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Abstract: Accurate and frequent monitoring of evapotranspiration (ET) at sub-field scales can
provide valuable information for agricultural water management, quantifying crop water use and
stress toward the goal of increasing crop water use efficiency and production. Using land-surface
temperature (LST) data retrieved from Landsat thermal infrared (TIR) imagery, along with surface
reflectance data describing albedo and vegetation cover fraction, surface energy balance models
can generate ET maps down to a 30 m spatial resolution. However, the temporal sampling by
such maps can be limited by the relatively infrequent revisit period of Landsat data (8 days for
combined Landsats 7 and 8), especially in cloudy areas experiencing rapid changes in moisture
status. The Sentinel-2 (S2) satellites, as a good complement to the Landsat system, provide surface
reflectance data at 10–20 m spatial resolution and 5 day revisit period but do not have a thermal
sensor. On the other hand, the Visible Infrared Imaging Radiometer Suite (VIIRS) provides TIR data
on a near-daily basis with 375 m resolution, which can be refined through thermal sharpening using
S2 reflectances. This study assesses the utility of augmenting the Harmonized Landsat and Sentinel-2
(HLS) dataset with S2-sharpened VIIRS as a thermal proxy source on S2 overpass days, enabling 30 m
ET mapping at a potential combined frequency of 2–3 days (including Landsat). The value added by
including VIIRS-S2 is assessed both retrospectively and operationally in comparison with flux tower
observations collected from several U.S. agricultural sites covering a range of crop types. In particular,
we evaluate the performance of VIIRS-S2 ET estimates as a function of VIIRS view angle and cloud
masking approach. VIIRS-S2 ET retrievals (MAE of 0.49 mm d−1 against observations) generally
show comparable accuracy to Landsat ET (0.45 mm d−1) on days of commensurate overpass, but
with decreasing performance at large VIIRS view angles. Low-quality VIIRS-S2 ET retrievals linked
to imperfect VIIRS/S2 cloud masking are also discussed, and caution is required when applying such
data for generating ET timeseries. Fused daily ET time series benefited during the peak growing
season from the improved multi-source temporal sampling afforded by VIIRS-S2, particularly in
cloudy regions and over surfaces with rapidly changing vegetation conditions, and value added for
real-time monitoring applications is discussed. This work demonstrates the utility and feasibility of
augmenting the HLS dataset with sharpened VIIRS TIR imagery on S2 overpass dates for generating
high spatiotemporal resolution ET products.

Keywords: VIIRS; Harmonized Landsat and Sentinel-2; evapotranspiration; land surface tempera-
ture; data fusion; water resource management
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1. Introduction

Efficient use of agricultural water resources is becoming increasingly important for
sustainable agricultural water management and global food production [1]. Evapotran-
spiration (ET), one of the major forms of water loss in agricultural landscapes, plays a
crucial role in describing crop water use and soil moisture status [2]. Accurate monitoring
of ET at field or sub-field scales can be used to identify crop stress and increase crop
water use efficiency, thereby improving potential for crop production in water-limited
regions. Thermal remote sensing has become one of the most effective techniques for
ET mapping, complementing conventional point-based observational methods including
eddy covariance, Bowen ratio (BR) and lysimeters [3]. Field measurements of ET are
sparse and localized, and thus of limited use for operational applications, while ET models
developed on remote sensing data are more suited for mapping the spatial distribution
of ET at both field and regional scales [4–8]. Over the past few decades, several thermal
satellite-based approaches have been developed and widely applied, including the Surface
Energy Balance Algorithm for Land (SEBAL) [9], the Mapping Evapotranspiration with
Internalized Calibration (METRIC) [10], the Operational Simplified Surface Energy Balance
(SSEBop) [11] and the Atmosphere-Land Exchange Inverse model (ALEXI) [12,13] and
its associated flux disaggregation technique (DisALEXI) [14,15]. These remote sensing
approaches use land surface temperature (LST) retrieved from satellite thermal radiances
along with other land surface characteristics such as surface albedo and leaf area index
(LAI) or other vegetation indices to estimate ET via surface energy balance or within-scene
scaling [15–18].

The Landsat imaging system, with sensors covering the spectrum from visible, near-
infrared, shortwave infrared to TIR (thermal infrared) and at spatial resolutions from
30–120 m, is a gold standard for field-scale ET monitoring [10,19]. However, the relatively
low revisit frequency of 16 days for a single Landsat system or 8 days for two combined
Landsat systems (Table 1) limits its applicability for routine generation of daily ET esti-
mates at field scales, with cloud cover further reducing the actual data availability [19–21].
Moderate-resolution sensors such as the Moderate Resolution Imaging Spectroradiometer
(MODIS) and the Visible Infrared Imaging Radiometer Suite (VIIRS) can provide valuable
information about moisture dynamics at coarser scales (~500 m) on a near-daily basis.
To generate spatially and temporally high-resolution ET products, spatiotemporal im-
age fusion techniques such as Spatial and Temporal Adaptive Reflectance Fusion Model
(STARFM) [22] have been employed to produce 30 m daily ET estimates from MODIS and
Landsat retrievals with mean absolute errors (MAE) lower than 1 mm d−1 over a range of
land cover types [23–27].

Table 1. Characteristics of satellite sensors used in this study.

Platform/Sensor Launch Date
Equatorial

Crossing Time
Spatial Resolution Temporal

Resolution
View

Zenith AngleSR Bands TIR Bands

Landsat 7 15 April 1999 10:00 a.m. 30 m 60 m 16 day <7.5◦

Landsat 8 11 February 2013 10:00 a.m. 30 m 100 m 16 day <7.5◦

Sentinel-2A 23 June 2015 10:30 a.m. 10–20 m - 10 day <11.93◦

Sentinel-2B 7 March 2017 10:30 a.m. 10–20 m - 10 day <11.93◦

VIIRS (I bands) 28 October 2011 1:30 p.m. 375 m 375 m ~daily <70◦

MODIS
(Terra) 18 December 1999 10:30 a.m.

250–500 m 1000 m
A few times

per day <65◦(Aqua) 5 May 2002 1:30 p.m.

While data fusion provides a valuable means for temporal interpolation, the accuracy
or the resulting daily 30 m timeseries is highly dependent on the frequency and quality of
clear-sky Landsat-scale ET imagery. In addition, performance for real-time applications
may be further limited by latencies in Landsat product availability, and the need for
extrapolation beyond the last available Landsat overpass to the current date. The fusion of
ET timeseries from Landsat 8 and MODIS for operational applications was tested by [28].
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They found that the 16 day revisit interval of Landsat 8, together with the 21.6 day latency,
was not sufficient to effectively capture vegetation response to stress onset and suggested
that the integration of data from multiple Landsat-like sensor platforms and a reduction in
data latency could be useful.

As a test of multi-source ET mapping capabilities, reference [29] incorporated thermal
imaging from the ECOsystem Spaceborne Thermal Radiometer Experiment on Space
Station (ECOSTRESS), with ~70 m spatial resolution and an average 4 day revisit cycle,
into the ET fusion system. Since ECOSTRESS is a thermal-only sensor, VSWIR (visible
to shortwave infrared bands) data from the closest Landsat overpass date were used to
supply albedo and LAI inputs to the ET modeling system. In comparison with flux tower
observations, they demonstrated that fusion of the combined dataset of ECOSTRESS and
Landsat (labeled as Landsat + ECOSTRESS fusion) showed improved performance over
Landsat-only fusion, particularly over sites impacted by frequent cloud cover. While
ECOSTRESS TIR and Landsat VSWIR inputs could in most cases be successfully combined
within the energy balance model, Landsat ET retrievals were superior due to better inter-
band registration. Furthermore, significant temporal separation between Landsat VSWIR
and ECOSTRESS TIR acquisitions can lead to discrepancies between LST and LAI/albedo
inputs and impose a source of error in the retrieved ET [29].

The Sentinel-2 (S2) satellite series (A and B), initially launched in 2015, provides surface
reflectance (SR) data at 10–20 m spatial resolution with a 5 day combined repeat frequency
(Table 1). Given the similarity with Landsat spectral bands and spatial scale, there has
been a strong emphasis put on exploiting these data in combination to enhance temporal
sampling. NASA’s Harmonized Landsat and Sentinel-2 (HLS) dataset provides a unified
collection of SR data acquired by Landsat 8 and S2 [30], with a combined effective revisit of
3–4 days. The high temporal resolution of HLS makes it attractive for ET mapping at field
scales; however, S2 does not collect the TIR data required for surface energy balance. Some
studies have used S2 SR data to sharpen Sentinel-3 (S3, launched 2016) 1 km resolution TIR
images for modeling daily ET [31]. However, VIIRS (see Table 1), the follow-on instrument
to MODIS, includes an I5 TIR band at 375 m that is closer in resolution to S2 and has been
collecting TIR data with near-daily temporal frequency since 2013 [32,33]. Reference [34]
demonstrated that S2 SR data from the HLS-S30 product could be effectively used to
sharpen VIIRS TIR data to 30 m resolution, facilitating VIIRS and S2 combined 30 m ET
retrieval. Selecting VIIRS data on S2 overpass days relieves the issue of temporal separation
encountered using Landsat VSWIR and ECOSTRESS TIR data [29].

