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Abstract: Micro-motion parameters extraction is crucial in recognizing ballistic missiles with a wide-
band radar. It is known that the phase-derived range (PDR) method can provide a sub-wavelength
level accuracy. However, it is sensitive and unstable when the signal-to-noise ratio (SNR) is low.
In this paper, an improved PDR method is proposed to reduce the impacts of low SNRs. First,
the high range resolution profile (HRRP) is divided into a series of segments so that each segment
contains a single scattering point. Then, the peak values of each segment are viewed as non-stationary
signals, which are further decomposed into a series of intrinsic mode functions (IMFs) with different
energy, using the ensemble empirical mode decomposition with the complementary adaptive noise
(EEMDCAN) method. In the EEMDCAN decomposition, positive and negative adaptive noise pairs
are added to each IMF layer to effectively eliminate the mode-mixing phenomenon that exists in the
original empirical mode decomposition (EMD) method. An energy threshold is designed to select
proper IMFs to reconstruct the envelop for high estimation accuracy and low noise effects. Finally,
the least-square algorithm is used to do the ambiguous phases unwrapping to obtain the micro-curve,
which can be further used to estimate the micro-motion parameters of the warhead. Simulation
results show that the proposed method performs well with SNR at −5 dB with an accuracy level of
sub-wavelength.

Keywords: micro-motion; Doppler phase; EEMDCAN; wideband radar; phase-derived range

1. Introduction

In the missile defense system, it is crucial to distinguish the true warheads from
decoys in the mid-course phase, where warheads and decoys exhibit different micro-
motions. Specifically, the true warheads have precession and nutation movements, while
decoys wobble after being released from the true warheads. When observing the mid-
course ballistic missiles using radar, the precession and nutation movements will modulate
the echoes. Consequently, it is possible to extract micro-motion parameters from the radar
echoes to recognize the true warheads [1–6].

In the past few decades, many methods have been developed to exploit the micro-
motion features to recognize the mid-course ballistic missiles [7–12]. It is difficult for the
narrow-band radar to discriminate the different scattering points lying on the true warhead
due to its low range resolution. Thus, the warhead is usually considered as a whole,
and many methods based on the whole radar cross section (RCS) are developed [13–15].
RCS is affected by various factors such as target shape, target material, illuminating angle,
etc. As a result, the estimated micro-motion parameters based on the RCS sequence may not
be fine, accurate, and reliable enough [16]. By contrast, the wideband radar is much more
appealing. The high range resolution profile (HRRP) benefiting from the large available
bandwidth makes it possible to separate the scattering points from each other. Therefore,
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many more advanced methods for the wideband radar have been proposed to extract finer
and more accurate micro-motion features [17–21].

It is reported that the phase-derived range (PDR) method based on HRRP sequences can
achieve the half-wavelength accuracy, and thus has attracted increasing attentions [22,23]. It
measures the target range using the phase information based on R = (λ/4π)∆φ, where
λ and ∆φ represent the wavelength and the unambiguous phase, respectively. However,
there are two challenges for the the PDR method in the wideband radar. One is how to
extract the ambiguous phase, corresponding to the envelop across the HRRP sequence. As
the scattering point will occupy several range bins, it is particularly significant to determine
the correct range bins to fit the envelop. The other is how to unwrap the ambiguous phase,
as ∆φ is unambiguous only with ∆φ < 2π. In other words, the maximum unambiguous
range is λ/2, which is impractical. Therefore, the phase unwrapping is indispensable.

Note that several improved PDR methods have been applied for the micro-motion pa-
rameters extraction. In [7], a micro-Doppler phase delta method was proposed to tackle the
phase ambiguity. It calculates the phase difference between two adjacent pulses, resolves
the number of phase ambiguities, and further uses the PDR method to properly measure
the distance. However, as mentioned in [7], it requires several related measurement errors
to be small enough to correctly resolve the phase ambiguity. In other words, it requires
high signal-to-noise ratio (SNR). In [17], the authors proposed a new PDR method to
extract Doppler phases from HRRP sequences through a matched filter. This algorithm was
developed in [7], where they applied the same method to the direct sampling linear fre-
quency modulated signal to avoid the influences of the recording error. However, the high
SNR requirement and the limitation to stationary targets remained unresolved. In [10],
the authors presented a high-precision PDR method with no constraints on SNRs for phase
ambiguity. The ambiguous phase is estimated by applying the conjugate multiplication
between two adjacent pulses, and relaxes the requirement of SNR. However, the variation
range between adjacent frames is required to be less than one-quarter of the wavelength,
which limits its application.

