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Abstract: Loblolly pine is an economically important timber species in the United States, with
almost 1 billion seedlings produced annually. The most significant disease affecting this species
is fusiform rust, caused by Cronartium quercuum f. sp. fusiforme. Testing for disease resistance in
the greenhouse involves artificial inoculation of seedlings followed by visual inspection for disease
incidence. An automated, high-throughput phenotyping method could improve both the efficiency
and accuracy of the disease screening process. This study investigates the use of hyperspectral
imaging for the detection of diseased seedlings. A nursery trial comprising families with known
in-field rust resistance data was conducted, and the seedlings were artificially inoculated with fungal
spores. Hyperspectral images in the visible and near-infrared region (400–1000 nm) were collected
six months after inoculation. The disease incidence was scored with traditional methods based on
the presence or absence of visible stem galls. The seedlings were segmented from the background
by thresholding normalized difference vegetation index (NDVI) images, and the delineation of
individual seedlings was achieved through object detection using the Faster RCNN model. Plant
parts were subsequently segmented using the DeepLabv3+ model. The trained DeepLabv3+ model
for semantic segmentation achieved a pixel accuracy of 0.76 and a mean Intersection over Union
(mIoU) of 0.62. Crown pixels were segmented using geometric features. Support vector machine
discrimination models were built for classifying the plants into diseased and non-diseased classes
based on spectral data, and balanced accuracy values were calculated for the comparison of model
performance. Averaged spectra from the whole plant (balanced accuracy = 61%), the crown (61%),
the top half of the stem (77%), and the bottom half of the stem (62%) were used. A classification
model built using the spectral data from the top half of the stem was found to be the most accurate,
and resulted in an area under the receiver operating characteristic curve (AUC) of 0.83.

Keywords: plant imaging; computer vision; forestry; disease discrimination; hyperspectral imaging;
plant phenotyping; machine learning

1. Introduction

Pinus taeda L., commonly known as loblolly pine, is the most important forest tree
species in the southern United States and is grown for timber, construction lumber, ply-
wood, and pulpwood. Tree breeding programs working on loblolly pine have focused on
selecting families based on phenotypic traits such as tree height, volume, stem straightness,
and disease resistance [1]. Fusiform rust, caused by the fungus Cronartium quercuum f. sp.
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fusiforme (Cqf), is a common and damaging disease affecting this species. The fungus typi-
cally infects the stem of a young tree, leading to the creation of tumor-like growths known
as “rust galls”. This can lead to the death of the tree or to the creation of a “rust bush”,
which hinders growth and makes the tree practically unusable for timber production. The
planting of disease-resistant seedlings is the most effective strategy to limit the damage
caused by this disease [2].

The assessment of fusiform rust disease resistance is performed either through field
testing and the evaluation of young trees [3,4] or through artificial inoculation of seedlings
in the controlled environment of a rust-screening facility [5]. The latter is beneficial in that
fungal spores are applied evenly throughout the test population, and disease incidence
can be evaluated within six to nine months post-inoculation. The seedlings are visually
evaluated for the presence or absence of rust galls (see Figure 2(left)). Rust disease resistance
at the family level is determined by the percentage of galled seedlings observed within
each family [6]. However, as described in [7] with respect to various plant species, visual
estimation of disease incidence and severity is highly subjective and prone to human errors,
in addition to being a labor-intensive process. Moreover, visual assessment can only be
conducted after a period of disease infection when symptoms have sufficiently developed.

An objective and rapid method using imaging technology for disease identification
would be beneficial for facilitating the disease screening of loblolly pine seedlings. Hy-
perspectral imaging, which acquires spatial and spectral information simultaneously, has
been successfully employed for the detection of plant disease and stress in multiple plant
species [8–11]. In these studies, early onset of disease and stress was detected in multiple
crops with varying degrees of success. Because of the presence of both spectral and spatial
information, hyperspectral imaging provides the opportunity to analyze spectroscopic
information at different spatial scales, varying from plant canopy to organs or tissues. This
would be beneficial for the assessment of fusiform rust resistance since the disease results
in localized symptoms, specifically affecting the stem and branches of young trees.

Based on the location of apparent symptoms, the spectral data from seedling stems
can be expected to contain information enabling the successful classification of plants into
diseased and non-diseased groups. On the other hand, disease pathogens can often have
complex effects on plant physiology and affect the optical properties of multiple plant
parts [12]. This is the reasoning behind the use of spectral data from the entire plant as well
as from multiple plant parts, not limited to the part with visual symptoms.