Given these considerations, in this study we aim to evaluate the value of adding VIIRS
and S2 data to the existing Landsat-only ET fusion framework. We first compare the VIIRS
and S2 combined 30 m ET retrievals (labeled as VIIRS-S2 ET) with Landsat retrievals for
consistency both spatially and temporally. Cases with poor VIIRS-based ET retrievals are
investigated, specifically focusing on the impact of view angles (range of ±~70◦; Table 1)
and cloud masks on VIIRS LST. Both Landsat 30 m ET retrievals only (Landsat-only fusion)
and Landsat and VIIRS-S2 ET retrievals together (labeled as Landsat + VIIRS-S2 fusion) are
fused with MODIS 500 m daily ET estimates to generate two 30 m daily ET datacubes. The
added value of additional VIIRS-S2 temporal sampling for both retrospective and real-time
ET mapping applications is evaluated using flux measurements from 11 tower sites across
a range of crop types in the U.S. Furthermore, we assess the capability of each data stream,
alone and in combination, in establishing the temporal behavior of ET during periods of
rapid change (e.g., rainfall events, flash drought, green-up, and senescence).

2. Methods

The multi-scale ALEXI and DisALEXI energy balance modeling system was used to
generate consistent ET layers from multi-source thermal and SR inputs. In this system, daily
regional ALEXI ET at 4 km resolution, developed from continental-scale geostationary
satellite imagery, are spatially disaggregated (DisALEXI) using higher-resolution LST
and SR data from Landsat and VIIRS-S2 as input, as well as moderate-resolution data
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from MODIS used as the fusion backbone. A data mining sharpener (DMS) approach is
employed to spatially sharpen the Landsat, VIIRS, and MODIS LST inputs to DisALEXI,
and the output timeseries are subsequently fused to produce daily ET at 30 m resolution
(See Figure 1). A schematic overview of the ET processing is illustrated in Figure 1 and the
major components are detailed in the following sections.
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2.1. Data Mining Sharpener (DMS)

The spatial resolution of land surface temperature (LST) data retrieved from thermal
infrared (TIR) satellite sensors is typically coarser than that of the surface reflectance data
collected in VSWIR bands on the same platform. For instance, the resolution of Landsat 8
and MODIS VSWIR bands are 30 m and 250–500 m, while the nominal resolution of TIR
sensors in these systems are 100 m and 1 km, respectively (Table 1). For physically based
energy balance models such as ALEXI/DisALEXI, it is critical that LST, albedo and LAI
inputs are at a consistent spatial resolution. Rather than degrading the VSWIR inputs to
TIR resolution, a thermal band imagery sharpening technique known as the data mining
sharpener (DMS) approach [35] has been used to sharpen both Landsat and MODIS LST
data to the resolution of their corresponding VSWIR bands. The DMS approach employs
the cubist regression tree method to build non-linear relationships between SR and LST at
LST coarse resolution and then uses these relationships to predict LST at finer SR resolution
using SR data as inputs. The final critical step of the sharpening process, referred to as
energy conservation (EC), is to redistribute the residuals between the original and predicted
LST at the coarse resolution to the sharpened LST to ensure that it reaggregates to the
original LST field at some spatial scale. For Landsat 8 and MODIS TIR sharpening, the
EC size scale used in DMS is 90 m and 1000 m, respectively. Here, we use S2 SR data to
sharpen VIIRS LST, collected on different platforms with different geolocation accuracies.
A modified DMS approach [34] was proposed to account for the misregistration between
SR and LST data collected from different platforms by relaxing the EC size. Based on that
study, we use an EC size of 780 m for VIIRS LST sharpening to 30 m based on S2 SR from
the HLS dataset. One benefit of thermal sharpening is that it improves spatial consistency
between LST and albedo/LAI inputs to the TSEB, especially when these inputs are derived
from sensors on different platforms that may suffer from some degree of misregistration.

For further discussion of constraints and performance of the DMS approach as applied
to VIIRS and S2 imagery, we refer the reader to [34].

2.2. Multiscale ET Retrieval System

The multi-scale ET mapping approach used here includes the Atmosphere—Land
EXchange Inverse (ALEXI) surface energy balance model [12,13] and the associated disag-
gregation algorithm DisALEXI [14,15]. Both are based on the Two-Source Energy Balance
(TSEB) land-surface representation [36–39] which partitions surface fluxes and radiometric
surface temperature into soil and canopy components:

TRAD
4(θ) = fc(θ) · T4

c + [1 − fc(θ)] · T4
s , (1)

where TRAD is the directional radiometric temperature, Tc is the canopy temperature and
Ts is the soil temperature, while fc(θ) is the fractional vegetation cover apparent at the view
zenith angle θ of the thermal sensor, estimated from retrievals of leaf area index (LAI). The
component surface temperatures constrain the net radiation and sensible heat, while the
latent heat is estimated as a partial residual to the energy budget, but responds to signals
of canopy stress conveyed by the surface temperature inputs.

Over the U.S., ALEXI uses two measurements of morning LST (4 km resolution)
obtained from the Geostationary Operational Environmental Satellites (GOES) and applies
the TSEB in a time-differential mode to simulate fluxes and atmospheric boundary layer
growth over the morning period [12,13]. Daily ET (mm day−1) is estimated by upscaling
the instantaneous latent flux retrieved at the time of the second LST measurement to a daily
value (MJ m−2 day−1) by conserving the ratio of latent heat to insolation during daylight
hours [40,41], and then converting to mass flux using the latent heat of vaporization
(2.45 MJ kg−1). To map ET at finer scales, the DisALEXI algorithm was developed to
spatially disaggregate daily ALEXI fluxes [14,15]. The DisALEXI scheme runs TSEB at
subpixel scales over each ALEXI pixel using higher-resolution LST and vegetation cover
fraction inputs from polar-orbiting satellites (e.g., Landsat or MODIS). The daily surface
fluxes from DisALEXI are forced to reaggregate to the ALEXI value at the ALEXI pixel
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scale by iteratively adjusting air temperature at a nominal blending height (e.g., 50 m).
This constraint to match the ALEXI daily ET flux at coarse resolution provides a baseline
for consistency between disaggregated retrievals from different sensors acquiring thermal
data at different times of day.

Further information on the ALEXI/DisALEXI multiscale ET modeling scheme can be
found in [13,19,42,43].

2.3. Multi-Source ET Fusion System

To provide field-scale ET estimates on a daily basis requires a means for interpolating
between retrievals on satellite overpass dates [9,44–46]. Linear and cubic spline interpola-
tion are often implemented using a scaling flux such as solar radiation, available energy, or
reference ET [10,20]. Spatial-temporal fusion of remote sensing images is another approach,
combining the high spatial information from sensors such as Landsat and high temporal
information from sensors such as MODIS to generate data with high content in both time
and space. The Spatial and Temporal Adaptive Reflectance Fusion Model (STARFM) [22,47]
has shown its capability in fusing higher-order satellite products such as vegetation in-
dex [48–50] and ET [23–26,51]. A number of recent studies have demonstrated that fusing
Landsat- and MODIS-DisALEXI ET retrievals using STARFM improves performance in
comparison with Landsat-only interpolation over various land cover types [23–25,51],
taking advantage of the high-frequency temporal changes sampled from MODIS, and the
consistency between Landsat and MODIS ET is achieved by using ALEXI ET as a common
normalization field in DisALEXI. In STARFM, a weighting function used to describe the
spatial, temporal and spectral relationship is employed to downscale MODIS images to
the Landsat scale on prediction dates between Landsat overpasses with the help of one or
two Landsat and MODIS image-pairs before or after the prediction date.

STARFM is developed with the flexibility to use one or two image-pairs as inputs
for the fusion. Two-pair STARFM uses information from the image-pairs bracketing
the prediction date. In general, two-pair STARFM is more robust than one-pair but
has higher requirements on data frequency. Most previous ET studies used one-pair
STARFM [25,29,41,52] because it was a simpler configuration and works better for near-
real-time predictions when a second (future) image-pair is not yet available. However,
a recent study by [53] fused Landsat and MODIS ET retrievals with both one-pair and
two-pair STARFM and found that two-pair STARFM generally produces smaller bias com-
paring with flux tower-observed daily ET, but the degree of improvement depends on the
frequency of fine resolution images that can be used as image-pairs. One-pair STARFM
can cause sharp drops/rises in the fused daily ET timeseries over land-covers with rapidly
changing conditions, while two-pair STARFM shows improved performance in this aspect.
Here, we compare STARFM performance using one-pair and two-pair fusion, but with
additional VIIRS-S2 samples included. We obtained similar results to [53], with details
given in the Appendix A for interested readers.