As is well known, EMD is a powerful tool for the non-stationary signal analysis [24,25].
Its main advantage is that it can decompose the non-stationary signal into a series of
intrinsic mode functions (IMFs). The non-stationary signal can be reconstructed by the
filtered IMFs to envelop association for micro-curve extraction [26]. However, the original
EMD algorithm heavily relies on the extreme points of the non-stationary signal. Besides,
EMD is greatly affected by the high-frequency interference in the signal.

In this paper, we develop an improved PDR method and attempt to deal with the
micro-motion parameters extraction in the wideband radar. To overcome the low-SNR issue
and high-frequency interference, instead of directly applying EMD, we adopt an ensemble
EMD with complementary adaptive noise (EEMDCAN) [27] to extract the scattering point
envelop across the HRRPs. First, we divide the HRRP into a series of segments such that
each of them contains a scattering point. We take the peak value of each segment along the
HRRP as the coarse estimation of the corresponding scattering point, and then regard all
coarse estimations of the scattering point across the HRRPs as a non-stationary signal. Then,
the EEMDCAN method is applied to each non-stationary signal to obtain a series of IMFs
for each scattering point. The decomposition terminates when the conditions of modal
amplitude and estimation function proposed by Rilling G. are satisfied [28]. Only the IMFs
with a zero-crossing rate (ZCR) larger than a threshold will be employed to reconstruct
the accurate envelop, while the remaining IMFs will be considered as interference and
discarded [28]. Based on the accurate envelop, the ambiguous phases can be directly
obtained, and the least-squares algorithm is employed to unwrap the ambiguous phases.
Finally, parameters estimation is performed. For the target with precession, the micro-
curve of scattering points can be regarded as sinusoidal curves, of which the amplitudes
are affected by the precession angle, cone height, and radius. Therefore, the precession
angle, precession frequency, cone height, and radius can be obtained through the estimated
micro-curve.
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The most important contribution of this paper is that an improved PDR method is
proposed to overcome the difficulties in recognizing the true warheads with low SNRs.
Specifically, the proposed method can adaptively estimate the envelop according to the
characteristics of the signal. Even when the SNR is lower than −5 dB, this method can still
estimate the envelop with high accuracy at a sub-wavelength level.

The remaining of this paper is organized as follows. Section 2 introduces the ge-
ometric model and related backgrounds. Section 3 presents the parameter estimation
method, which contains scattering point separation, micro-curve extraction, and parameter
extraction methods. In Section 4, simulation results are provided to verify the proposed
method. Section 5 concludes the paper.

2. Geometry and Signal Model

The cone model of a mid-course warhead observed by a wideband radar is illustrated
in Figure 1, where Figure 1a presents the radar coordinate system (Q−UVW), the warhead
local coordinate system (O− xyz), and the reference coordinate system (O

′ − XYZ), while
Figure 1b presents the details of a warhead. During the observation, the radar keeps
stationary.

2.1. Warhead Motion

In general, the warhead is modeled as a rigid body, where the distance between any
two particles does not vary during any motion [1]. For cone targets, precession is a common
form of micro-motion, i.e., when the target is moving, it is accompanied by periodic cone
rotation around the cone rotation axis [8]. As Figure 1 shows, the warhead is modeled as
a cone, and in a mid-course warhead, there usually exist two motions [8,29]: one is the
warhead spinning around the symmetric axis

−→
Oz with the angular velocity ωs, and the

other is the warhead rotating around the precession direction
−→
OC with angular velocity ωc.

The angle ϕ between
−→
OC and the cone symmetric axis

−→
Oz is referred as to the precession

angle. In Figure 1b, H, σ, r, and d stand for the height, half opening angle, the base radius
of the cone, and the distance from the top to O (namely, ‖−−→OP1‖), respectively. According to
the scattering theory, there are usually three strong scattering points in the HRRP sequences
of the cone target, namely P1, P2, and P3, where P1 is fixed, while P2 and P3 change their
positions as the radar line of sight (LOS) changes.

(a) (b)

Figure 1. Target model: (a) cone target model and (b) target micro-motion model.