A more controlled approach in data acquisition for disease detection is to collect data
only from the plant part that displays disease symptoms. An example of this approach
can be found in [13], where the authors used hyperspectral imaging to detect Sclerotinia
sclerotiorum on four-month-old Brassica plants by analyzing data from stems stripped of
leaves and branches. Data acquired from a targeted method such as this can be expected
to increase the accuracy of disease detection models. The sample preparation process,
however, decreases imaging throughput and makes repeated image acquisition from the
same plants impossible.

The use of top-view hyperspectral images for the detection of fungal infection in
Pinus strobiformis was presented in [11]. Classification of infection level was based on
vigor ratings, and classification accuracy was found to be higher for the samples at the
extreme ends of the rating scale. Recently, Lu et al. [10] used hyperspectral imaging of
whole plants to assess the freeze tolerance of loblolly pine seedlings. Partitioning of the
seedling image into three longitudinal sections for model development led to improved
accuracies compared to the model developed using images of the full-length seedlings. In
this study, hyperspectral images of the whole seedlings were collected in situ, and image
processing methods were developed to extract spectral data from specific plant parts. To
further increase the throughput of the system, multiple seedlings were imaged at a time
such that a single hyperspectral image cube contained spectral information from five to
seven seedlings.



Remote Sens. 2021, 13, 3595 3 of 16

The selection of regions of interest (ROIs) is a vital step in hyperspectral image analysis
since acquired images often contain irrelevant pixels that need to be removed. A common
approach is to select one or more image channels that provide suitable contrast for ROI
segmentation. This selection can be based on domain knowledge or simple observation.
Thresholding or other image processing methods can subsequently be used to obtain seg-
mentation masks. In the case of plant images, vegetation indices such as the normalized
difference vegetation index (NDVI) derived from two images at the red and near-infrared
wavelength bands are commonly used for the segmentation of vegetation pixels [14,15].
While the thresholding of such spectral ratios can be useful for the segmentation of vegeta-
tion pixels from the background, the subsequent discrimination of the segmented plant
pixels into different classes based on plant parts is a more challenging task. Methods
such as the use of an empirically determined wavelength channel [16], machine learning
models based on pixel-wise spectral data [17], and deep learning models [18] have been
investigated for this purpose.

In this study, we first applied a threshold to NDVI images for the segmentation of
vegetation pixels. Subsequently, deep learning models based on Convolutional Neural
Networks (CNNs) were trained and utilized for the semantic segmentation of different
plant parts. We extracted Red–Green–Blue (RGB) images from the hyperspectral image
cube and trained a semantic segmentation model to discriminate the stem and foliage of
the loblolly pine seedlings. In addition, a deep learning-based object detection model was
used for the delineation of individual plants from images containing a row of seedlings.
After the extraction of spectral data from plant segments, support vector machine (SVM)
classification models were trained for the classification of diseased and non-diseased plants.

This paper presents an innovative method of using hyperspectral imaging technology
for the screening of loblolly pine seedlings for fusiform rust disease incidence by using
deep learning methods for plant delineation and plant part segmentation. The methods
and results presented here are based on the hyperspectral data collected six months after
fungal spore inoculation, which corresponds to the typical time for visual assessment of
symptoms [19]. The specific objectives of the current study are as follows:

1. Development of a hyperspectral image processing pipeline for the extraction of spec-
tral data from specific ROIs in images of loblolly pine seedlings;

2. Evaluation of SVM classification models for the discrimination of diseased and non-
diseased seedlings based on the spectral data from specific ROIs from (1).

Preliminary results leading to this article were previously presented at the 2020 Annual
International Meeting of the American Society of Biological and Agricultural Engineers [20].

2. Materials and Methods
2.1. Plant Materials

The loblolly pine seedlings evaluated in this study were provided by the North
Carolina State University Cooperative Tree Improvement Program. The seedling popula-
tion included a total of 87 seedlots, comprising 84 half-sibling families pollinated with a
common pollen mix composed of pollen from 20 unrelated selections, one checklot that
consisted of bulked seed from 10 females that were mated with the pollen mix previously
described, and two checklots each comprising a single open pollinated family.