In this study, both the 30 m Landsat-only ET retrievals and Landsat + VIIRS-S2 ET
retrievals are fused with 500 m MODIS ET time series based on two-pair STARFM to
generate ET datacubes at sub-field scales (30 m) and daily timesteps. The two datacubes
are compared with flux tower observations to evaluate the value added by the additional
temporal sampling from VIIRS-S2. More details regarding the multi-source ET fusion
system can be found in previous work [24,25,51,54].

3. Study Area and Datasets
3.1. Study Domain and Flux Tower Sites

Following the Landsat + ECOSTRESS fusion study of [29], the ALEXI/DisALEXI ET
modeling system was applied to Landsat + VIIRS-S2 for the year 2018 over seven study
areas across the U.S., sampling a variety of climate conditions, cloud cover percentages
and crop types (Figure 2). The area of each domain is around 90 km × 90 km. The accuracy
of the modeled energy balance fluxes was evaluated at eleven flux towers distributed in
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the seven domains. Each tower was equipped with an eddy covariance system collecting
energy fluxes and other micrometeorological data. Most towers are part of the USDA-ARS
Long-Term Agroecosystem Research (LTAR) network, offering a rich archive of biophysical
and micrometeorological ground truth data [55].

These sites include three vineyard domains within California, USA, part of the USDA-
ARS Grape Remote Sensing Atmospheric Profile and Evapotranspiration eXperiment
(GRAPEX) [56], including the Barrelli vineyard in Sonoma County near Cloverdale, Sierra
Loma near Lodi in Sacramento County, and Ripperdan in Madera County near Fresno.
The domains sample a north-south climate gradient due to variations in cloud cover,
temperature, and humidity [24,26,28,57,58]. This study uses three flux towers installed in
irrigated vineyards in the three domains as part of GRAPEX: Bar012 (Barrelli), SLM001
(Sierra Loma), and Rip760 (Ripperdan). In addition, two AmeriFlux towers located in the
California Delta region, in the western part of Sierra Loma domain, were also used. These
towers, USBi1 and USBi2, sampled fields cultivated in 2018 with irrigated alfalfa and corn,
respectively [29].

Two cropland sites across the Midwest within the U.S. Corn Belt were also mapped:
the Mead domain (Nebraska) in the Platte River—High Plains (PRHP), and the Bondville
domain (Illinois) in the Central Mississippi River Basin (CMRB) region. These sites are
mainly occupied by corn and soybean fields [41,54,59] with continuous monitoring by
several long-term AmeriFlux installations: USNe1 (Mead) and USNe2 (Mead) in irrigated
fields, and USNe3 (Mead) and USBo1 (Bondville) in rainfed fields [60–63].

The Choptank domain (Maryland) and the BARC (Beltsville Agricultural Research
Center) domain (Maryland) cover parts of the Lower Chesapeake Bay (LCB) LTAR network—
located in the U.S. eastern shore, mainly occupied by a cropping system with irrigated
and rainfed corn-soybean rotation [25,64]. The flux data used here were collected from the
Optimizing Production Inputs for Economic and Environmental Enhancement (OPE3) tower
in the BARC domain and the Choptank tower [65–67].

For comparison with modeled daily fluxes, which assume a closed energy budget,
the observed tower fluxes were corrected for energy balance closure error, typically on
the order of 10–30% for eddy covariance data [5]. Typical closure corrections include
the residual method, assigning the energy balance residual to the observed latent heat
flux, or the Bowen ratio method where the residual is partitioned between the latent and
sensible heat fluxes based on the observed Bowen ratio [5,68–71]. As suggested by [29],
the corrected latent heat flux for the SLM001 site was calculated by daytime residual plus
the difference between daily (24 h) and daytime-observed latent heat flux since a shift in
nighttime wind patterns was found, while the daily latent heat flux for the other tower
sites was computed as the 24 h residual.

3.2. ALEXI/DisALEXI Model Inputs
3.2.1. Meteorological and Landcover Data

Meteorological forcings for ALEXI/DisALEXI ET retrievals, including solar radiation,
atmospheric pressure, air temperature, vapor pressure and wind speed, were obtained
from the Climate Forecast System Reanalysis (CFSR) dataset at 0.25◦ resolution and hourly
to 3 h time steps [72]. In addition, ALEXI/DisALEXI also requires landcover classification
information to specify surface roughness parameters and vegetation optical properties.
Global land cover dataset at 1 km resolution from University of Maryland (UMD) was used
in ALEXI [73]. The 2006 30 m National Land Cover Dataset (NLCD) [74,75] was employed
for DisALEXI running at 30 m resolution using Landsat and VIIRS-S2 data as inputs, and
resampled to 1 km resolution assigned by the majority class within each MODIS pixel for
MODIS disaggregation using DisALEXI.

3.2.2. ALEXI-GOES and DisALEXI-MODIS

The remote sensing inputs to ALEXI include LST data from the combined GOES-East
and GOES-West Imager instruments along with aggregated MODIS LAI data. ALEXI is
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run over the full continental U.S area at a 4 km spatial resolution and daily time step,
generating the baseline for spatial disaggregation in DisALEXI [13]. Near-daily MODIS
ET retrievals at 500 m resolution were generated with DisALEXI by disaggregating the
ALEXI ET estimates (i.e., DisALEXI-MODIS ET) using data from several MODIS standard
products including LST (MOD11_L2), NDVI (MOD13A1), LAI (MCD15A3H) and albedo
(MCD43A3). Temporal gaps in the DisALEXI-MODIS ET retrievals due to clouds or
swath limitations were filled using methods described by [25]. More details about the
ALEXI-GOES and DisALEXI-MODIS processing can be found in [51].

3.2.3. DisALEXI-Landsat

For Landsat disaggregation, the 30 m LAI inputs on Landsat overpass dates were
retrieved from Landsat 7 and 8 VSWIR data and MODIS 500 m LAI samples using a
regression tree approach developed by [76]. Albedo at 30 m resolution was calculated
based on the narrowband to broadband conversion formulae for Landsat developed in [77].
Landsat Level-1 thermal band top-of-atmosphere temperatures were downloaded from
USGS and atmospherically corrected using MODTRAN [78]. The resulting LST data at
the native resolution of 100 m were sharpened to the 30 m resolution of the VSWIR bands
using the DMS method described in Section 2.1 [35].

3.2.4. DisALEXI-VIIRS

Remote sensing data from Landsat 7 and 8, S2A and S2B, and VIIRS were used to
run DisALEXI at 30 m spatial resolution on Landsat and Sentinel-2 overpass days. The
Landsat Collection 1 Level-2 surface reflectance was downloaded from USGS. The S2 data
were produced by the NASA’s HLS project (http://hls.gsfc.nasa.gov/, last accessed on
10 October 2020). The HLS dataset provides a unified collection of SR data acquired by
Landsat 8 and S2. The S30 product was used in this study, providing S2 SR data that
have been calibrated, atmospherically corrected, BRDF normalized, co-registered with
Landsat 8, and resampled to 30 m spatial resolution [30]. The HLS production system uses
the S2 gridding scheme with a fixed tile extent; study domains covering more than one tile
were mosaicked. HLS data (V1.4) also provide cloud masks (QA band), in which the S2
(S30) mask is a union of a mask derived from the LaSRC atmospheric correction tool [79]
and a mask generated from the Fmask algorithm [80]. It is reported that LaSRC cloud mask
often confuses clouds with bright urban areas. In addition, while Fmask works well for
Landsat, this does not guarantee similar performance with S2 and may generate erroneous
results, particularly for hazy conditions, thin clouds, cloud edges, and bright urban and
snow areas due to the lack of thermal infrared bands [30]. This concern regarding cloud
detections, reported as one of the main issues in the NASA’s harmonized product, was also
found to be significant in this study (see Section 4.3.3.2 for details).

VSWIR inputs from S2 (S30) were used for DisALEXI-VIIRS disaggregation on the
common overpass dates between S2 and VIIRS. S2 30 m LAI data were estimated in a
similar way to Landsat, using MODIS LAI samples. The surface reflectance from VSWIR
bands in the HLS S30 dataset has been spectrally adjusted to match L30 spectral response
(OLI) using a band-to-band linear regression approach [30]. Therefore, the S2 albedo data
was computed similarly to Landsat [81] using the narrow-to-broadband equation proposed
by [77].

VIIRS I5 at-sensor brightness temperature observations resampled to a 0.004 degree
resolution were downloaded from NASA LANCE and atmospherically corrected using a
single channel inversion [82] based on atmospheric profiles of temperature and moisture
from the CFSR V2 [72]. Using S2 VSWIR data as inputs, geometrically calibrated VIIRS LST
data were gridded to the same UTM projection and sharpened to 30 m using the modified
DMS approach with an EC box size of 780 m as described in Section 2.1 [34]. The cloud
mask used for VIIRS is associated with the fire product (375 m I-band), and the impact of
this mask was also evaluated in this study (see Section 4.3.3.1). It should be noted that
the cloud contamination in the S2 VSWIR data and VIIRS LST can be different since their

http://hls.gsfc.nasa.gov/
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acquisition times are different. Thus, the cloud issues in the VIIRS ET retrievals are a union
of cloud contaminated pixels from both the S2 VSWIR data and the VIIRS LST.

