
remote sensing  

Article

Detection of Microplastics in Water and Ice

Seohyun Jang 1, Joo-Hyung Kim 1,2 and Jihyun Kim 2,*

����������
�������

Citation: Jang, S.; Kim, J.-H.; Kim, J.

Detection of Microplastics in Water

and Ice. Remote Sens. 2021, 13, 3532.

https://doi.org/10.3390/rs13173532

Academic Editor:

Ferdinando Nunziata

Received: 5 July 2021

Accepted: 31 August 2021

Published: 6 September 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Laboratory of Intelligent Device and Thermal Control, Department of Mechanical Engineering,
Inha University, Incheon 22212, Korea; 22201200@inha.edu (S.J.); joohyung.kim@inha.ac.kr (J.-H.K.)

2 INHA Institute of Space Science and Technology, Inha University, Incheon 22212, Korea
* Correspondence: jihyunn.kim@inha.ac.kr

Abstract: It is possible to detect various microplastics (MPs) floating on water or contained in ice due
to the unique optical characteristics of plastics of various chemical compositions and structures. When
the MPs are measured in the spectral region between 800 and 1000 nm, which has relatively little
influence on the temperature change in water, they are frequently perceived as noise or obscured by
the surrounding reflection spectra because of the small number and low intensity of the representative
peak wavelengths. In this study, we have applied several mathematical methods, including the
convex hull, Gaussian deconvolution, and curve fitting to amplify and normalize the reflectance
and thereby find the spectral properties of each polymer, namely polypropylene (PP), polyethylene
terephthalate (PET), methyl methacrylate (PMMA), and polyethylene (PE). Blunt-shaped spectra
with a relatively large maximum of normalized reflectance (NRmax) can be decomposed into several
Gaussian peak wavelengths: 889, 910, and 932 nm for the PP and 898 and 931 nm for the PE. Moreover,
unique peak wavelengths with the meaningful measure at 868 and 907 nm for the PET and 887 nm
for the PMMA were also obtained. Based on the results of the study, one can say that each plastic can
be identified with up to 81% precision by compensating based on the spectral properties even when
they are hidden in water or ice.

Keywords: microplastics; near-infrared; convex hull; Levenberg–Marquardt curve fitting; identification

1. Introduction

Global plastic production has increased every year since 1950, reaching 368 million
tons in 2019 [1–4]. This is because of the attractive properties of plastics, such as lightweight,
durability, versatility, and low cost of production that led to their large-scale use in both
households and industries [5–7]. Uncontrolled large and small plastic waste released into
the environment is about 12 million tons per year and has emerged as one of the environ-
mental pollution issues due to the plastic’s low degradability and recycling rate coupled
with its high consumption [2,4,8]. The commonly found plastics include polyethylene
(PE), polypropylene (PP), polyethylene terephthalate (PET), methyl methacrylate (PMMA),
ethylene-vinyl acetate (EVA), polystyrene (PS), and polyamide (PA), which, when disposed
of, become smaller and smaller pieces over time by processes, such as the continuous
motion of the debris and ultraviolet radiation [9,10]. Then, the plastic particles or syn-
thetic organic polymers having a size between 100 nm and 5 mm are called microplastics
(MP) [9–12]. They are rather difficult to detect because of their small size and low concen-
tration in various environments, including sea [11,13–17], lakes [18], rivers [19], soil [20,21],
and so on [2,7]. Additionally, plastics such as PE and PP mostly float on the water, since
they have low densities of 0.855 to 0.946 g/cm3 and 0.88 to 0.96 g/cm3, respectively [22–24],
while at the same time, sediments or ices also act as sinks for MPs [6,7,9,10,25]. Although
large amounts of floating or suspended plastic debris are observed in water or ice, a suf-
ficient number of comprehensive analyses and monitoring tools for the sources, sinks,
pathways, and type or abundance of debris are not available [24,26]. Particularly, there
exists insufficient monitoring of the sources and routes of the MPs, such as the PP, PE,
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PMMA, and PET, which are mainly detected in the water of semi-enclosed bays and coastal
zones of urban and rural areas in South Korea [23].