In the radar coordinate system, let α and β denote the initial azimuth and elevation
angle of the warhead, respectively;

−→
R0 = (U0, V0, Wo)T denote the initial position vector of

the origin of the reference coordinate system O; and ‖−→R0‖ = R0, where ‖·‖ represents the
Euclidean norm, then the unit vector of radar LOS is

−→n =

−→
R0

R0
= (cos α cos β, sin α cos β, sin β). (1)
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Rotation will change the target posture, and consequently change the position of the
scattering point relative to the radar. In the target coordinate system, assume the scattering
point P is with a position vector −→r0 = (X0, Y0, Zo)

T at the initial time t = 0. Let (φ, θ, ψ)
denote the initial Euler angles, where φ, θ, and ψ rotate about z-axis, x-axis, and z-axis,
respectively, and the corresponding initial rotation matrix is

RInit =

cos φ − sin φ 0
sin φ cos φ 0

0 0 1

1 0 0
0 cos θ − sin θ
0 sin θ cos θ

cos ψ − sin ψ 0
sin ψ cos ψ 0

0 0 1

. (2)

Then, the new location of P in the reference coordinate system can be represented by
RInit · −→r0 . Supposing that the angular vector is −→wc = (wx, wy, wz)

T , then the unit vector of

the rotation is−→wc
′
= (wx

′
, wy

′
, wz

′
)

T
= RInit ·

−→wc
‖−→wc‖

. According to the Rodrigues formula [8],
the rotation matrix at time t can be written as

R(t) = I + K sin Ωt + K2(1− cos Ωt), (3)

where I is the unit matrix, Ω = ‖−→ωc‖, and K = ŵc
′

is a skew symmetric matrix of the unit
direction vector:

K =

 0 −wcz
′

w
′
cy

wcz
′

0 −wcx
′

−wcy
′

wcx
′

0

 =

 0 − cos ϕ sin ϕ
cos ϕ 0 0
− sin ϕ 0 0

. (4)

Substituting (4) into (3), the rotation matrix becomes

R(t) =

 cos Ωt − cos ϕ sin Ωt sin ϕ sin Ωt
cos ϕ sin Ωt 1− cos2 ϕ + cos2 ϕ cos Ωt sin ϕ cos ϕ− sin ϕ cos ϕ cos Ωt
− sin ϕ sin Ωt sin ϕ cos ϕ− sin ϕ cos ϕ cos Ωt 1− sin2 ϕ + sin2 ϕ cos Ωt

. (5)

The distance from the radar to the point P
′

can be derived as

r(t) = ‖
−−→
QP

′‖ = ‖−→QO +
−−→
OO

′
+
−−→
O
′
P
′‖ = ‖−→R0 +

−→
V t + Rt

−→r0 ‖, (6)

where
−→
V is the velocity vector, i.e.,

−−→
OO

′
=
−→
V t, and R0 is the initial range value.

Ballistic targets are usually far away from the radar, and the far-field condition can be
satisfied. Thus, the instantaneous radial distance from the scattering point to the radar can
be calculated by the projection of the scattering point to the radar’s LOS, namely,

ri(t) =
〈−−→

LOS,
−→
Pi

〉
+ R0 = Yisinγ + Zi cos γ + R0, (7)

where 〈·〉 denotes the inner product of two vectors, and γ denotes the angle between target
symmetry axis and radar line of sight at the time t, cos γ =

〈−−→
LOS,

−→
Z
〉

, i = 1, 2, 3.
We assume that the radar bandwidth is large enough so that it can discriminate

each scattering point of the cone target, and the cone target will span several range bins.
Therefore, the micro-motions of the scattering points could be distinguished from the bulk
of the target in the radial range dimension. In this paper, we ignore the influence of bulk
motion, and assume R0 to be 0. According to the works in [30], the distance between
scattering points and radar can be expressed as

r1(t) = −d cos ϕ cos(ϕ + α)− H sin ϕ sin(ϕ + α) cos Ωt + Rh, (8)

r2(t) = r
√

1− cos2 ϕ cos2(ϕ + γ) +

(
H − d− r cos ϕ cos(ϕ+γ)√

1−cos2 ϕ cos2(ϕ+γ)

)
· ρ + Rh, (9)
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r3(t) = −r
√