The VIIRS scanning radiometer has a field-of-view ±56.28◦ in the cross-track direction
to provide a full daily coverage of the Earth. In order to restrict the growth of pixel size at
off-nadir view, VIIRS employed a unique sample aggregation scheme, so that the VIIRS
I-band pixels at the edge of scan (0.83 × 0.86 km) are only 2–4 times the size of nadir pixels
(0.38 × 0.39 km), in contrast to MODIS exhibiting a growth factor of 10 [83,84]. Three ag-
gregation zones were defined based on the segmentation of scan angle: “3 × 1 aggregation
(from nadir to ±31.72◦),” “2 × 1 aggregation (from 31.72◦ to 44.86◦),” and “no aggrega-
tion (also called 1 × 1 aggregation; from 44.86◦ to 56.28◦)” zones, that is, three samples,
two samples, and one sample are aggregated along the scan direction to form one single
pixel, respectively [85,86]. By employing such a scheme, VIIRS shows a stepwise resolution
degradation as a function of view angle [32,87]. It should be noted that the difference in
acquisition times between S2 VSWIR and VIIRS LST data (Table 1) may also introduce
inconsistencies due to changes in view angle and topographic shadowing and impact the
performance of VIIRS LST sharpening and ET retrievals. The effect of view angle on the
accuracy of ET retrievals was assessed in this study (see Section 4.3.2).

3.3. Analyses

Performance of the new DisALEXI-VIIRS ET retrievals was evaluated on satellite over-
pass dates in comparison with DisALEXI-Landsat (Section 4.1) which has been successfully
applied in several studies over varied landcover [25,41,51,58,88]. This comparison was
performed (1) on Landsat overpass dates, using Landsat (L30) VSWIR to sharpen VIIRS
LST (Sierra Loma domain, Section 4.1.1), and (2) on common Landsat and S2 overpass
dates using S2 VSWIR data for VIIRS sharpening (all domains, Section 4.1.2). ET retrievals
from (1) and (2) are referred to as VIIRS-Landsat and VIIRS-S2 ET, respectively.

Performance of the fused timeseries was also evaluated with respect to flux tower
observations (Section 4.2). Daily ET datacubes were constructed by fusing MODIS 500 m
daily ET time series with (1) Landsat 30 m ET only (Landsat-only) and (2) Landsat and
VIIRS-S2 ET together (Landsat + VIIRS-S2). For each domain we compared the two ET
datacubes with flux tower observations to quantitatively assess the value added by VIIRS-
S2 in improving estimates of daily ET and the ability to capture rapid changes. We further
investigated factors that may influence the value, including fusion strategy, temporal
sampling (revisit interval), view angle, and cloud masking. For comparison with tower
observations, model fluxes were averaged over a 3 × 3 pixel-area (90 × 90 m) centered
on the tower location, approximating the flux source area footprint on the order of 100 m
depending on tower height and surface conditions [5,89]. For sites where the towers lay at
field edges, the center of extraction was moved a few pixels in-field to avoid edge effects.

In previous studies, the ET fusion methods have typically been conducted in a ret-
rospective manner, which means for each target date, all direct ET retrievals (up to and
beyond the date) are available as inputs. In real-time applications, this will not be the
case and value added by additional ET samples may be larger than in the retrospective
case in that the interval of extrapolation from the last available sample and the prediction
date is reduced. We tested this scenario, focusing on weekly ET estimation for irrigation
management, following conventions developed for a variable rate drip irrigation (VRDI)
system by [28]. In that study, weekly ET was defined as a summation of daily ET from
the prior Friday to Thursday for delivery Friday morning for the next week’s irrigation
scheduling. Here, pseudo real-time test runs were conducted using only direct 30 m ET
retrievals available prior to Friday to predict the daily ET for that week based on one-
pair STARFM and generate the weekly ET total. ET for all days in the week beyond the
last available satellite overpass date were projected forward by STARFM. For simplicity,
the data latency issue was not addressed here, so the fusion results represent the upper
bound of the operational test. It should be noted that the temporal differences between
Landsat-only and Landsat + VIIRS-S2 fusion should become more pronounced (i.e., more
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benefit from the additional VIIRS-S2 samples) when the latency is introduced because
Landsat product delivery currently has a greater latency than S2, which is reported in near
real-time [90].

4. Results
4.1. Evaluation of Multi-Sensor ET Estimates
4.1.1. Landsat vs. VIIRS-Landsat ET on Landsat Days

To evaluate consistency of VIIRS 30 m ET with Landsat-based retrievals, modeled
daytime-integrated surface fluxes derived from both DisALEXI-Landsat and DisALEXI-
VIIRS (using Landsat SR data) on Landsat overpass days were compared with flux tower
observations over the USBi2 site in Figure 3a,b and with each other in Figure 3c. Other
sites present similar results (not shown).
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Figure 3. Scatterplots of Landsat/VIIRS-retrieved and observed daytime-integrated fluxes on Landsat overpass dates
at USBi2 site. Comparisons between (a) Landsat and observations, (b) VIIRS (using Landsat SR) and observations, and
(c) Landsat and VIIRS. Rs: solar radiation; Rn: net radiation; H: sensible heat flux; G: soil heat flux; LE: latent heat flux,
where ‘closed’ indicates energy balance closure. Rs is derived from CFSR data, so it is the same for Landsat and VIIRS.

As seen in Figure 3a,b, both Landsat and VIIRS-derived fluxes agree well with mea-
sured ET, with points falling along the one-to-one line indicating reasonable energy budget
partitioning. Insolation (Rs) from CFSR and modeled net radiation (Rn), the major energy
source driving ET, are comparable with local measurements. Modeled latent heat fluxes
(LE) are compared to tower measurements with and without closure correction, with a
notably better agreement achieved with the closed results. As shown in Figure 3c, the close
alignment of the turbulent fluxes indicates a strong agreement in model agreement using
both VIIRS and Landsat TIR inputs.

Mean absolute errors (MAEs) and root mean square errors (RMSEs) between modeled
and observed ET (applying energy closure correction as discussed in Section 3.1) over
the three sites in the Sierra Loma domain are compared between VIIRS and Landsat,
as shown in Figure 4. The two ET data sets show reasonable and comparable accuracy
against observations, with MAE (RMSE) ranging from 0.72 (0.79) to 0.84 (1.04) mm d−1

(mean 0.76 (0.89) mm d−1) for Landsat and from 0.71 (0.79) to 0.90 (1.12) mm d−1 (mean
0.81 (0.94) mm d−1) for VIIRS. The somewhat higher RMSE and MAE for VIIRS ET is not
unexpected since the native resolution of VIIRS LST (375 m) is coarser than that of Landsat,
meaning a larger proportion of subfield structure needs to be reconstructed through
sharpening. Furthermore, the LST and VSWIR inputs for DisALEXI-VIIRS modelling are
from different platforms with different overpass times and registration errors that may
compound the sharpening of VIIRS LST.
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Figure 4. Comparison of RMSE and MAE in retrieved daily Landsat ET and VIIRS ET against
observed ET on Landsat overpass days at SLM001, USBi1 and USBi2 sites.

4.1.2. Landsat vs. VIIRS-S2 ET on Landsat/S2 Common Days

The accuracy of modeled VIIRS ET estimates generated using S2 VSWIR data was
also evaluated against observations and against Landsat ET from same-day acquisitions, as
shown in Figure 5 for all tower sites. As with the VIIRS-TIR/Landsat-VSWIR ET retrievals
(Figure 3), VIIRS-TIR/S2-VSWIR ET agrees well with direct Landsat retrievals of ET, with a
MAE (RMSE) 0.37 (0.48) mm d−1 (Figure 5a). In addition, the modeled Landsat and VIIRS-
S2 ET both show good comparison with measured ET (Figure 5b) with a MAE (RMSE)
0.45 (0.64) mm d−1 for Landsat and 0.49 (0.63) mm d−1 for VIIRS-S2, respectively. ET on
DOY 166 at the Choptank site and DOY 160 at USNe2, highlighted with boxes in Figure 5,
show relatively high discrepancies with the one-to-one line due to cloud contamination in
VIIRS LST near the tower site, which was not successfully flagged by VIIRS cloud mask.
More discussion of these two days, and ramifications for cloud masking, will be provided
in Section 4.3.3.1.
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In addition to the evaluation over flux tower sites, the agreement in spatial patterns
of ET between same-day VIIRS and Landsat retrievals was also assessed, as highlighted
with two examples over the Sierra Loma site (DOY 200) and the Ripperdan site (DOY 177)
shown in Figure 6. In general, the ET patterns are similar from the two thermal datasources.
In some cases, such as in the Sierra Loma example in Figure 6, VIIRS shows less spatial
contrast than Landsat ET with slightly lower values over high-ET patches (e.g., irrigated
vineyards) and higher ET over the rainfed grassland/bare soil parts of the scene. This may
be related to lower spatial resolution of VIIRS LST with a lower range compared to Landsat;
while thermal sharpening can improve the spatial contrast in VIIRS LST, it may not fully
reconstruct the underlying structure. The modified thermal sharpening approach used
with VIIRS can better account for the misregistration between VIIRS LST and S2 SR, but
relative to the standard sharpening it may lead to a loss of spatial details in the sharpened
LST and thus ET. In the case of Sierra Loma, this resolution effect may be counterbalanced
by the later (afternoon) overpass of VIIRS compared to Landsat, which may accentuate
temperature variation over landscapes with differential moisture stress patterns.
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the fourth column.