The analytical methods using the near-infrared (NIR, 750 to 2500 nm) spectroscopic
region are fast, non-destructive, non-invasive, and nearly universally applicable and
require only minimal sample preparation [27,28]. The NIR spectra are chosen as the
predominant wavelengths in remote sensing, representing these radiances as a ratio that
minimizes atmospheric influence and differences in sensor geometry without greatly
complicating the data processing [29,30]. The spectral properties of the polymers in the NIR
have been conventionally used in the automatic optical sorting of wastes in the recycling
industry and are used to identify environmental MPs with direct and indirect monitoring
approaches such as remote sensing [24,27,31–34]. This is because of the fingerprint regions
of the polymers, such as C-H, O-H, N-H, C-C, and C-O absorption bands that are easily
observable [24,26,27,31–34]. To interpret the remote sensing measurements of the MPs
floated on water or contained in ice, the spectra of the polymers are distinguished from
those of the water. The absorption bands of water and ice in the NIR had been reported as
760, 970 (or 980), 1190, 1450, and 1940 nm for liquid water and 1030 nm for water ice [35,36].
The water and ice absorbance in the NIR range increases or the peak wavelengths shift with
a temperature increase, but the change is relatively small in the wavelength region between
750 and 1000 nm [37–39]. The absorption properties of water result from the vibration
transition in H2O, involving various harmonics and combinations-induced asymmetric and
symmetric stretch and bending mode transition by H-O-H [40]. The dominant absorption
mechanisms for ice are the molecular vibrations in the NIR region, and the corresponding
absorption is stronger than the visible region [41–43].

Based on the characteristic spectral properties of plastics, water, and ice, this study
focuses on detecting the type of MPs floated on water and placed inside and outside ice
with a range of 800~1000 nm, by coding that followed several mathematical techniques,
such as the continuum-removal process and Levenberg–Marquardt (LM) algorithms [29,30].
The present detecting method will be applied to trace the sources and pathways of plastics
in the waters of urban and rural areas in South Korea.

2. Experimental Materials and Methods
2.1. Preparation of Samples

The four different types of plastics that are not colored but are of various opacities
are divided into four categories as shown in Figure 1. The PP, PET, and PMMA are
manufactured by Ilwoong Platech, and the PE is produced from QTech of South Korea.
The sizes of the plate-shaped samples are 50 × 50 mm2 and 5 × 5 mm2, and they have a
rectangular cross-section with 5 mm thickness that excludes the PET (which is 3 mm in
thickness). Three pieces of each smaller plastic are used for single-species detection, and
one piece each is used to sort each plastic in the plastic mixture. All of these are put in vials
of diameter 40 mm and height 3 mm. The vials are filled with 3.8 mL distilled (DI) water.
The amount of DI water and the volume of the vial are chosen to minimize the movement
of the floating plastics. The DI water is used to reduce the measurement error coming from
impurities. The spectra measured from the plastic polymers floated on the DI water and
shown in Figure 1d are considered as the reference to figure out the variation of spectra
intensities and the main wavelengths of plastics embedded into ice as shown in Figure 1b,c.
Then, the bottled DI water and plastics are maintained in a cooler at 20 ◦C temperature
for 24 h, and the ice covering the plastics is thick enough to be observed with naked eyes
easily. The temperature of water and ice are kept at 35 and 0 ◦C, respectively, to minimize
the change in absorbance due to the temperature change.
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Figure 1. Schematic and pictures of sample materials. (a) Plastic polymers, (b) plastic polymers exposed to ice, (c) plastic 
polymers covered with ice, (d) floating plastic polymers in water. 