Seedlings were sown in May of 2019 at the North Carolina State University, Horticul-
ture Field Laboratory in Raleigh, North Carolina, into Ray Leach Super Cell Cone-tainers
(Stuewe and Sons, Inc., Tangent, OR, USA). Two months after sowing, seedlings were
organized into replicates. There were 60 replicates, of which 30 replicates were used in this
analysis, each with 84 seedlings comprising one seedling per seedlot (incomplete block
design). A resolvable row–column incomplete block design was used to maximize the
joint occurrence of family in every row and column position across replicates using the
CycDesigN software [21]. Seedlings were subsequently spaced out such that every other
cell was occupied (half-tray capacity, equivalent to 49 cells), to increase growing space per
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seedling and root collar diameter. After spacing, each replicate consisted of two trays, and
the row within tray and column within replicate corresponded to the incomplete blocks.

In August 2019, the seedlings were artificially inoculated at the USDA Forest Service
Resistance Screening Center (RSC) in Asheville, North Carolina. A broad-based inoculum
was used, representing the coastal deployment range of loblolly pine. Inocula were sprayed
at a density of 50,000 spores per milliliter using a controlled basidiospores inoculation
system, placed in a humidity chamber set for optimal growth with temperatures ideal for
fungal infection, then moved to the RSC greenhouses. Three weeks later, the seedlings
were transported back to the Horticulture Field Laboratory in Raleigh, NC, USA.

2.2. Hyperspectral Image Acquisition

Hyperspectral scans were collected one week prior to inoculation (mid-August, 2019)
and at approximate monthly intervals after inoculation (September 2019 to February 2020).
The results presented in this article are based on the hyperspectral images collected in
February 2020 from 2521 seedlings included in this experiment. The timing of the data
corresponds to approximately six months after inoculation, which is the typical timing for
visual assessment in conventional phenotyping.

A line scanning hyperspectral imager (Pika XC2, Resonon Inc., Bozeman, MT, USA) was
used for the collection of hyperspectral data in the range of 400 to 1000 nm with a spectral
resolution of 1.3 nm. The hyperspectral image cubes had the dimensions 1600 × n × 462,
where n is the number of line scans used in creating one data cube and 1600 is the number
of pixels for each line. The speed of the conveyor stage and the frame rate of the imager
were calibrated to ensure an appropriate aspect ratio in the images created. The imager
was kept stationary, and a tray loaded with a single row of seedlings was moved across
the field of view of the imager using a custom-made conveyor system operated with an
electric motor.

The conveyor system was controlled using an Arduino microcontroller that was
programmed for forward and reverse motion. The imager was triggered using the bundled
software “Spectronon” provided by the manufacturer. A seedling tray was loaded with
five to seven seedlings at a time for a side-view scan before being placed on the conveyor
board. Halogen lamps were symmetrically placed for additional lighting and a gray cloth
was used as a backdrop to facilitate segmentation of plant pixels. A calibration target
(SRT-20-020, Labsphere, Inc., North Sutton, NH, USA) with nominal reflectance of 20% was
scanned along with the pine seedlings for the standardization of spectral data. A render of
the imaging setup is shown in Figure 1.

2.3. Visual Assessment

Post-inoculation visual scores were used as ground truth data for the classification
models and were collected at 6, 26, and 48 weeks post-inoculation. The analysis in this
paper is based on the visual assessment conducted at 26 weeks post-inoculation. Based
on the presence or absence of rust galls or lesions, seedlings were scored as “diseased”,
“questionable”, and “non-diseased”. The seedlings ranked as diseased and non-diseased
were the only ones used for the analysis presented in this paper.

Less than 1% of the seedlings (51) were observed to show the early development of
rust galls that were not the result of the artificial inoculation but were likely caused by
ambient fungal spores given the timing of gall development. The ambient infection was
expected since the seedlings were not treated with any fungicides. These galls appeared
at the base of the seedlings, whereas the galls caused by the artificial inoculation were
observed at the approximate height of the plant-tops at the time of inoculation such that
these were always situated on the top half of the stem. This is an expected observation
since the succulent tissue amenable to infection by basidiospores is present near the apical
meristem at the point of inoculation. The plants with galls at the base of the stem can thus
be assumed to have been infected at a date earlier than the date of artificial inoculation,
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and these plants were also excluded from the discrimination analysis presented in this
paper. A histogram of the distribution of seedling scores is shown in Figure 2.

Figure 1. Imaging setup for hyperspectral image acquisition of loblolly pine seedlings. A line scanning hyperspectral
imager was used with a motorized conveyor. Supplemental lighting with halogen lamps and a plain backdrop are shown.