4.2. Evaluation of Fused Daily 30 m ET Time Series

The comparable quality of VIIRS and Landsat ET retrievals at 30 m resolution, as
demonstrated in Section 4.1, provides incentive for using these multiple thermal sources as
interleaved layers in ET datacube construction. To test the value added by the increased



Remote Sens. 2021, 13, 3420 13 of 31

temporal sampling provided by the VIIRS ET layers, we constructed two types of datacubes
over the seven domains for year 2018 by fusing 500 m daily MODIS ET with Landsat ET
(Landsat-only fusion) and with Landsat and VIIRS ET (Landsat + VIIRS-S2 fusion), as
described in Section 2.3.

The modeled 30 m daily ET time series from both Landsat-only and Landsat + VIIRS-
S2 fusion over all the tower sites for year 2018 along with direct ET retrievals on Landsat
and VIIRS-S2 overpass dates used in fusion are shown in Figure 7. The observational
ET time series from flux towers (with and without energy closure correction) are also
illustrated. The daily ET time series from the two fusion scenarios show good temporal
agreement with each other and are broadly consistent with the observations in trend. At
many sites, the Landsat + VIIRS-S2 fusion provides better definition of the ET temporal
dynamics than does Landsat-only fusion. In particular, at the USBi1 alfalfa site the four
additional VIIRS-S2 samples during DOY 150–180 help to better capture peaks in ET
between monthly harvests, which are missed in Landsat-only fusion. Improvements in
temporal sampling and sources of inconsistency between Landsat and VIIRS-S2 ET are
detailed in the following sections.

Performance of Landsat + VIIRS-S2 vs. Landsat-only ET fusion was quantified using
RMSE and mean bias error (MBE) between the fused and observed daily ET time series at
both daily and weekly time scales (Table 2), and periods including the full year and the peak
growing season. For all sites combined over the full year of 2018, RMSE (MBE) improved
slightly by including VIIRS in the fusion, from 1.04 (−0.16) to 1.01 (−0.12) mm d−1 at daily
timesteps and from 0.80 (−0.16) to 0.75 (−0.12) mm d−1 at weekly scale.

Table 2. Statistical metrics of model performance (RMSE and MBE) for estimating ET (mm d−1) at daily and weekly
timesteps with Landsat-only (L) and Landsat + VIIRS-S2 (L+V), over the full year of 2018 and the peak growing season
(DOY 140–240) by tower and for all towers combined.

Full Year DOY 140–240

Timescale Domain Tower RMSE L RMSE
L + V MBE L MBE

L + V RMSE L RMSE
L + V MBE L MBE

L + V

Daily

Sierra
Loma

SLM001 0.85 0.91 0.46 0.55 1.03 1.10 0.71 0.85
USBi1 1.31 1.07 −0.53 −0.46 1.87 1.34 −0.98 −0.40
USBi2 0.92 0.94 −0.08 −0.17 1.05 1.11 0.23 0.01

Barrelli Bar012 0.83 0.76 0.11 0.10 0.92 0.84 0.36 0.32

Ripperdan Rip760 0.82 0.81 −0.12 −0.12 0.97 0.96 −0.31 −0.27

Mead
USNe1 1.14 1.12 −0.04 −0.08 1.65 1.61 0.03 0.03
USNe2 0.91 0.90 −0.21 −0.14 1.15 1.17 −0.06 0.03
USNe3 1.05 1.09 −0.36 −0.29 1.46 1.56 −0.14 −0.15

Bondville USBo1 1.16 1.28 0.12 0.17 1.55 1.85 1.02 1.37

BARC OPE3 1.29 1.08 −0.91 −0.53 1.53 1.22 −1.31 −0.61

Choptank Chop 0.95 0.95 −0.21 −0.21 0.90 0.90 0.21 0.10

All 1.04 1.01 −0.16 −0.12 1.32 1.26 −0.06 0.07

Weekly All 0.80 0.75 −0.16 −0.12 1.02 0.91 −0.08 0.04

A few sites show increased RMSE with VIIRS samples included, resulting from poor
VIIRS ET retrievals on some days. For instance, the overestimation in VIIRS ET on DOY 166
at the USBo1 site (Figure 7b) resulting from unmasked clouds in the VIIRS TIR imagery
served to disimprove the performance of fused daily ET time series. Removing this scene,
the RMSE (MBE) at USBo1 decreases from 1.28 (0.17) to 1.16 (0.08) mm d−1 with the
remaining VIIRS data layers (see Section 4.3.3.1 for details).

At many of the California sites, there were sufficient clear-sky Landsat overpasses for
the Landsat-only fusion to capture the observed ET variability (e.g., SLM001 and Rip760).
An exception is the USBi1 alfalfa site, where VIIRS reduced RMSE (MBE) by 18% (13%)
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and 26% (15%) at daily and weekly timesteps, respectively (Table 2; Figure 8). Performance
at the OPE3 soybean site in MD was also improved with the additional VIIRS samples,
by 16% (42%) and 24% (32%) at daily and weekly timesteps, respectively. Over the peak
growing season (DOY 140–240), the improvement at the two sites was more marked at both
daily (28% (59%) for USBi1 and 20% (53%) for OPE3) and weekly (37% (61%) for USBi1 and
35% (44%) for OPE3) timesteps (Table 2; Figure 8). Further discussion of factors impacting
the performance at individual sites is provided below.
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(b) 

Figure 7. (a). Model-measurement time-series intercomparison at the CA flux tower sites for the full year of 2018 (left) and
peak growing season (DOY 140–240; right). (b). Model-measurement time-series intercomparison at the MD, IL and NE flux
tower sites for the full year of 2018 (left) and peak growing season (DOY 140–240; right).
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the peak growing season shows smaller decreases in offset (Figure 9b). For both the full 
year and off season, the mean absolute percent error of fused ETd estimates generally 
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benefited most from the additional VIIRS sampling were the USBi1 site in the Sierra Loma 
domain and the OPE3 site in the BARC domain. During the peak growing season, includ-
ing VIIRS-S2 samples leads to a large drop in the maximum offset to below 25 days in the 
BARC domain. As shown in Figure 9h, the accuracy of fused ETd estimates is similar 
(MAE ~ 1 mm d−1) for offsets less than 25 days, and starts to degrade for offsets of more 
than 25 days. While Bondville acquired a VIIRS sample during a long gap during the crop 

Figure 8. Comparison of RMSE in (a,b) daily and (c,d) weekly ET developed with and without VIIRS over (a,c) the full year
of 2018 and (b,d) peak growing season (DOY 140–240).

4.3. Factors Impacting ET Estimates
4.3.1. Temporal Sampling

The increased sampling frequency afforded by the additional VIIRS-S2 ET data layers
is expected to improve ability to reconstruct daily timeseries using data fusion, particularly
at sites with stronger temporal ET dynamics. Including these VIIRS-S2 layers roughly
halves the time distance (offset) between a given data fusion prediction date and the closest
direct ET retrieval used as the fusion input pair. For all sites, the average pair-prediction
time offset over the full year shows a decrease with VIIRS-S2 included (Figure 9a). This
decrease is dominated by gains in the non-peak growing season (Figure 9c), while the peak
growing season shows smaller decreases in offset (Figure 9b). For both the full year and
off season, the mean absolute percent error of fused ETd estimates generally exhibits an
increasing trend with respect to offset (Figure 9d,f), highlighting the role of VIIRS-S2 ET in
improving the accuracy of ET fusion. As noted above, the two sites that benefited most
from the additional VIIRS sampling were the USBi1 site in the Sierra Loma domain and
the OPE3 site in the BARC domain. During the peak growing season, including VIIRS-S2
samples leads to a large drop in the maximum offset to below 25 days in the BARC domain.
As shown in Figure 9h, the accuracy of fused ETd estimates is similar (MAE ~ 1 mm d−1)
for offsets less than 25 days, and starts to degrade for offsets of more than 25 days. While
Bondville acquired a VIIRS sample during a long gap during the crop green-up period,
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reducing the median offset during the peak growing season, cloud contamination on that
date caused that additional VIIRS layer to degrade model performance at that site.
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The fusion results in Figures 7–9 were computed retrospectively, using all image 
pairs available during the year, both before and after each prediction date. We also exam-
ine the impact of temporal sampling frequency for real-time applications, where only an 
image-pair preceding the prediction date is available. For this analysis, we use the USBi1 
site as a test case—due the volatility of the ET curve, this site presents a worse-case sce-
nario for forward-only data fusion. Scatter plots of weekly total ET from ET-retro (retro-
spective) and ET-RT (real-time) for both Landsat-only and Landsat + VIIRS-S2 fusion in 
comparison with flux tower observations at the USBi1 site are shown in Figure 10. The 
ET-retro case serves as the baseline for assessment of the added value afforded by VIIRS-
S2 samples in real time. For both retrospective and real-time applications, the Landsat + 
VIIRS-S2 fusion outperforms the Landsat-only fusion, with better performance for each 
fusion approach in retrospective application. 