2.2. Experimental Setup 
The spectral reflectance of the plastic polymers under laboratory conditions was 

measured in a black room with an ASD FieldSpec 3 spectrometer (Analytical Spectral De-
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with a spectral resolution of 3	nm. A 1250W halogen lamp, H25s (HEDLER Systemlicht, 
Runkel, Germany), was used as the illumination source with a degraded output of almost 
60% of the original power. It was positioned at a distance of 57	cm from the sample at an 
incident angle of 35° to reduce the noise from the light source. The signal conditioning 
components (SCC) and data acquisition (DAQ, SC-2345) are connected simultaneously to 
control and maintain the output power of H25s. A 99% Spectralon panel (25.4	 × 	25.4	cm , 
SRT-99-100, Labsphere Inc., North Sutton, NH, USA) was used as a white reference to 
compute the reflectance values. The measured radiance values were transformed into 
spectral reflectance, which is equal to the ratio between the radiance reflected by the plas-
tic polymers and the one from the standard white reference plate [45]. A reference spec-
trum under the same measurement conditions was recorded as the average of 10 scans 
carried out continuously before the first measurement, to minimize the noise level in the 
spectral signal. Then, the samples are placed on the 99% white Spectralon panel vertically 
apart from an 8° fiber optic of the ASD spectrometer. The distance between the reflectance 
target and the fiber optic for plastic polymers is kept at 10	cm to get clear reference data 
at a close range. However, the MPs were placed inside vials (2	cm base diameter) detected 
at a distance of 28	cm, and the setup is capable of measuring a range of 14.43	cm  at a 
time. The distance between the samples and the detector is determined by the largest 
plated plastic polymers. The spectral reflectance measured by the ASD optics is transmit-
ted using wireless fidelity (Wi-Fi) communication to the RS3 software for real-time spec-
tral analysis. A laser that has a typical wavelength of 650	nm is kept above the ASD fore 
optic and was used to calibrate the shifted signals in each detection trial and to determine 

Figure 1. Schematic and pictures of sample materials. (a) Plastic polymers, (b) plastic polymers exposed to ice, (c) plastic
polymers covered with ice, (d) floating plastic polymers in water.

2.2. Experimental Setup

The spectral reflectance of the plastic polymers under laboratory conditions was
measured in a black room with an ASD FieldSpec 3 spectrometer (Analytical Spectral
Devices Inc., Boulder, CO, USA) in a wavelength range of 350 to 2500 nm, as shown in
Figure 2. This equipment combines three spectrometers to convert the solar reflected
portion of the spectral region, with a sampling interval of 1.4 nm for the 350 ∼ 1000 nm
region and 2 nm for the 1000 ∼ 1800 nm and 1800 ∼ 2500 nm regions [44]. In the
considered NIR range of 800 ∼ 1000 nm, the spectrometer can measure all measurable
wavelengths with a spectral resolution of 3 nm. A 1250W halogen lamp, H25s (HEDLER
Systemlicht, Runkel, Germany), was used as the illumination source with a degraded
output of almost 60% of the original power. It was positioned at a distance of 57 cm from
the sample at an incident angle of 35◦ to reduce the noise from the light source. The
signal conditioning components (SCC) and data acquisition (DAQ, SC-2345) are connected
simultaneously to control and maintain the output power of H25s. A 99% Spectralon
panel (25.4 × 25.4 cm2, SRT-99-100, Labsphere Inc., North Sutton, NH, USA) was used as
a white reference to compute the reflectance values. The measured radiance values were
transformed into spectral reflectance, which is equal to the ratio between the radiance
reflected by the plastic polymers and the one from the standard white reference plate [45].
A reference spectrum under the same measurement conditions was recorded as the average
of 10 scans carried out continuously before the first measurement, to minimize the noise
level in the spectral signal. Then, the samples are placed on the 99% white Spectralon
panel vertically apart from an 8◦ fiber optic of the ASD spectrometer. The distance between
the reflectance target and the fiber optic for plastic polymers is kept at 10 cm to get clear
reference data at a close range. However, the MPs were placed inside vials (2 cm base
diameter) detected at a distance of 28 cm, and the setup is capable of measuring a range
of 14.43 cm2 at a time. The distance between the samples and the detector is determined
by the largest plated plastic polymers. The spectral reflectance measured by the ASD
optics is transmitted using wireless fidelity (Wi-Fi) communication to the RS3 software for
real-time spectral analysis. A laser that has a typical wavelength of 650 nm is kept above
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the ASD fore optic and was used to calibrate the shifted signals in each detection trial and
to determine the best position to place the sample on the white reference plate. The entire
experimental setup, except the front side, is covered with the blackout curtain to eliminate
external influences. To achieve necessary analytical precision, the spectrometer measures
the samples 10 times continuously and uses the average values in the wavelength of 800 to
1000 nm.
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Figure 2. Schematics of the experimental setup (SCC: signal conditioning components, DAQ: data acquisition).