Figure 2. Left: Stem of an infected seedling at 3 months (22 November 2019) and 6 months (24 February 2020) after
inoculation. The rust gall is clearly visible in the image taken at 6 months to the right. Right: Distribution of the visual
scores based on the presence or absence of rust galls on the stem. The results are based on scoring conducted at six months
after inoculation. N: non-diseased; SG: rust gall on the stem; BG: gall at the base of the plant; Q: questionable.
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2.4. Image Processing
2.4.1. Background Removal

Segmentation of plant pixels was carried out by thresholding a normalized difference
vegetation index (NDVI) image derived using the two image channels at 705 nm and
750 nm corresponding to the red edge and the near-infrared regions, respectively. This
ratio is also referred to as ND705 in the literature; the mathematical relationship used for
the calculation is shown in Equation (1) [22,23].

NDVI = I750−I705
I750+I705

(1)

where,

I750 = Intensity of the pixel at 750 nm;
I705 = Intensity of the pixel at 705 nm.

The plant pixels in the NDVI image were segmented from the background by applying
an empirically derived, fixed threshold of 0.1. The initial segmentation was refined by
removing noise pixels through area opening, where any connected component with fewer
than 1000 pixels was filtered out.

2.4.2. Plant Delineation

The separation of image regions corresponding to individual pine seedlings was
necessary for the extraction of spectral data associated with each plant. The separation of
seedlings was challenging to achieve because of the variation in heights and orientations
combined with the slight overlap between the needles from adjacent plants. A reliable
method for estimating the number and location of plants in an image was found to be the
presence of the Cone-tainers in which the plants were grown. The consistent shape and
size of the Cone-tainers made them suitable features for localizing the plant position using
computer vision techniques.

For this purpose, RGB images extracted from the hyperspectral image cube were used
to train an object detection and localization model. The wavelength bands used for the
red, green, and blue bands were, respectively, 640 nm, 550 nm, and 460 nm. For object
detection, the Faster RCNN architecture [24] was selected since it is a general-purpose
object detection framework that is computationally efficient and has been shown to perform
well in a variety of computer vision tasks. This framework consists of a Fully Convolutional
Network (FCN) based on the Region Proposal Network (RPN) that predicts probable image
regions containing the object of interest. A pretrained deep CNN is used as the feature
extractor before the RPN is deployed in the object detection pipeline. The output of the
RPN, which is a set of image regions with an “objectness” score for each region, is used
for the extraction of feature vectors that are ultimately used for classification by a fully
connected layer. The final output of this model consists of the coordinates of bounding
boxes and the probability of an object being contained in each bounding box.

In this study, an implementation of Faster RCNN that is available within the Tensor-
flow Object Detection API [25,26] with inception v2.0 [27] as the base feature extractor was
used for training. A model pretrained with the COCO dataset [28] was selected in order to
take advantage of transfer learning. This model was initially fine-tuned for the detection of
pine seedling containers using 25 images with 155 annotated instances of the Cone-tainers
in the images. The training was conducted by resizing the images to 50% of their size with
a learning rate of 0.0002, and training was stopped after 40,000 steps. This trained model
was then used to detect the Cone-tainers in 100 additional images, the detected bounding
boxes were manually corrected when necessary, and these 100 images were once again
used as training data for training a new model. In this case, the training was stopped after
50,000 steps.

The bounding boxes predicted by the object detection model recognizing the Cone-
tainers provided a location for the base of the seedlings, but the seedlings were not always
vertically oriented. To ensure a better segmentation of the region occupied by each seedling,
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the orientation angle of the main stem was estimated by fitting a straight line through the
segmented plant pixels after the rudimentary removal of the needles. The color vegetation
index [16,29] shown in Equation (2) was calculated and a threshold of 1.9 was used for
each pixel.

CI =
2 ∗ G
R + B

(2)

where CI is the color vegetation index; R, G, and B are the intensities of the red, green, and
blue channels, respectively.

2.4.3. Crown Segmentation

The topmost part of the foliage was segmented out on the basis of the horizontal
spread of pixels. Specifically, a horizontal projection or the row-wise sum of non-zero
pixels was obtained for the delineated trapezoidal region containing each seedling. The
top third section of the segmented plant was taken and the boundary of the crown pixels
was determined by finding the most prominent peak in the horizontal projection values.
The peak location was determined using the find_peaks function provided by the Python
library SciPy [30]. The image processing pipeline is shown in Figure 3.