Figure 9. Boxplot of offset (in days) between direct retrieval date and prediction date over each domain for (a) the full
year, (b) the peak growing and (c) non-peak growing season. Fusion accuracy in terms of mean absolute percent error
(MAE/<O>) as a function of offset days between input and target dates for (d) the full year, (e) the peak growing and
(f) non-peak growing season. <O> is the mean of the observed ET. (g–i) Same as (d,f), but for MAE (mm d−1). Note that the
fusion accuracy plots are from the Landsat-only fusion timeseries.

The fusion results in Figures 7–9 were computed retrospectively, using all image pairs
available during the year, both before and after each prediction date. We also examine the
impact of temporal sampling frequency for real-time applications, where only an image-
pair preceding the prediction date is available. For this analysis, we use the USBi1 site as a
test case—due the volatility of the ET curve, this site presents a worse-case scenario for
forward-only data fusion. Scatter plots of weekly total ET from ET-retro (retrospective)
and ET-RT (real-time) for both Landsat-only and Landsat + VIIRS-S2 fusion in comparison
with flux tower observations at the USBi1 site are shown in Figure 10. The ET-retro case
serves as the baseline for assessment of the added value afforded by VIIRS-S2 samples in
real time. For both retrospective and real-time applications, the Landsat + VIIRS-S2 fusion
outperforms the Landsat-only fusion, with better performance for each fusion approach in
retrospective application.
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between DOY 260 and 290, Landsat-only takes a large excursion from reality in real-time 
mode, but corrects to reasonable performance retrospectively after a bounding image on 
DOY 264 becomes available. A closer examination of PhenoCam photos from the USBi1 
tower (middle and bottom panels of Figure 11) indicates that the contrasting performance 
between the two Landsat-only cases may be attributed to the Landsat scene on DOY 256. 
This scene was acquired at ~10:30 am, prior to the cutting operation that occurred that 
day. The forward Landsat-only fusion therefore assumed full cover until the next Landsat 
overpass on DOY 264. A VIIRS-S2 pair on DOY 260, shortly post-cutting, enabled the 
Landsat + VIIRS-S2 timeseries to catch the downturn in ET in both modes. Overall, this 
case demonstrates the increased value of extra VIIRS-S2 temporal sampling in real time, 
indicating the potential of Landsat + VIIRS-S2 fusion for operational applications. 

Figure 10. Scatterplots comparing measured and modeled weekly ET for both Landsat-only (LS) and Landsat + VIIRS-S2
(LS+VIIRS) fusion from the (a) baseline retrospective fusion model (retro) and (b) real-time fusion model (RT) for the
USBi1 site.

The timeseries comparison in Figure 11 (top panel) shows some intervals where the real-
time and retrospective weekly ET estimates diverge significantly, whereas Landsat + VIIRS-S2
fusion gives similar results in both configurations. For example, in the interval between DOY 260
and 290, Landsat-only takes a large excursion from reality in real-time mode, but corrects to
reasonable performance retrospectively after a bounding image on DOY 264 becomes available.
A closer examination of PhenoCam photos from the USBi1 tower (middle and bottom panels of
Figure 11) indicates that the contrasting performance between the two Landsat-only cases may
be attributed to the Landsat scene on DOY 256. This scene was acquired at ~10:30 am, prior to
the cutting operation that occurred that day. The forward Landsat-only fusion therefore assumed
full cover until the next Landsat overpass on DOY 264. A VIIRS-S2 pair on DOY 260, shortly
post-cutting, enabled the Landsat + VIIRS-S2 timeseries to catch the downturn in ET in both
modes. Overall, this case demonstrates the increased value of extra VIIRS-S2 temporal sampling
in real time, indicating the potential of Landsat + VIIRS-S2 fusion for operational applications.

4.3.2. VIIRS View Angle

In a comparison of ECOSTRESS and Landsat 30 m ET retrievals, reference [29] found
that accuracy of ECOSTRESS ET estimates degraded with sensor view angle, suggesting
a limit of 20◦ for multi-source fusion. Analysis of VIIRS-S2 ET retrievals also identified a
view angle effect. The unique sample aggregation scheme employed in VIIRS, described
in Section 3.2.4, results in stepwise resolution degradation as a function of view angle
(Figure 12a). To investigate the impact of such pixel resolution degradation on VIIRS ET
retrievals, we divided the VIIRS ET into several groups based on view angles in each
aggregation zone and then calculated the relative error of ET compared to observations
for each group (Figure 12b). The error shows a stepwise upward trend as a function of the
view angle, broadly consistent with the change of pixel size change shown in Figure 12a.
The result suggests that the loss of spatial detail due to spatial resolution degradation leads
to errors in the sharpened LST and thus ET retrievals, though the thermal sharpening helps
to increase the spatial consistency between the LSTs at all view angles. It is worth noting
that the results reported here are based on limited VIIRS data; more studies are needed to
obtain a more robust understanding of the accuracy degradation with view angle.
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biomass changes on some key days. 
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angles approaching the 52° aggregation threshold. The impact of high view angles on LST 
retrievals was identified at sites where same-day Landsat and VIIRS-S2 overpasses were 
available. Figure 13 shows four representative cases, comparing VIIRS and Landsat LST 
at their native resolution on the same day. Absent intervening rainfall or weather front 
passage, we would generally expect clear-sky LST at the VIIRS acquisition time (~1:30 pm) 
and low view zenith angle to be higher than at Landsat overpass (~10:30 am), as seen in 
DOY 255 over Barrelli domain (last column of Figure 13) with a VIIRS view angle of 16.4°. 
For the high angle cases in Figure 13 (first 3 columns), VIIRS LST is 5–6 °C lower than 
Landsat LST, although the air temperature measured at the tower was 2–5 °C higher at 
the VIIRS overpass time. While a partially vegetated surface may appear cooler at higher 
off-nadir view angles due to larger contributions of Tc to TRAD (Equation (1)) [39], in 
these cases, VIIRS temperatures are generally lower than Landsat over the full range in 
cover fraction represented in the scene, indicating a systematic bias.  

Figure 12. (a) The change of the pixel size of VIIRS LST data as a function of scan angles, adopted
from VIIRS 375 m Active Fire Detection and Characterization ATBD 1.0 [91]; (b) Mean relative errors
of VIIRS daily ET retrievals for different view angle categories.

In addition to degradation of spatial resolution in VIIRS LST at large view angle,
there are also cases where thermal radiance magnitude appears to be impacted at view
angles approaching the 52◦ aggregation threshold. The impact of high view angles on LST
retrievals was identified at sites where same-day Landsat and VIIRS-S2 overpasses were
available. Figure 13 shows four representative cases, comparing VIIRS and Landsat LST



Remote Sens. 2021, 13, 3420 20 of 31

at their native resolution on the same day. Absent intervening rainfall or weather front
passage, we would generally expect clear-sky LST at the VIIRS acquisition time (~1:30 pm)
and low view zenith angle to be higher than at Landsat overpass (~10:30 am), as seen in
DOY 255 over Barrelli domain (last column of Figure 13) with a VIIRS view angle of 16.4◦.
For the high angle cases in Figure 13 (first 3 columns), VIIRS LST is 5–6 ◦C lower than
Landsat LST, although the air temperature measured at the tower was 2–5 ◦C higher at
the VIIRS overpass time. While a partially vegetated surface may appear cooler at higher
off-nadir view angles due to larger contributions of Tc to TRAD (Equation (1)) [39], in these
cases, VIIRS temperatures are generally lower than Landsat over the full range in cover
fraction represented in the scene, indicating a systematic bias.
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Figure 13. Comparison of VIIRS (up row) and Landsat LST (middle row) at native resolution on days with different view
angles over Sierra Loma, BARC and Barrelli domain (400 × 400 pixels), with corresponding scatter plots of VIIRS and
Landsat LST shown in the (bottom row).

Expanding this comparison to 30 pairs of same-day Landsat and VIIRS-S2 LST, it was
found that VIIRS LST was generally higher than Landsat except for a few cases, especially
those with view angle higher than 50◦ (Figure 14). Statistical tests for two groups of LST
pairs based on view angle found that VIIRS LST tends to be significantly higher (p < 0.01)
than Landsat LST for all scenes with view angles lower than 40◦, consistent with the impact
of diurnal cycle on LST. However, for VIIRS LST at view angles larger than 50◦ this is not
the case, suggesting a systematic underestimation of VIIRS LST as shown in Figure 13. This
analysis should be revisited with a larger sample of VIIRS-Landsat LST pairs.

