCN, ASTGCN, and HST-GCN models.

Table 2. Performance comparison of different models.

Model
Evaluation Metrics (15/30/60 min)

MAPE (%) MAE RMSE

HA 15.2083 0.0723 0.0991
ARIMA 10.4794/ 13.5052/ 19.1953 0.0544/ 0.0696/ 0.0982 0.0711/ 0.0906/ 0.1236
LSTM 10.5566/ 12.9892/ 17.5452 0.0644/ 0.0769/ 0.1004 0.0886/ 0.1037/ 0.1329

DCRNN 10.4845/ 14.3646/ 19.4344 0.0355/ 0.0471/ 0.0649 0.0519/ 0.0666/ 0.0899
STGCN 7.2983/ 9.7159/ 12.9341 0.0355/ 0.0467/ 0.0630 0.0494/ 0.0639/ 0.0851

ASTGCN 9.9607/ 13.3459/ 19.2274 0.0351/ 0.0466/ 0.0627 0.0518/ 0.0665/ 0.0858
HST-GCN 7.1222/ 9.3659/ 12.2568 0.0345/ 0.0456/ 0.0593 0.0487/ 0.0632/ 0.0801

By adding the distAtt attentional mechanism to the proposed model and using the
hybrid spatial–temporal correlations, the proposed model performed better in long-term
predictions. Specifically, for a 15-min horizon prediction, the RMSE of the proposed HST-
GCN was the same as that of the STGCN. For a 30-min horizon prediction, HST-GCN
performed 1.11% better than the STGCN model with regard to the RMSE metric. For a
60-min horizon prediction, the HST-GCN performed 2.74% better than the STGCN model
with regard to the RMSE metric.

Table 3 shows the comparison of the training times between the proposed model and
the state-of-the-art models. Since the STGCN and HST-GCN models use a gated 1D CNN,
which supports massive parallel computing to extract temporal features, the training time
was much shorter. Specifically, the two models were 4.16 times faster than the ASTGCN
model and 41.2 times faster than the DCRNN model.

Table 3. Training time consumption.

Training Time Consumption (s)

STGCN DCRNN ASTGCN HST-GCN

151.83 6271.34 632.77 152.05

To better illustrate the performance of the benchmark models and the proposed model,
we also randomly selected one area (e.g., “Banks”) and used the real observation data
(i.e., the ground truth) of this area for a comparison. The comparison results are shown in
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Figures 7–9. Obviously, there were time lags in the ARIMA model. For the STGCN and
LSTM models, the prediction results fluctuated greatly over time. In addition, it can be
seen from these figures that the prediction results of the three models above were also
greatly affected by the lengths of the prediction horizons. The shorter the time horizon
was, the better the prediction results were. For the proposed HST-GCN model, the figures
show that the prediction results were approximately consistent with the real values.
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Figure 7. The prediction of a randomly selected area with a 15-min time horizon.
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Figure 8. The prediction of a randomly selected area with a 30-min time horizon.
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Figure 9. The prediction of a randomly selected area with a 60-min time horizon.
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Table 4 shows the results of the POR predictions of the HST-GCN and HST-GCN*
(replace distAtt with GAT). Both of the models were trained 10 times with the same
hyperparameters. The results show that by using the distAtt method, we can obtain a more
stable prediction value.

Table 4. Prediction value changes with the distAtt method (“*” indicates that the model did not use
the distAtt mechanism).

min MAE MAPE (%) RMSE

HST-GCN *
15 0.03496 ± 0.00031 7.1691 ± 0.1130 0.04911 ± 0.00041
30 0.04600 ± 0.00077 9.4814 ± 0.2830 0.06316 ± 0.00098
60 0.06048 ± 0.00150 12.7821 ± 0.3502 0.08138 ± 0.00178

HST-GCN
15 0.03503 ± 0.00020 7.1441 ± 0.0789 0.04916 ± 0.00033
30 0.04592 ± 0.00083 9.4658 ± 0.2778 0.06316 ± 0.00090
60 0.06033 ± 0.00097 12.4288 ± 0.2719 0.08172 ± 0.00134

6. Conclusions and Future Work

In this paper, we proposed the hybrid spatial–temporal graph convolutional network
(HST-GCN) model for on-street parking space prediction with a large number of real-
world datasets. Specifically, we captured instantaneous spatial–temporal correlations by
using gated temporal convolution and graph convolution. We also proposed an attention
mechanism called distAtt together with a spatial–temporal convolutional block to mix the
long-term spatial–temporal correlations and instantaneous spatial–temporal correlations.
Based on real-world datasets, the experimental results showed that the proposed scheme
performed better than the baseline models in predicting the parking occupancy rate (POR).
The HST-GCN model can be used for many other scenes of static activities. For example,
it may be used to count the number of people in a library, as people may stay for a long
time to read in the library. However, this model is not suitable for dynamic activities with
rapid location changes, such as for predicting traffic flows. Furthermore, in each area, the
inner spatial features of sub-geographies, i.e., the interactions between parking bays within
an area, are also points of interest that are worth discussing. In the future, we plan to use
our proposed model for other new scenes with more datasets in different places while
considering more factors that may influence the prediction results, such as the weather
and schools.
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