Figure 3. Image processing steps starting with the hyperspectral image cube (A) leading to masks for individual seedlings
with segmented crown and stem pixels (I). In process 1, red-edge NDVI image is thresholded to obtain a binary mask (B).
Segmented plant pixels are obtained after area opening (C) and a peak-finding algorithm is used to determine the boundary
for the crown pixels (F). In process 2, the reflectance standard is segmented out for radiometric calibration (E). In process 3,
RGB images (D) extracted from the hyperspectral cubes are used to train a Faster RCNN model used for plant delineation
(G,H) and a DeepLabV3+ model used for stem segmentation (I).
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2.4.4. Stem Segmentation

Stem segmentation was carried out by using the DeepLabv3+, which is an iteration of
the DeepLab CNN model for semantic segmentation [31]. DeepLabv3+ uses an encoder–
decoder architecture, where the encoder module consists of the Xception model [32] as
the feature extractor. The DeepLab family of segmentation models makes use of atrous
or dilated convolution, which uses convolution kernels with gaps between values. This
leads to a larger field of view for a kernel without adding to the computational cost
that would result from additional parameters in the case of the standard convolution
operation. DeepLabv3+ specifically uses Atrous Spatial Pyramid Pooling (ASPP) to encode
the features at different spatial scales while using a decoder module for precise delineation
of boundaries. The encoder creates a feature map that is a fraction of the size of the
input image, and the decoder comes into play for the restoration of the feature map to the
original size of the image. The decoder module of the DeepLabv3+ model uses bilinear
interpolation for the upsampling combined with convolution operations. The reader is
referred to [31] for details on the model architecture; the default model available from the
Tensorflow model repository [33] was used with the custom training dataset in this study.

To prepare the training data, a rudimentary stem segmentation was conducted by the
thresholding process described in Section 2.4.2. The result of this segmentation was manu-
ally corrected using the Image Labeler app included with the Computer Vision Toolbox in
Matlab 2019a (Mathworks, Inc., Natick, MA, USA). This approach led to a reduction in the
labeling effort since the rudimentary label map was created by the algorithmic approach,
and the manual work was limited to the correction of this label map.

The accuracy of the stem segmentation by DeepLabv3+ was assessed using pixel accuracy
and mean Intersection over Union (mIoU). Pixel accuracy can be defined as the ratio of the
number of correctly classified pixels to the total number of pixels. mIoU is a widely used
metric for the evaluation of semantic segmentation models, and it is more robust compared to
pixel accuracy in the case of imbalanced class sizes [34]. The mIOU was calculated by taking
the average of the Intersection over Union (IoU) values across different classes. The equations
used for the calculation of these metrics are shown in Equations (3) and (4).

Pixel accuracy =
TP + TN

TP + FP + TN + FN
(3)

IoU =
TP

TP + FP + FN
(4)

where,

TP = True positive rate;
TN = True negative rate;
FP = False positive rate;
FN = False negative rate.

2.4.5. Segmentation of the Reflectance Standard

An empirical method for the segmentation of the calibration panel was determined
based on the spectral properties of the material used to enclose the standard material.
The plastic casing was found to be consistently segmented out when using the NDVI
thresholding described for the segmentation of the plant pixels in Section 2.4.1. As a result,
a group of pixels resembling a square shape was segmented out when thresholding for
the plant pixels. This information was used to segment out the pixels of the reflectance
standard. Since the same NDVI image could be used for plant segmentation as well as
for the segmentation of the calibration panel, this led to a reduction in computation and
an increase in the throughput of the segmentation process. The steps involved in the
segmentation of the calibration panel can be seen in Figure 3. Other approaches could be
used for the segmentation of the reflectance standard—for example, by using the spectral
properties of the Spectralon material available from the manufacturer’s calibration. The
approach used in this study was adopted solely for convenience and speed of processing.
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2.5. Spectral Pre-Processing

The spectra from the pixels in each segmented ROI were averaged to obtain a mean
spectrum of raw intensity values. The mean spectrum of the Spectralon reflectance standard
(SRT-20-020, Labsphere Inc., North Sutton, NH, USA) was first used for the radiometric
correction of raw spectra from the ROIs. The calibration data comprised the reflectance
values from 250 nm to 2500 nm for the reflectance standard. The values between 400 nm
and 1000 nm relevant for this study were retrieved and linear interpolation was used
to obtain reflectance values for each wavelength band in the hyperspectral data of the
seedlings. The relationship used for this calculation is shown in Equation (5).

RROI =
IROI

IS
× RFC (5)

where,

RROI = Reflectance spectrum for the plant region of interest (ROI);
IROI = Mean raw intensity (i.e., digital number) values for the plant ROI;
Is = Mean raw intensity values for the Spectralon standard;
RFC = Reflectance values for the Spectralon standard provided by the manufacturer.