These examples demonstrate the potentially undermining impact of high sensor view
angles on the quality of VIIRS LST [92–95] and ET retrievals. While the TSEB model
does consider view angle in the partitioning of LST into soil and canopy temperatures
(Equation (1)), the magnitude of variability in VIIRS LST with view angle exceeds that
expected from directional fractional mixture of component temperatures. Imposing a
maximum 50◦ VIIRS view angle limitation for ET retrievals was beneficial to timeseries
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comparisons with flux tower observations, particularly at the OPE3 site (Figure 7b) serving
to remove the spike around DOY 166.
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4.3.3. Cloud Masks

Other discrepancies between Landsat and VIIRS-S2 ET retrievals (e.g., Figure 5)
were found to be related to incomplete cloud detection—both in the VIIRS LST and S2
VSWIR products.

4.3.3.1. VIIRS Cloud Mask

Two VIIRS cloud masks were tested. The original cloud mask was associated with
the fire product (375 m I-band) [87,91] which is based on the cloud classification scheme
built on the MODIS fire product [96]. Examination of model output showing discrepant ET
estimates, both in comparison with tower fluxes and Landsat retrievals, identified several
scenes with obvious cloud contaminations in the LST inputs that were not captured in
the fire product cloud mask. An additional cloud screening technique was developed by
calculating a pixel-based baseline climatology based on the entire VIIRS LST data from
year 2013 to 2019. Then, an anomaly is calculated for each pixel, and the pixel is assumed
to be cloud contaminated when the anomaly is less than −2.5 standard deviations. This
screening is applied with the current cloud mask. The new cloud screening method (named
as new mask hereafter) was more effective in flagging cloud-impacted ET retrievals, which
tend to be biased high with respect to Landsat retrievals and ET measurements. Examples
at the Choptank, Mead, and Barrelli sites are shown in Figure 15. For instance, the VIIRS
ET retrieval on DOY 160 at the USNe2 site (5.5 mm d−1) is higher than both Landsat ET
(3.7 mm d−1) and the observed flux (4.2 mm d−1). As shown in the second and third
columns of Figure 15, the cloud-contaminated pixels near the tower with lower LST were
missed by the old mask but successfully flagged by the new mask. A robust cloud mask
can improve the fusion accuracy by removing more low-quality VIIRS ET retrievals.



Remote Sens. 2021, 13, 3420 22 of 31Remote Sens. 2021, 13, 3420 24 of 33 
 

 

 
Figure 15. Comparison of ET retrievals at the Choptank, USNe2 and Bar012 sites (first column). VIIRS ET with cloud cover 
near the tower not successfully flagged by the old cloud mask is highlighted in red circle. Comparison between VIIRS LST 
maps (400 × 400) with old (second column) and new (third column) cloud mask, centered on each flux tower site. The 
black pixel indicates cloud cover detected by the mask, and the red cross represents the location of flux tower. Note that 
DOY 166 at Choptank site and DOY 160 at USNe2 site are the two points highlighted in Figure 5. 

4.3.3.2. HLS (S30) Cloud Mask 
Cloud cover in the S2 SR data product, collected at a different acquisition time from 

VIIRS LST, can also impact the accuracy of the modeled VIIRS ET by contaminating (1) 
the thermal sharpening of VIIRS LST, and (2) the LAI and albedo inputs to the energy 
balance model. We demonstrate this impact with an example from the USBo1 flux site in 
Figures 16 and 17. On DOY 166, a NIR-Red-Green composite of the S2 data (Figure 16a) 
reveals a cluster of clouds and cloud shadows to the south of the tower site. While the 
HLS cloud mask successfully detected the bulk of the clouds, the shadows were largely 
undetected including one compact shadow directly over the tower location. The inaccu-
rate masking propagated the cloud shadow features, which are not observed in the native 
resolution VIIRS LST (Figure 16c), into the sharpened LST decreasing local temperature 
by approximately 1–3 K relative to the unsharpened image and leading to an overestimate 
of ET at the tower site (Figure 17). While this was the only direct ET retrieval in the first 
half of the peak growing season, between DOY 130 and 180, removal of this scene im-
proved peak season RMSE by 16%. 

These examples identify cloud masking in both TIR and VSWIR inputs as a key 
source of noise in ET timeseries reconstructions. 

Figure 15. Comparison of ET retrievals at the Choptank, USNe2 and Bar012 sites (first column). VIIRS ET with cloud cover
near the tower not successfully flagged by the old cloud mask is highlighted in red circle. Comparison between VIIRS LST
maps (400 × 400) with old (second column) and new (third column) cloud mask, centered on each flux tower site. The
black pixel indicates cloud cover detected by the mask, and the red cross represents the location of flux tower. Note that
DOY 166 at Choptank site and DOY 160 at USNe2 site are the two points highlighted in Figure 5.

4.3.3.2. HLS (S30) Cloud Mask

Cloud cover in the S2 SR data product, collected at a different acquisition time from
VIIRS LST, can also impact the accuracy of the modeled VIIRS ET by contaminating (1)
the thermal sharpening of VIIRS LST, and (2) the LAI and albedo inputs to the energy
balance model. We demonstrate this impact with an example from the USBo1 flux site in
Figures 16 and 17. On DOY 166, a NIR-Red-Green composite of the S2 data (Figure 16a)
reveals a cluster of clouds and cloud shadows to the south of the tower site. While the
HLS cloud mask successfully detected the bulk of the clouds, the shadows were largely
undetected including one compact shadow directly over the tower location. The inaccurate
masking propagated the cloud shadow features, which are not observed in the native
resolution VIIRS LST (Figure 16c), into the sharpened LST decreasing local temperature by
approximately 1–3 K relative to the unsharpened image and leading to an overestimate of
ET at the tower site (Figure 17). While this was the only direct ET retrieval in the first half
of the peak growing season, between DOY 130 and 180, removal of this scene improved
peak season RMSE by 16%.
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flux tower. 

 
Figure 17. Comparison in the modeled ET time-series between with (dashed red line) and without (solid red line) DOY 
166 at the USBo1 tower site of Bondville domain for the full year of 2018 (left) and peak growing season (DOY 140–240; 
right). 

5. Discussion 
Simultaneous TIR/VSWIR acquisitions from the same platform represent the best-

case scenario for ET estimation due to inherent advantages over multi-source TIR/VSWIR 
retrievals. As detailed in [29], simultaneous acquisition can ensure input consistency be-
tween LST and vegetation indices for ET models, maximize scene coverage, avoid image 
misalignments due to sensor registration difference and allow improved cloud detection. 
In this study, efforts have been taken to reduce the inconsistency between VIIRS LST and 
S2 SR data. For instance, misregistration errors and variation of pixel footprints between 
VIIRS LST and S2 SR was partially accounted for in the sharpening process with the mod-
ified DMS approach [34]. As reported in Section 4.1, the modelled ET based on the com-
bination of VIIRS LST and S2 SR can achieve a comparable accuracy to Landsat-based 
retrievals, highlighting the utility of VIIRS-S2 data in ET estimates. 

To provide guidance for effective strategies for VIIRS-S2 usage, we further discussed 
several potential limits in applying VIIRS LST and S2 SR data as inputs for sub-field ET 
mapping. Unflagged clouds in both VIIRS and S2 bands due to faulty cloud masking, as 

Figure 16. (a) The NIR-Red-Green composite (400 × 400) of S2 SR bands, (b) the sharpened VIIRS
LST and (c) native VIIRS LST on DOY 166 centered on the USBo1 site over Bondville domain. The
zoom-in view (50 × 50) of (a–c) is shown in the bottom row. Yellow cross represents the location of
flux tower.
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These examples identify cloud masking in both TIR and VSWIR inputs as a key source
of noise in ET timeseries reconstructions.

5. Discussion

Simultaneous TIR/VSWIR acquisitions from the same platform represent the best-
case scenario for ET estimation due to inherent advantages over multi-source TIR/VSWIR
retrievals. As detailed in [29], simultaneous acquisition can ensure input consistency
between LST and vegetation indices for ET models, maximize scene coverage, avoid image
misalignments due to sensor registration difference and allow improved cloud detection.
In this study, efforts have been taken to reduce the inconsistency between VIIRS LST and S2
SR data. For instance, misregistration errors and variation of pixel footprints between VIIRS
LST and S2 SR was partially accounted for in the sharpening process with the modified
DMS approach [34]. As reported in Section 4.1, the modelled ET based on the combination
of VIIRS LST and S2 SR can achieve a comparable accuracy to Landsat-based retrievals,
highlighting the utility of VIIRS-S2 data in ET estimates.
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To provide guidance for effective strategies for VIIRS-S2 usage, we further discussed
several potential limits in applying VIIRS LST and S2 SR data as inputs for sub-field ET
mapping. Unflagged clouds in both VIIRS and S2 bands due to faulty cloud masking, as
shown in Section 4.3.3 (e.g., DOY 166 at USBo1/Choptank site), can result in large retrieval
errors and thus limit the practical utility of ET estimates. The overpass times for VIIRS and
S2 are different, so cloud cover at either acquisition time will affect the image coverage,
increasing limitations in the data availability. The VIIRS cloud mask associated with the fire
product (I-bands) was improved in this study by applying a baseline climatology-based
threshold. Future studies may take advantage of the cloud mask associated with M-bands
to help flag anomalous pixels. As reported by [30] and discussed in Section 4.3.3.2, the
Fmask used in S2 product of HLS v1.4 may generate erroneous results particularly for hazy
conditions, thin clouds and cloud edges since there are no thermal bands. The HLS v1.5
version employing Fmask 4.2, an update of Fmask 4.0 [97] has been released since late 2020,
as reported by NASA [98]. Future studies will update to the new HLS version.