2.3. Analysis of Spectra

A spectrum derivate analysis is a typical technique that has been used to identify
absorption features in floating materials and other optically active constituents of natural
waters and ices [24,46–48]. The continuum-removal process isolates the spectral features
from the combined spectral signals and positions them at the same level, allowing the
mixed spectra to be compared with each other. The continuum removal and the feature
comparison processes are successful spectral identification methods applied with weak
or indistinguishable spectra [49]. Additionally, a relative band depth index algorithm
derived from a continuum line quantified major absorption feature [24,49] is also used in
the analysis. It allows for spectral deconvolution by converging the spectrum to zero. End
and start points of the continuum line are formed by an app, OriginPro 2020 (Academic)
2D Convex hull (v.1.0), to systematically select a convex hull [24]. Figure 3a,b show how
to perform the convex hull based on the raw data and rearrange the spectrum for further
analysis, respectively. The LM algorithm is the most widely used method to solve nonlinear
curve fitting problems in spectral mixed models. The signals of the spectrometer, mixed
with several peaks and expressed in a blunt single curve, can be separated into several
Gaussian functions with a single peak by the LM algorithm. It is based on a nonlinear least
square method of Equations (1) and (2) and changes a variable matrix of p in a direction
that minimizes errors E(p) between the real data and curves fitted data using a rotating
iteration [50].

E(p) =
n

∑
i=1

[
ri(p)]2 =[ r1(p) · · · rn(p)]

 r1(p)
...

rn(p)

 = rTr (1)

ri(p) =
n

∑
i=1

[y(xi)− ŷ(xi; p)], (1 ≤ i ≤ n) (2)
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where y(xi) is the measured data, and ŷ(xi; p) is the curve fitted ŷ calculated using p for
the same xi, 1 ≤ i ≤ n. r is the column matrix sets of ri(p), which is the residual between
y(xi) and ŷ(xi; p).

Remote Sens. 2021, 13, x FOR PEER REVIEW 5 of 15 
 

 

Gaussian–Newton = ( ( ,					 0 (3) 

Gradient Descent = 2 ( ,							 0	 (4) 

Levenberg–Marquardt = ( ( ,				 0 (5) 
Various methods have been employed to reduce the residual and consequently min-

imize the ( ), among which the LM method (Equation (5)) is a combination of the 
Gaussian–Newton and the gradient descent methods (Equations (3) and (4)). This method, 
hence, enables a rapid and stable convergence even if the initial value is far from the so-
lution [51–53]. The Jacobian matrix  of  is defined as = , 1 . Addition-
ally, the term subtracted from  in the expression of each method is . This value is 
adjusted from the previous value of  so that  can reduce errors with the real data 
[54]. The value corresponding to 	in the coding is mainly calculated for the changing 

, and the (  at that time is measured to adjust , the damping parameter. The Gauss-
ian–Newton method is used when it is decided to converge steadily towards the solution 
with a  that is smaller. However, if the current iteration is far away from the solution 
with a larger , the system can be quickly brought closer to the solution using the gradi-
ent descent method [55]. Thus,  is adjusted as the procedure is repeated so that it accu-
rately converges even on complex graphs and can respond quickly to highly variable data, 
such as the one from real environments. The  converging to the solution by the LM 
method is, therefore, replaced by the main constants of the Gaussian function and disas-
sembles the first graph into several Gaussian functions. Figure 3c describes an example of 
a convex line subtracted data (black line) that is disassembled into four different Gaussian 
functions. Each Gaussian function has one single peak, and the sum of them has resulted 
in the cumulative fit peak (cross-shaped line). The difference between the initial signal 
and the cumulative fit peak is the residual  of Equation (1) and is shown in Figure 3d. 

 
Figure 3. The spectral analysis of PE in 50 × 50 mm2 (OriginPro 2020 (Academic)). (a,b) Continuum removed with the 2D
convex hull; (c,d) LM algorithm with peak deconvolution.