Since the extracted dataset included noisy spectra, the Local Outlier Factor [35] with a
neighbor size of 10 was used for the removal of outliers. Next, a Savitzky–Golay filter with
a window size of 11 and polynomial order 3 was used for spectral smoothing. The window
size and polynomial order were selected for efficient smoothing as well as for higher
accuracy of the downstream classification models. The dimension of the spectral data was
conserved by fitting the polynomial of order 3 to the last window to calculate values for
the padded signal. The savgol_filter function provided by the Python library SciPy [30]
was used for the implementation. Figure 4 shows the processed spectra for the whole
plant, with the diseased and non-diseased seedlings differentiated in the figure. The curves
represent 1708 non-diseased plants and 653 diseased plants based on the visual scoring.

Figure 4. Processed spectra when the whole plant is considered the ROI. The diseased and non-diseased seedlings according
to the visual scoring are differentiated. The differences between the diseased and non-diseased groups are not apparent in
the plot but machine learning models can learn subtle features, enabling binary discrimination.

2.6. Classification Models

After the processed spectra from each region of interest have been extracted, the
discriminant analysis with the extracted spectral data is reduced to the problem of mul-
tivariate classification. However, the dataset being imbalanced across the diseased and
non-diseased groups (see Figure 2) made it unsuitable for the direct implementation of a
general classification algorithm that does not consider class imbalance. Several techniques
are available for conducting discrimination analysis with imbalanced datasets, including
the use of cost-sensitive learning techniques, and oversampling of the minority class or
undersampling of the majority class [36,37]. A widely used method of oversampling cou-
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pled with the synthetic generation of data for the minority class is the Synthetic Minority
Oversampling Technique (SMOTE) proposed in [38]. SMOTE was implemented for our
dataset using the imbalanced-learn library in Python [39].

As part of the investigation into discrimination using the extracted spectral data,
support vector machine (SVM) models with a linear kernel were used to classify seedlings
into diseased and non-diseased groups. A linear kernel was the preferred choice because
of the large number of features, as recommended in [40]. A grid search with 10-fold cross-
validation was used to find the optimum value of the regularization parameter C, where
the vector used for the search space was [0.1, 1, 10, 100, 200, 300, 400, 500, 600, 700, 800,
900, 1000, 10000]. The values for the search were used based on preliminary test runs with
the training set. The flowchart in Figure 5 shows the steps followed in the SVM modeling
combined with SMOTE oversampling for the classification of diseased and non-diseased
groups. The data were first randomly split into a training set (80%) and test set (20%), the
training was conducted with 10-fold cross-validation incorporating SMOTE oversampling,
and, finally, the selected model was applied to the test set for prediction.

Figure 5. Flowchart showing the steps involved in creating classification model from spectral data. SMOTE stands for
Synthetic Minority Oversampling Technique [38].

Balanced accuracy values were calculated as evaluation metrics for the discrimination
models. Balanced accuracy is defined as the average of the proportion of correctly classified
samples across all classes. In this study, the balanced accuracy of a prediction model
provides the average of the accuracy in classification for the diseased and the non-diseased
groups. Due to the unbalanced number of samples across the two classes, this is a more
robust and reliable measure of accuracy compared to the simple proportion of correctly
classified samples. It is also a commonly used metric for the evaluation of plant disease
detection models [41,42]. Ten values of balanced accuracy were calculated (with 10-fold
cross-validation in each run) for each ROI and a one-way analysis of variance (ANOVA)
followed by Tukey’s honestly significant difference (HSD) tests at 5% significance level
(p = 0.05) were conducted to evaluate whether a statistically significant difference existed
among the evaluation metrics for the different ROIs.

Balanced accuracy =
TP + TN

2
(6)

where,

TP = True positive rate;
TN = True negative rate.
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A commonly used evaluation tool for diagnostic tests is the receiver operating charac-
teristic (ROC) curve [43,44]. The ROC curve is the graph of the true positive rate against
the false positive rate. The upper left corner of this plot, representing a 100% true positive
rate and a 0% false positive rate, is thus the plot for an ideal classifier. The line inclined
at 45º to the positive X-axis, on the other hand, represents a classifier without any power
of discrimination. An ROC plot was created, and the area under the curve (AUC) was
observed for the optimum ROI selected from the comparison of balanced accuracies. AUC
values from the ROC curve are often used as metrics for the evaluation and comparison of
binary classifiers [45]. An AUC of 0.5 represents a model equivalent to a random guess,
whereas a higher value of AUC represents greater discrimination ability. The use of ROC
analysis enables the selection of an appropriate threshold with a desired tradeoff between
the true positive rate and true negative rate of a diagnostic test, also referred to as the sensi-
tivity and specificity, respectively. ROC analysis can be especially useful for experiments
in plant phenotyping since these experiments are often aimed at finding the best- or the
worst-performing samples in the population, and the threshold for discrimination can be
adjusted accordingly for the optimum sensitivity or specificity. AUC values have been
often used as a metric for the evaluation of plant disease detection algorithms, especially in
the case of imbalanced datasets [46,47].