Decreased accuracy of ET retrievals using ECOSTRESS LST at high view angles was
found to be associated with spatial resolution degradation and misregistration errors in
the sharpening process [29]. The spatial resolution of VIIRS degrades with view angle in a
stepwise manner, also impacting the accuracy of retrieved ET. We also found VIIRS LST
data retrieved at high off-nadir view angles (e.g., >52◦) in some cases were systematically
lower than same-day Landsat retrievals, resulting in anomalously high ET estimates.
Directional effects may have a significant influence on the measured LST with a large
field of view [93,99]. Angular variations of LST may have several causes [92,95,100].
One is related to the angular anisotropy of surface emissivity associated with different
components of the land covers and water status (e.g., soil moisture). In addition, the
structured (3D) surface (e.g., canopy) can have a significant impact on the directional
effects of LST through the geometry (e.g., sunlit and shaded elements within the canopy)
and viewing more vegetation and less soil than from near nadir [101]. Canopy structural
impacts on directional temperature are nominally accommodated in the TSEB model
structure via Equation (1). Topography that leads to shadow changes with varying solar
and viewing directions can also contribute to angular effects. Finally, nonlinear effects
of the longer atmospheric path lengths at higher view angles in the radiative transfer
process can be another important factor [94]. The simplified single-channel atmospheric
compensation method used here does not account for angular path differences, and is a
likely source of bias at high view angles. To reduce uncertainties in ET estimations, VIIRS
LST at high sensor view angles should be used with caution.

The value added by the VIIRS-S2 ET data layers as a supplement to Landsat was
found to be site- and application-specific. The improvement to ET timeseries was found to
be most significant at the USBi1 alfalfa site where ET exhibits multiple seasonal peaks due
to monthly cutting, and at the OPE3 site where Landsat data availability in the growing
season is limited due to frequent cloud cover. The improvement in timeseries developed in
retrospective mode was not significant for a few sites (e.g., Rip760) which had a relatively
small mean pair-prediction temporal offset (~5 days) over the peak growing season in the
Landsat-only case. This finding is consistent with previous studies suggesting that 5 days or
lower revisit frequency is necessary for daily ET mapping with reasonable accuracy [20,21].
However, an experiment simulating real-time ET estimate generation further highlighted
the added value afforded by VIIRS-S2 for operational applications, and will become more
pronounced considering the latency in data delivery [28]. A reduction in data latency and
integration of data from multi-satellite platforms provide useful ways to reduce ET errors
in operational settings for crop irrigation management.

In general, sharpening of VIIRS I5 TIR band data appears to be an effective and
feasible means for supplementing the HLS dataset with thermal data on S2 overpass dates
prior to the anticipated launch of the Landsat Surface Temperature Monitoring (LSTM)
mission (Sentinel 8) by the European Space Agency. Replacement of Landsat 7 by Landsat 9,
scheduled for launch in September 2021, will further improve HLS utility, providing an
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additional source of single-platform sampling unencumbered by the scan-line corrector
gaps associated with Landsat 7. The ECOSTRESS mission has been extended to 2023,
collecting thermal data with a nearly 4 day revisit and ~70 m spatial resolution [29]. In
combination, these multiple Landsat and Landsat-like ET data sources will improve our
capability to capture rapidly changing ET dynamics (e.g., flash drought) at sub-field scales.

6. Conclusions

In this study, we evaluated the value for field-scale ET retrieval added by augmenting
the HLS dataset using VIIRS LST sharpened with Sentinel-2 SR data as a 30 m thermal
proxy source on Sentinel-2 overpass dates. Values were assessed in improving Landsat-only
30 m daily ET mapping based on the ALEXI + DisALEXI model across a range of crop
types in the continental US through validation against Landsat ET baseline and in-site
measurements from eleven flux tower sites. Daily ET maps from Landsat and VIIRS-S2
on the common dates showed similar spatial patterns, regardless of the slightly lower
spatial contrast and fewer details observed in VIIRS-S2 ET. Evaluation with flux tower
measurements shows comparable accuracy between Landsat and VIIRS-S2 ET estimates
directly retrieved on the common overpass dates.

For all eleven sites combined, the improvement of fused daily ET timeseries from the
fusion of Landsat + VIIRS-S2 over the Landsat-only case is not very significant (3% for
daily and 6% for weekly in terms of RMSE). However, large improvement was observed
at several individual sites where the temporal trend of ET showed large variation (e.g.,
18% in USBi1 site) or clear-sky Landsat data were not available during periods of rapid
changes (e.g., 16% in OPE3 site). The fusion error tends to decrease with respect to an
increased temporal sampling of ET retrievals for fusion. The accuracy of fused ET in
the peak growing season shows a large drop when the offset between input and target
dates reaches close to a month, highlighting the value of increased sampling provided by
VIIRS-S2 in capturing the large temporal variability of ET associated with rapid phenology
change. For real-time ET estimates, the improvement by Landsat + VIIRS-S2 fusion can
be more pronounced (27% in terms of R2) than the retrospective simulation (17%) with
improved temporal sampling, highlighting the potential of Landsat + VIIRS-S2 fusion in
operational applications. The temporal dynamics of weekly ET were better captured with
extra VIIRS samples included (e.g., DOY 260 at USBi1 site).

The accuracy of VIIRS-S2 ET retrievals decreased with increasing view angles but in a
stepwise manner, resembling the change in spatial resolution degradation of VIIRS LST. In
addition, we found cases with large underestimation of VIIRS LST (as large as 6 K) at view
angles of approximately 52◦, leading to anomalously high ET retrievals, likely related to
spatial resolution degradation and misregistration errors in the sharpening process, angular
effects in atmospheric correction, and directional temperature variations over partially
vegetated surfaces. These results highlight the need of a careful screening before using
VIIRS-S2 ET estimated at high view angles for fusion. We also found cases demonstrating
the imperfection of cloud masks from both VIIRS and S2 in detecting clouds, leading to
large errors in retrieved ET. A new cloud screening technique for VIIRS developed based
on the baseline climatology shows improved performance in this study.
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Appendix A

STARFM is a flexible fusion algorithm capable of handling one or two input image-
pairs as inputs. In principle a two-pair case utilizing more information outperforms a
one-pair case. For Landsat-only fusion, superior performance of the two-pair fusion over
the one-pair was demonstrated in [53]. Here, we further assessed the performance of
the one-pair and two-pair strategies used in both Landsat-only and Landsat + VIIRS-S2
fusion using fields in the Sierra Loma domain as an example (Figure A1). We investigated
the differences in daily ET timeseries generated with the one-pair and two-pair fusion
approaches extracted from two small vegetated fields (identified in Figure A2) exhibiting
highly dynamic ET values. As demonstrated in Figure A1, the daily ET timeseries from
the one-pair fusion exhibit discontinuous increases/decreases around DOY 164 and 220—
dates of transition between pairs used for prediction. In contrast, the two-pair case shows
smoother and more realistic temporal trends during these transition periods. This temporal
difference is less significant in Landsat + VIIRS-S2 fusion due to the increased temporal
frequency with additional VIIRS-S2 samples included, which is consistent with the results
in [53].
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Visual inspection revealed that ET estimates based on two-pair STARFM were slightly
more uniform. This is demonstrated in Figure A2, a comparison of one-pair and two-pair
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fused ET on DOY 218 for both Landsat-only and Landsat + VIIRS-S2 fusion over a subset
region (9 × 9 km) of Sierra Loma domain. The two-pair case tends to show less contrast
in the spatial pattern of ET than the one-pair case, with lower ET in irrigated fields and
fallow fields appearing wetter. The histogram plots over the two images further highlight
this point: ET from the one-pair case covers a larger range and shows higher frequency in
the high/low end of the distribution. The difference between one-pair and two-pair cases
for the Landsat + VIIRS-S2 fusion is larger than Landsat-only fusion, probably because a
VIIRS image which generally has a lower spatial contrast than Landsat ET was used in the
two-pair case of the Landsat + VIIRS-S2 fusion but not in the one-pair case.
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