Gaussian–Newton

pk+1 = pk −
(

JT
r Jr

)−1
JT

r r(pk), k ≥ 0 (3)

Gradient Descent
pk+1 = pk − 2λkJT

r r(pk), k ≥ 0 (4)

Levenberg–Marquardt

pk+1 = pk −
(

JT
r Jr + µdiag

(
JT

r Jr

))−1
JT

r r(pk), k ≥ 0 (5)

Various methods have been employed to reduce the residual and consequently min-
imize the E(p), among which the LM method (Equation (5)) is a combination of the
Gaussian–Newton and the gradient descent methods (Equations (3) and (4)). This method,
hence, enables a rapid and stable convergence even if the initial value is far from the
solution [51–53]. The Jacobian matrix J of r is defined as Jr =

∂rk
∂pk

, 1 ≤ k ≤ n. Additionally,
the term subtracted from pk in the expression of each method is δp. This value is adjusted
from the previous value of pk so that pk+1 can reduce errors with the real data [54]. The
value corresponding to δp in the coding is mainly calculated for the changing p, and the
E(p) at that time is measured to adjust µ, the damping parameter. The Gaussian–Newton
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method is used when it is decided to converge steadily towards the solution with a µ that
is smaller. However, if the current iteration is far away from the solution with a larger
µ, the system can be quickly brought closer to the solution using the gradient descent
method [55]. Thus, µ is adjusted as the procedure is repeated so that it accurately converges
even on complex graphs and can respond quickly to highly variable data, such as the one
from real environments. The p converging to the solution by the LM method is, therefore,
replaced by the main constants of the Gaussian function and disassembles the first graph
into several Gaussian functions. Figure 3c describes an example of a convex line subtracted
data (black line) that is disassembled into four different Gaussian functions. Each Gaussian
function has one single peak, and the sum of them has resulted in the cumulative fit peak
(cross-shaped line). The difference between the initial signal and the cumulative fit peak is
the residual ri of Equation (1) and is shown in Figure 3d.

3. Result and Discussion
3.1. Peak Wavelengths of the Plastic Polymers

The peak wavelengths of the PP, PET, PMMA, and PE, of size 50 × 50 mm2 with a rect-
angular cross-section and 5 mm thickness, were measured using the Lambda 750 UV/Vis/NIR
spectrometer (PerkinElmer, USA). These measurements are carried out in the range of 800
to 1000 nm with the following wavelengths for the plastics: (1) 920 and 927 nm for the
PP, (2) 873 and 914 nm for the PET, (3) 903 nm for the PMMA, (4) 933 nm for the PE. The
distinguishable absorption bands are compared with the results of Garaba et al. [24] as
described in Table 1. Garaba et al. [24] experimented on marine-harvested MPs, which
showed that each plastic has unique absorption peak wavelengths because of the different
molecular structures of plastics. The absorption peak wavelengths of the PP and PE seem
to be almost alike, and those of the PET and PMMA have alike waveforms but are slightly
shifted or not measured. Green et al. [35] examined the absorption spectra of water and ice
to reveal interesting facts, which include different spectral signals for different phases of
the material, even though the molecular structure of the material is the same. Since these
factors fulfill the primary role in interpreting the conditions mixed with numerous signals,
the NIR spectra region, 800 to 1000 nm, is selected to identify the plastic polymers.

Table 1. Representative peak wavelengths for polymers used in this study.

Material Wavelength
(nm)

Normalized
Absorption Material Wavelength

(nm)
Normalized
Absorption

PP 911 *
935 *

0.414
0.437 PMMA 897 * 0.779

PET 863 *
899 *

0.280
0.284 PE 929 * 0.337

*: similar/same peak wavelengths of Garaba et al. [24] and this work.