3. Results
3.1. Stem Segmentation

Table 1 shows the pixel accuracy and mIoU values for the segmentation of stem
and foliage pixels. mIoU values of 0.69 and 0.62 (with the inclusion and exclusion of
background pixels, respectively) indicate a model with acceptable accuracy. Samples of
labeled test images paired with the test results are shown in Figure 6.

Figure 6. The stem pixels (red) and non-stem pixels (green) for a random group of images from the test set. For each plant,
the left image shows the ground truth label and the right image shows the prediction obtained from the DeepLabv3+ model.

Table 1. Pixel accuracy and mean Intersection over Union (mIoU) values for the segmentation of
stem and foliage pixels using DeepLabv3+.

Background Pixels Included Background Pixels Excluded

Pixel Accuracy 0.83 0.76
mIoU 0.69 0.62
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3.2. Classification

The optimum values for the cost parameters found by using the grid search method
are shown in Table 2. The corresponding values for balanced accuracy and AUC under
the ROC curve are also presented. The balanced accuracy values for the training were
derived by averaging the balanced accuracies obtained for each iteration of the 10-fold
cross-validation process. The data derived from the stem pixels consistently resulted in
higher accuracy of classification of the test set.

Table 2. Results for the classification models for different ROIs. C is the regularization parameter
of the SVM models. Accuracies for the training and test sets are balanced accuracies, where the
balanced accuracy for training is the average of accuracies obtained from 10-fold cross-validation.
AUC is the area under the ROC curve.

ROI C Accuracy (Train) Accuracy (Test) AUC

Top half of stem 1000 0.76 0.77 0.83
Whole stem 300 0.72 0.71 0.77
Bottom half of stem 400 0.64 0.62 0.66
Crown 1000 0.58 0.61 0.64
Whole plant 500 0.64 0.61 0.67

A pairwise multiple comparison test was carried out to determine if the accuracies
across the ROIs were significantly different. Results from ten-fold cross-validation were
obtained ten times each for the regions of interest and a Tukey’s HSD test was carried
out after significant differences were indicated by one-way ANOVA (F(4,46) = 3137.46,
p = < 0.0001). Significant differences were observed for the results between every pair.

The boxplots of balanced accuracy values are presented in Figure 7. A distinct and
consistent trend is observed when comparing the accuracies across the different ROIs,
where the data from the stem pixels result in the most accurate models, and the best model
is created using the data from the top half of the stem.

Figure 7. Left: Boxplots showing the balanced accuracies obtained with SVM discrimination models for data extracted from
different ROIs. ST: Top half of the stem; S: Whole stem; SB: Bottom half of the stem; WP: Whole plant; C: Crown. Right:
Receiver operating characteristic (ROC) curve for the SVM classification model using spectral data from the top half of the
stem compared against models with perfect and non-existent discrimination power.
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Based on the values of the balanced accuracy, the model using the top half of the stem
pixels was selected for further analysis. The ROC curve for the model based on this ROI is
also presented in Figure 7.

4. Discussion

In this article, we present a deep learning-based approach for the segmentation of
specific regions of interest in Vis–NIR images of loblolly pine seedlings followed by a
study in disease discrimination using hyperspectral data extracted from these ROIs. The
segmentation of ROIs based on the features extracted from one or more image channels or
their combinations is a common technique that has been used in studies using hyperspectral
imaging. In addition to the use of traditional techniques of segmentation, such as the red-
edge NDVI, the use of the visible section of Vis–NIR images to leverage the power of
pretrained deep learning models was found to be a promising approach for the extraction
of complex ROIs.

Experiments in plant phenotyping of large populations using hyperspectral imaging
have a trade-off between the throughput of data acquisition and the complexity of data
processing. The collection of data from well-prepared samples in a controlled environment
is ideal for analysis but suffers from low throughput of acquisition. The current study only
moderately controlled the data acquisition in a greenhouse environment for the sake of
increasing throughput. Images were acquired under ambient lighting with supplemental
halogen lamps when necessary, and multiple plants were imaged together in greenhouse
trays. As a result, the subsequent processing of the images required multiple steps for the
processing and extraction of relevant information. Since a data processing pipeline, once
developed, can be repeatedly used for subsequent datasets, we consider a more involved
data processing pipeline preferable to the low-throughput acquisition of data.