1− cos2 ϕ cos2(ϕ + γ) +

(
H − d + r cos ϕ cos(ϕ+γ)√

1−cos2 ϕ cos2(ϕ+γ)

)
· ρ + Rh, (10)

where ρ = sin ϕ sin(ϕ + γ) cos wct, and Rh represents the radial distance change caused by
the position of the local coordinate center O

Rh = (H − d) sin ϕ sin(ϕ + α) cos(Ωt). (11)

2.2. Radar Echoes

The linear frequency modulation (LFM) signals are widely used in wideband radar
systems [10] and can be expressed as

s(t) = rect
(

t
Tp

)
exp

[
j2π
(

fct + 1
2 kt2

)]
, (12)

where rect(ζ) =

1,
∣∣∣ζ∣∣∣ ≤ 0.5

0,
∣∣∣ζ∣∣∣ > 0.5

, t denotes the fast time, Tp denotes the pulse duration, fc

denotes the carrier frequency, and k denotes the slope frequency modulation. Then, the
signal returned from the cone can be modeled as the summation of the returns from all
scattering points [31]:

s(t, tm) =
N

∑
i=1

Airect
(

t− 2ri(tm)/c
Tp

)
exp

{
−j

4πri(tm)

λ

}
exp

{
jπk
(

t− 2ri(tm)

c

)2
}
+ n(tm), (13)

where tm = mTr is the slow time, Ai is the Pi reflectivity, λ = c/ fc represents the carrier
wavelength, c is the wave propagation velocity, nr(tm) denotes the noise term of the re-
ceived echo signal, and N denotes the number of scattering points. After pulse compression,
the obtained HRRPs can be represented as

S(t, tm) =
N

∑
i=1

Aisinc
[

B
(

t− 2ri(tm)

c

)]
exp

{
−j

4πri(tm)

λ

}
+ n(tm)

=
N

∑
i=1

A
′
i(tm)exp

{
−j

4πri(tm)

λ

}
+ n(tm),

(14)

where A
′
i denotes the amplitude after pulse compression, and A

′
i(tm) represents the ampli-

tude containing the sinc function.

3. Micro-Motion Parameter Estimation
3.1. Scattering Point Separation

The attitude of the warhead is relatively stable in the mid-course phase, and the
envelops of the different scattering points do not cross each other. Thus, HRRP sequences
can be divided into corresponding segments according to the number of scattering points.
The HRRP sequences of each scattering point can be presented as

Si(tm) = A
′
i(tm)exp

{
−j

4πri(tm)

λ

}
+ n(tm). (15)

Then, the signal of the m-th pulse of the i-th scattering point in the slow-time dimen-
sion can be expressed as

Si(m) = A
′
i(m)exp

{
−j

4πri(m)

λ

}
+ n(m). (16)
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3.2. Micro-Curve Extraction

HRRP sequences can be used to distinguish different scattering points, but it is chal-
lenging to obtain the peak value for the envelop from numerous range-bins. As shown
in (16), the energy distribution of the scattering points is close to sinc functions, and the
peaks are sensitive to noise. Thus, it is required to determine the accurate scattering point
position in each HRRP. The EEMDCAN has good time-frequency characteristics, so it is
introduced to deal with the nonlinear and non-stationary signals. To reduce the interference
of the residual noise remaining in the IMF component, positive and negative noises are
added in the decomposition process of each layer of the EEMDCAN approach.

As shown in Figure 2, the proposed procedure is described in detail as follows.
Step 1: For each scattering point segment, select the peak as the estimated scattering

point. As a result, we can obtain a rough envelop, namely, s(m),

s(m) =
[
s1, s2, · · · , sm

]
. (17)

Step 2: Add the pairs of positive and negative white noises (−1)qa0nj(m) to the
sequence s(m), and the mixed signal s(m) + (−1)qa0nj(m) is achieved. Perform EMD
decomposition on the mixed signals, and stop the EMD decomposition immediately after
filtering out the first IMFs,

s(m) + (−1)qa0nj(m) = im f j
1(m) + l j

1(m), (18)

where q = 1, 2, j = 1, 2, · · · , M/2, M represents the number of the added positive and
negative white noises, and nj(m) denotes the jth white Gaussian noise. The ensemble mean
im f1(m) of all the im f j

1(m) can be calculated as

im f1(m) =
1
M

M

∑
j=1

im f j
1(m) = s(m)− 1

M

M

∑
j=1

l j
1(m). (19)