3.2. Coding for Plastic Polymer Classification

The coding (Supplementary Materials) to analyze the observed spectra gained from
the various conditions is developed with Microsoft Visual Studio Community 2019 (Ver.
16.4.5) and the convex hull, continuum-removal process, and LM algorithms were used
to identify the plastic polymers. This development of software consists of three parts as
shown in Figure 4: input (Part 1), analysis of spectrum (Part 2), and the result (Part 3). All
initial settings such as the reference peak, file name, spectral range, input raw data files,
and environmental conditions are performed by the users in the Part 1 stage itself. Based
on the reference value, for instance, 654 nm, the input raw data are consecutive rearranged,
averaged, and plotted in Part 2. A set of raw data can be dragged and dropped into the
“Data” section, and the average in the user-defined range is used for the analysis. The
“Environment” includes several conditions such as default, water, and ice under which
measurements were performed. In the ice or water mode, the compensation process is
carried out to remove the specific Gaussian function due to the environmental factors, and
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a re-curve fit is performed to modify the spectrum. The spectrum of “PP with water” is
analyzed through the compensation process that excluded distinct waterborne areas and
predicted the polymers. The convex hull, continuum line subtraction, decomposition with
multiple Gaussian functions, and LM curve-fitting in Part 2 are processed step-by-step for
the users to monitor the comprehensive analysis. Using the first derivative method, the
visible peak wavelengths are automatically found or added on the chart by the users and
are converted into multiple Gaussian functions giving the initial value for the LM method.
After LM fitting, the compensation can only be performed for the ice and water, which
removes the signals of water and ice and can identify the plastic polymer easily by their
spectra. In the process of using the identification algorithm, the peak wavelength of each
substance can be classified as an accordant polymer if the difference of the wavelength
is less than ±3.5 nm based on the optical characteristics of the pure polymer. The peak
wavelengths of pure polymers are given in Table 1. The discrepancy is due to environmental
factors with higher reflectance that cause the wavelength to shift. The classified peak
wavelengths represent the appropriate polymer, and the non-classified peaks are included
in the category, “None” of the graph and “Detected peak”, in Part 3.
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3.3. Optical Characterization of Plastic Polymers

The normalized reflectance spectra of the PP, PET, PMMA, and PE were measured
with their scales by the ASD spectrometer (black lines). The spectral lines were nonlinearly
fitted using the LM method with a tolerance of 10−6 through the continuum-removed
process (red line) in the NIR spectral range of 800 ∼ 1000 nm, as shown in Figure 5. At
that time, the peak wavelength, λp, maximum of normalized reflectance (NRmax), and
full width half maximum (FWHM) were measured to be used as optical characterization
indices for the Gaussian function. The NRmax is the intensity of the corresponding peak
wavelength in the reflection, and the higher this value, the clearer the detection of the peak
wavelength in the mixed spectra. The peak wavelength of 897 nm of the PMMA was not
measured in the previous research because it is difficult to distinguish it in its overlapping
with the peak wavelengths of other polymers in the mixed plastics even though the NRmax
is large. The wavelength that assumes a value of around 903 nm is detected clearly from
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the UV/VIS/NIR spectrometer. This trend is similar to the one for other materials. Some
of the peaks slightly shift from the previously measured values.
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Figure 5. The normalized reflectance of the PP, PET, PMMA, and PE, which shows the characteristic
peaks of the material and the core components of the Gaussian functions of plastic polymers (λp:
Gaussian peak wavelength, NRmax: maximum of normalized reflectance, FWHM: full-width half
maximum with a unit of nm ).

The PP and PE show the optical property of a blunt single signal combined with two
or three different Gaussian peak wavelengths, respectively, and have larger NRmax values.
Being able to minimize noise, which is an advantage of remote sensing in the NIR region,
allows the mixed peaks to be decomposed in high resolution even though they are in a
narrow range. The wavelength band of PP, ∼ 932 nm, is not visible in the mixture of the
PP and PE because its NRmax is about one-third smaller than that of the peak wavelength
of PE, which is ∼ 931 nm. Thus, the respective peak wavelength, 910 nm and 898 nm, of
PP and PE can play a possible role in the classification of plastics. The characteristic peak
wavelengths of PET can be located at 868 and 907 nm. The peak wavelength of 907 nm
when it is overlapped with other plastic polymers such as the PE and PP makes it difficult
to distinguish the PET polymer because of the smaller NRmax value. Nevertheless, it can
be identified with two wavelengths considered as a criterion. Therefore, the materials are
distinguished with the peak wavelengths: 889, 910, and 932 nm for PP, 868 and 907 nm for
PET, 897 nm for PMMA, and 931 nm for PE.
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3.4. Optical Properties of Plastic Polymers with Ice and Water