Morphological symptoms of fusiform rust are visible in the form of galls and lesions
on the stem, which makes the detection of symptoms in the images non-trivial. The logical
choice of ROI for the acquisition of spectral data was the stem; however, we conducted the
study using multiple regions of interest for two reasons:

1. Successful discrimination using the spectral data from the whole plant would increase
the efficiency of the data acquisition while also decreasing the effort required in
subsequent image processing;

2. Spectral signatures in the NIR region could lead to successful discrimination using
spectral data from non-stem pixels irrespective of the location of visible symptoms.

The comparison of discrimination models using data from multiple ROIs indicated
that the top half of the stem is the optimum ROI, thus establishing that the region of the
visible symptoms should indeed be the ROI of choice. With this conclusion, the image
processing pipeline developed for the segmentation of stem pixels will be useful for future
experiments and analysis.

When using deep learning models, the labeling of a large number of images can
require significant time and effort, especially in the case of pixel-wise labeling for semantic
segmentation models. A semi-supervised labeling method was used in this study, where
an imperfect but quick segmentation was achieved using a color index to remove most
of the non-stem pixels. The “correction” of this imperfect stem segmentation was less
labor-intensive compared to the manual labeling of the images.

The discrimination model using the spectral data from the top half of the stem achieved
a balanced accuracy rate of 77% and an AUC of 0.83 from the ROC curve. While these
values indicate the presence of promising discriminatory power, it is noted that better
accuracies are possible and desirable.

One of the conclusions that can be derived from this study is that a more controlled
environment for data acquisition, with the targeted imaging of the top half of the stem,
would increase the potential for creating more accurate models. A study using the con-
trolled acquisition of hyperspectral images from the infected stem, similar to [13], would
be informative for the establishment of a best-case scenario. Since the signals associated
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with the disease interact with biotic and abiotic factors, the accuracy and reliability of
the detection method can be expected to increase with an increase in the level of control
associated with data acquisition.

The use of automated phenotyping platforms with the capability of longitudinal data
acquisition in a controlled environment is a promising tool for disease discrimination. As
noted by [48], these platforms enable the acquisition of multi-dimensional traits, including
changes in physiology and morphology. While the need for visual screening persists for
accuracy and reliability [49], the importance of sensor-based discrimination approaches
can be expected to increase in the future. In addition to the improvements possible via data
acquisition methods, the selection of specific wavelength values with sufficient information
for disease detection is another possible avenue of research [42,50]. The reduction of high-
dimensional hyperspectral data to spectral indices or spectral signatures derived from a
few wavelengths decreases the complexity of data analysis and can also enable the use of
less expensive multispectral cameras for data acquisition.

This study represents an initial proof-of-concept for high-throughput fusiform rust
disease screening in loblolly pine. Hyperspectral imaging promises several advantages over
human-based visual evaluation in terms of its objectivity and amenability to automation,
and it can potentially be integrated into a tree improvement selection strategy. In this study,
an encouraging level of discriminatory power was achieved using the spectral data from
the top half of the stem. The balanced accuracy rate of 77% and an AUC of 0.83 from the
ROC curve could be further improved by increasing the level of control in data acquisition
and by investigating a wider range of wavelength values. Following further optimization
of the scanning environment, there will be the opportunity to evaluate the rate and severity
of disease expression caused by the artificial inoculation of seedlings. Family differences
could be assessed not solely based on the presence or absence of rust galls but also the rate
and severity of gall development. Additionally, hyperspectral data can enable the early
detection of disease before the visual symptoms become apparent; this would reduce the
time and expense associated with the conventional screening process.

5. Conclusions

We report the use of hyperspectral imaging technology for the detection of fusiform
rust disease incidence in loblolly pine seedlings. The study was a novel approach at
disease screening, which is normally carried out via visual inspection of symptoms in the
greenhouse. We present a workflow incorporating traditional image processing techniques
and deep learning methods for the segmentation of plant parts, followed by a support
vector machine model for binary classification into diseased and non-diseased samples.
We find that this technique is a viable and more efficient technique for the detection
of disease incidence. With further work in image acquisition and processing methods,
possibly with the use of automated phenotyping platforms, high-throughput phenotyping
of loblolly pine seedlings will become an integral part of the methods currently used in
resistance-screening centers.
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