Step 3: Subtracting im f1(m) from s(m) and the achieved residual signal l1(m) is

l1(m) = s(m)− im f1(m). (20)

Define ak and Ek() as the standard deviation of the kth residual signal and IMF of
the signal by the EMD, respectively. Add the pairs of positive and negative adaptive
noises (−1)qa1E1

(
nj(m)

)
to the residual signal l1(m) and then obtain the new signal

l1(m) + (−1)qa1E1
(
nj(m)

)
. Decomposing the new signal by EMD will achieve the second

ensemble im f j
2(m) and the corresponding residual signal l2(m), we have

l1(m) + (−1)qa1E1

(
nj(m)

)
= im f j

2(m) + l j
2(m), (21)

l2(m) = l1(m)− im f2(m). (22)

Step 4: The pairs of positive and negative adaptive noises (−1)qakEk
(
nj(m)

)
are

added to the residual signal to achieve the new signal lk(m) + (−1)qakEk
(
nj(m)

)
, where ak

is usually chosen as 0.1 ∼ 0.2 times of the standard deviation of the new residual signal
lk(m) [28]. Then, the (k + 1)-th ensemble im fk+1(m) is

im fk+1(m) =
1
M

M

∑
j=1

im f j
k+1(m) = lk(m)− 1

M

M

∑
j=1

l j
k+1(m). (23)

Step 5: Repeat step 4 until all modal components are extracted. With all the ensemble
mean im fk(m), the final residual component L(m) is obtained as follows:
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L(m) = s(m)−
G

∑
k=1

im fk(m), (24)

where G is the total number of the ensemble mean of IMFs. We employ the modal am-
plitude and estimation function proposed by Rilling G. as the condition to terminate the
decomposition [28].

After EEMDCAN decomposition, s(m) is decomposed into a series of modal compo-
nents and residual components, merely IMF with ZCR greater than 10 is used to reconstruct
the envelop.

ŝ(m) =
[
ŝ1, ŝ2, · · · , ŝm

]
=

D

∑
k=1

im fk(m), (25)

where D represents the maximum order of IMF that meets the threshold, and the corre-
sponding ambiguous phase is

Φ̂(m) =
[
Φ(ŝ1), Φ(ŝ2), · · · , Φ(ŝm)

]
=
[
arctan Im(ŝ1)

Re(ŝ1)
, arctan Im(ŝ2)

Re(ŝ2)
, · · · , arctan Im(ŝm)

Re(ŝm)

]
.

(26)

Next, the least-squares method [32] is employed to find the real phase Φ̃(m). Then,
the micro-curve can be estimated by the PDR as

R(m) =
λ

4π
Φ̃(m). (27)

Dechirp processing

Wideband radar echo

Separation of point scatterer in 

the HRRP sequences

Spectral peak extraction roughly,  

i.e., s(m)

Decompose s(m) into a series of 

IMFs 

Reconstraction s(m) to extract 

pectral peak exactly, i.e., 

Ambiguous phase 

estimation

Phase hopping 

compensation

Phase unwrapping

Range calculation

Parameters estimation

Figure 2. Flowchart of the proposed method.
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3.3. Micro-Motion Parameter Estimation
3.3.1. Precession Frequency Estimation

According to the works in [1], for the precession target, the micro-curve of predicted
scattering points can be regarded as sinusoidal curves. The Fourier transform is performed
to obtain the spectrum of the micro-curve:

F = FFT{ŝ(m)}, (28)

and the precession frequency is the frequency corresponding to the peak point [33].

3.3.2. Precession Angle Estimation

As the amplitude of the micro-curve is coupled with the precession angle, the height,
and radius of the cone, the micro-curve is normalized to eliminate the influence of the
amplitude factor. After excluding the influence of the amplitude factor, the spectrum
amplitude of the micro-curve is only affected by the precession angle. If the estimated
precession frequency is regarded as a known parameter, the precession angle estimation
problem can be transformed into an optimization problem as

ϕ̂ = argmin
ϕ

{∣∣∣∣F− FFT ŝ(m)∣∣∣ŝ(m)
∣∣∣
∣∣∣∣}, (29)

where ϕ̂ denotes the precession angle, which is usually less than 15◦ to ensure the stability
of the target’s attitude.