It is sometimes challenging to distinguish the transparent or milky-white colored
plastic polymers when they are exposed to ice or while floating on water. The peak
wavelengths of ice and water in this experiment are located at 894 and 963 nm, respectively,
after extracting the spectral lines fitted using the LM method as shown in Figure 6. In the
case of water, the peak wavelength was shown at 970 nm, similar to the previous study, but
it somewhat shifts due to the process of breaking the spectral data around 1000 nm [35,36].
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Figure 6a shows that each material exposed to ice, except the PE, cannot be differenti-
ated from ice in terms of the optical characteristics due to similar peak wavelengths and
reflectance values measured. The noise signals measured by the scattered reflections from
the water or ice are prominently observed in the PET with a small normalized reflectance
value. However, it can extract meaningful spectral lines by using the LM method with
Gaussian functions and distinguish the optical properties with the errors of 1 ∼ 3 nm. The
PP and PE can be identified from the peak wavelength of the ice due to their larger NRmax.
The peak wavelengths and normalized reflectance of the PET are very close to those of the
ice but can be distinguished at 868 nm with an error of 3 nm by the LM method, whereas
the PMMA with similar features is difficult to identity.

The majority of the peak wavelengths of the shallowly ice-covered plastic polymers
are blended with that of ice and represented by a smooth and simplified curve so that it is
hard to break them down into multiple Gaussian functions as shown in Figure 6b. The ice
that overlaid them causes severe scattered reflections, resulting in some variations in the
observed spectra. The spectral lines rendered by the LM method shift and the normalized
reflectance also increases compared to the case of exposure to ice (Figure 6a). The materials
can also be identified with peak wavelengths such as 912 nm for the PP, 868 nm for the
PET, and 931 nm for the PE.

The spectra observed from plastic polymers floating on the DI water show a single
peak wavelength with larger normalized reflectance at 963 nm and multi-peak wavelengths
with the small one in other regions as shown in Figure 6c. The spectra of plastic polymers
with that of water decomposed in them represent similar optical characteristics as displayed
in Figure 5. The Gaussian peak wavelength of the PET and PMMA seem to be distinguished
because they are far from the spectrum of the water, which is 963 nm, and are relatively
less affected. The representative peak wavelengths with large NRmax similar to the one
for the PE can facilitate the detection of the plastic polymers under various environmental
conditions. Even the PET with the smallest NRmax can be distinguished as shown in
Figure 6c when it does not overlap with the wavelengths of the water or ice. However,
the decomposition of the Gaussian function can still result in peak shifts. The ice peak
wavelength that is measured in the spectral range similar to that of the polymers and does
not have an appreciably large NRmax can be shifted in the presence of the polymers as
described in Table 2. Then, it can measure at 912, 903, 899, and 896 nm the PP, PET, PMMA,
and PE, respectively.

Table 2. The maximum of normalized reflectance NRmax for representative peak wavelength of the plastic polymer in
various environments.

Material
Only

Exposed
to Ice

Ice-
Covered

Ice
(λice = 898 nm) Floating on Water Water

(λw = 963 nm)

PP (λpp = 932 nm) 0.183 0.009 0.008 0.024 (912 nm) 0.004
(λpp = 910 nm) 0.034

PET (λPET = 868 nm) 0.028 0.002 0.003 0.021 (913 nm) 0.003 0.052
PMMA (λPMMA = 897 nm) 0.034 0.012 0.017 0.017 (899 nm) 0.006 0.039