3.3.3. Half-Cone Angle and Length of Busbar Estimation

As shown in Figure 1, the length of bus-bar S, half-cone angle, and the distance
between the top and the bottom of the cone can be expressed as S =

√
r2 + H2, σ =

arctan(r/H), and ξ = R1 − R3 = H cos γ(t)− r sin γ(t), and then

ξmax = S cos(α− ϕ + σ), (30)

ξmin = S cos(α + ϕ + σ), (31)

S =
ξmax − ξmin

2 cos(α + σ) cos ϕ
, (32)

ξ(t) =
ξmax − ξmin

2 cos(α + σ) cos ϕ
cos(γ(t) + σ), (33)

σ = arg min
σ

∥∥Γ(σ)
∥∥

1, (34)

Γ(σ) = R(σ)− R̃, (35)

R(σ) =
[
ξ(σ|t0), ξ(σ|t1), · · · , ξ(σ|tN)

]
, (36)

where (36) can be used to search the half cone angle, and R̃ is the distance difference
between two scattering points in the estimation micro-curve.

3.3.4. Cone Height and Base Radius Estimation

The cone height and the base radius can be obtained according to the properties of the
geometric parameters, {

H = S cos(σ),
r = S sin(σ).

(37)

4. Simulations and Discussion

This section shows the numeric simulations carried out to evaluate the proposed
method. The radar parameters and warhead parameters are shown in Table 1.
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Table 1. Simulation parameters.

Parameters Values

warhead

cone height H 0.96 m
distance between the mass center and the cone top h 0.64 m

base radius of cone r 0.25 m
spin frequency fs 4 Hz

conic rotation frequency fz 2 Hz
precession angle ϕ 10◦

radar

carrier Frequency fc 10 GHz
bandwidth B 2 GHz

pulse width tp 10 us
pulse repetition period pr f 1 kHz

dwell time T 1 s

4.1. Scattering Point Separation

Figure 3 shows the HRRP sequences with SNR equal to 15 dB and it can be seen that
the wideband radar can distinguish the scattering points. In addition, the cone target
occupies some range bins due to its volume. Note that it is also possible to divide HRRP
sequences into two parts: one contains the cone-top scattering point, and the other contains
the cone-bottom scattering point.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Time (s)

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

R
a
n
g
e
 (

m
)

 The cone-top  point  scatterer

 The cone-bottom  point  scatterer

Figure 3. HRRP sequences.

4.2. Micro-Curve Extraction

Micro-curve extraction is divided into two steps: one is envelop extraction, and the
other is phase unwrapping. Envelop extraction includes peak signal decomposition and
signal reconstruction. It can be observed from Figure 4 that the extracted peaks of the cone-
top and cone-bottom scattering point exhibit nonlinear and non-stationary characteristics.
We adopt the original EMD method and the EEMDCAN method to decompose the non-
stationary peak envelops, and obtain the results shown in Figure 5. We can see that
the first-order IMF contains the highest frequency energy, and there is no mode mixing
in the decomposition process. However, as the red arrows indicate, the obtained IMF
components by original EMD are obviously mixed with each other. With the obtained IMFs
by EEMDCAN, we reconstruct the peak envelops, which are presented in Figure 4a,b as
red dashed lines.
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Figure 4. Envelop extraction: (a) the cone-top scattering point and (b) the cone-bottom scatter-
ing point.
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Figure 5. Decomposition process: (a) the cone-top scattering point decomposition using EEMDCAN method, (b) the
cone-bottom scattering point decomposition using EEMDCAN method, (c) the cone-top scattering point decomposition
using original EMD method, and (d) the cone-bottom scattering point decomposition using original EMD method.
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Based on the reconstructed envelops, we calculate the phase distributions in Figure 6a,d.
When the range changing is greater than one range bin (i.e., c/2B) in the radial range
dimension, namely, across-range unit migration, phase increases by −π or +π and con-
sequently phase hopping occurs. Thus, phase compensation is required before the phase
unwrapping to guarantee the accuracy. We calculate the phase difference between two
adjacent HRRPs, and take the points where the difference is greater than 0.5 as phase
hopping, as depicted in Figure 6b,e. Then, additional compensation of π or −π is added
and a smooth sine-like curve will be achieved, as shown in Figure 6c,f. Besides, Figure 7
depicts that the micro-curve extraction using the EMD and EEMDCAN methods with
different SNR values. It can be observed that the micro-curves extraction using EEMD-
CAN method is much closer to the theoretical curve, compared to the one using the EMD
method. Especially, when the SNRs is low, say −10 dB, the EEMDCAN method obviously
outperforms the EMD method.
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Figure 6. Phase hopping phenomenon: (a) phase distributions of the cone-top scattering point; (b) the difference between
two adjacent pulse of panel (a); (c) phase after compensation of panel (a); (d) phase distributions of the cone-bottom
scattering point; (e) the difference between two adjacent pulse of panel (d); (f) phase after compensation of panel (d).
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Figure 7. Comparison of the estimated value with the theoretical value for phase ranging: (a) the cone-top scattering point
using EEMDCAN method; (b) the cone-bottom scattering point using EEMDCAN method; (c) the cone-top scattering point
using original EMD method; (d) the cone-bottom scattering point using original EMD method.