PE (λPE = 931 nm) 0.498 0.019 0.016 0.021 (896 nm) 0.005 0.048

3.5. Microplastics Classification in the Mixture

It can be aimed further to detect and classify each substance in the mixture to trace
their sources and routes while measuring MPs remotely under various conditions. Figure 7
shows the degree of identification and classification of each plastic under various conditions
with the use of the in-house program described in Figure 4. The x-axis represents the types
of material and the y-axis indicates the number of detected wavelengths, between 800 and
1000 nm, of each plastic. Each plastic has been identified using its measured wavelengths
through the compensation process. The numbers of peak wavelength (Npw) identified
by observing pure plastics are three for the PP, two for PET and PE, and one for PMMA
(Figure 7a, black bar). As shown in Figure 7a, the plastics have been readily identified even
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though Npw has decreased except for the PET when the single species has been contained in
the water or ice. The PMMA, which has only one wavelength in the given region, cannot be
identified even with increased precision through the compensation process because of their
similar peak wavelengths when they are in the ice. Meanwhile, the process can identify
the PET that is difficult to distinguish from noise. Hence, the precision of identifying each
plastic has approximately approached 81.25% by performing the compensation based on
the spectral properties even when the single substance was concealed by various elements
such as the ones floating on water or while surrounded by ice.
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When two different MPs are mixed under the same conditions, the identification
accuracy drops sharply because the peak wavelengths are detected in similar spectral
ranges. Nevertheless, other plastics except the PMMA can be detected from the given
conditions, and each material is identified as shown in Figure 7b. For example, the PP
and PET in the PP–PET mixture can be distinguished under all conditions but only the
PP floating on the water in the PP–PE mixture is distinguished by one peak wavelength.
However, any plastic mixed with the PMMA cannot be identified under all conditions. Each
MP in mixtures cannot accurately be distinguished in the spectral region, 800 ∼ 1000 nm,
so one needs to improve the identifying process with other techniques.

4. Conclusions

This research is focused on the systematic detection based on the spectroscopic proper-
ties of each plastic, PP, PET, PMMA, and PE, in the spectra range 800~1000 nm. The analysis
of plastics floating on water or contained in ice can be carried out with a resolution of the
spectrometer of up to 3 nm. The coding breaks down the prominent peak wavelengths in
a repetitive signal gained directly from the surroundings into several Gaussian functions
and isolates the unique ones of the materials by adjusting them to the initial data. This in-
directly confirms the presence of the polymers distributed in the water or ice and provides
additional fragmentary information about the material. However, it presents the event of a
spectrum and makes the analysis difficult because the spectral signals of the materials can
be mitigated and made blunt under various environmental factors. For these reasons, some
materials, especially PMMA, are still poorly judged in the identification process shown
in Figure 7. Nevertheless, the result shows the possibility that even very weak optical
signals can be used for detecting plastics through various mathematical techniques. For
instance, the spectrum of PET, 868 nm, has a reflectance that is approximately 1/8th smaller
reflectance than that of the 1130 nm, whose optical characteristics are provided in another
study [56]. After fitting it as the Gaussian function based on the continuum line subtraction
and the LM method with the convex hull, the current procedure can characterize the weak
signal as the normalized reflection. Furthermore, even if it is mixed with other polymer
materials, the presence of polymers can be confirmed based on their unique properties.
However, the mathematical model-based analysis can be effective in extracting the prop-
erties of the target materials from the noise-filled signals and are difficult to use in low
intensity of spectra because the convex hull can be vulnerable to unexpected external noise.
Recently, machine learning to solve the problem is introduced to derive results flexibly
depending on situations rather than the fixed interpretations. Zhu et al. [39] extracted and
identified key features of polymers with the principal component analysis (PCA) technique
and support vector machine (SVM) and achieved an accuracy of 97.5% for a single polymer.
Grubber et al. [57] have shown that the accuracy of detection can be increased up to 93.5%
by utilizing the convolutional neutral network (CNN) technique to distinguish the size and
shape of the plastic particles. As such, machine learning overcomes the limitations of the
existing equipment and establishes criteria based on data of various conditions, resulting
in relatively accurate results even if there is some difference. To improve the precision of
detection of MPs to trace the sources and pathways of plastics, future work is intended to
generate machine learning models based on the preprocessing of data to increase analysis
speed and accuracy.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/rs13173532/s1, Algorithm S1: Convex hull, Algorithm S2: Gaussian deconvolution with
Levenberg Marquardt method, Algorithm S3: Compensation for eliminating environmental effects,
Algorithm S4: Polymer prediction, Figure S1: Pure polymer (PE), Figure S2: PET in water.
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