4.3. Parameters Estimation

With the extracted and unwrapped phase distribution curves via the EEMDCAN and
EMD methods, we compare the estimated warhead cone parameters in Table 2, where
100 times Monte Carlo simulations are carried out for each SNR value. The results also
validate that EEMDCAN outperforms EMD with higher accuracy.

We compare the proposed method with the modified Kalman filter (MKF) method
proposed in [4] with the same parameters listed in Table 1. The RMSE with different SNRs
are given in Figure 8, where the RMSE is obtained by

RMSE =

√√√√ 1
M

M

∑
m=1

(r(m)− ŝ(m))2, (38)

where r(m) and ŝ(m) denote the theoretical and estimated values of micro-curve, respec-
tively.

In the simulation, the MKF method is used to fit envelops and calculate the ambiguous
phases, and the least-square method is adopted to phase unwrapping. Finally, the PDR
method is used to obtain the micro-curves. Both the MKF and the proposed methods
achieved the sub-wavelength level accuracy.

It is shown in Figure 8 that the proposed method can achieve lower RMSE values,
especially when SNR is low. Note that in [4], when using the MKF method to fit the



Remote Sens. 2021, 13, 3545 13 of 15

envelop, it is assumed the Kalman filter is a constant velocity model, which may cause
fitting distortion.

Table 2. The error rate (%) comparison of the EEMDCAN with EMD methods under different
SNR conditions.

SNR (dB) Methods P θ σ s H r

30 EEMDCAN 0 0.88 0.85 1.69 1.34 0.79
EMD 0 2.63 3.46 2.67 2.36 2.80

25 EEMDCAN 0 0.90 0.86 1.69 1.75 0.84
EMD 0 2.65 3.38 2.80 2.80 3.15

20 EEMDCAN 0 0.89 0.83 1.67 1.72 0.83
EMD 0 2.64 3.71 3.74 3.18 3.23

15 EEMDCAN 0 0.90 0.88 0.17 1.74 0.81
EMD 0 5.90 5.32 3.91 4.04 3.68

10 EEMDCAN 0 0.91 0.79 1.64 1.34 0.84
EMD 0 7.50 5.98 3.09 4.31 3.76

5 EEMDCAN 0 1.15 3.78 0.10 0.16 3.12
EMD 0 8.23 5.87 5.45 6.45 4.84

0 EEMDCAN 0 1.41 5.40 2.55 2.94 1.54
EMD 0 10.65 12.34 9.91 9.41 11.34

−5 EEMDCAN 0 2.81 30.76 10.62 12.76 15.39
EMD 0 11.20 40.35 13.35 16.13 16.19

−10 EEMDCAN 0 2.21 33.56 8.01 10.29 21.15
EMD 0 11.34 42.46 23.28 21.11 24.32
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Figure 8. RMSE comparison of the proposed method with MKF method under different SNR
conditions: (a) the cone-top scattering point and (b) the cone-bottom scattering point.

5. Conclusions

In this paper, we proposed an improved PDR method to conquer the difficulties
in recognizing the true warheads using wideband radar with low SNRs. Specifically,
the proposed method can adaptively estimate the envelop according to the characteristics
of the signal. Even when the SNR is lower than −5 dB, this method can still estimate the
envelop with high accuracy at a sub-wavelength level. Numerical simulations validate the
anti-noise performance and robustness of the proposed method. The directions of future
research could be on the scenario where scattering points are not distinguishable.
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