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Damaševičius, Weipeng Jing, Wei Wei,
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Abstract: As one of the main sources of remote sensing big data, synthetic aperture radar (SAR) can
provide all-day and all-weather Earth image acquisition. However, speckle noise in SAR images
brings a notable limitation for its big data applications, including image analysis and interpretation.
Deep learning has been demonstrated as an advanced method and technology for SAR image
despeckling. Most existing deep-learning-based methods adopt supervised learning and use synthetic
speckled images to train the despeckling networks. This is because they need clean images as the
references, and it is hard to obtain purely clean SAR images in real-world conditions. However,
significant differences between synthetic speckled and real SAR images cause the domain gap
problem. In other words, they cannot show superior performance for despeckling real SAR images
as they do for synthetic speckled images. Inspired by recent studies on self-supervised denoising,
we propose an advanced SAR image despeckling method by virtue of Bernoulli-sampling-based
self-supervised deep learning, called SSD-SAR-BS. By only using real speckled SAR images, Bernoulli-
sampled speckled image pairs (input–target) were obtained as the training data. Then, a multiscale
despeckling network was trained on these image pairs. In addition, a dropout-based ensemble was
introduced to boost the network performance. Extensive experimental results demonstrated that our
proposed method outperforms the state-of-the-art for speckle noise suppression on both synthetic
speckled and real SAR datasets (i.e., Sentinel-1 and TerraSAR-X).

Keywords: remote sensing; big data interpretation; synthetic aperture radar (SAR); speckle noise;
self-supervised learning; Bernoulli sampling

1. Introduction

Remote sensing big data have pushed the research of Earth science considerably and
produced a significant amount of Earth observation data. As one of the main sources
of remote sensing big data, synthetic aperture radar (SAR) can provide the capability of
acquiring all-day and all-weather Earth ground images. Hence, it has played a crucial
role in remote sensing big data applications, including wetland monitoring [1,2], forest
assessment [3,4], snowmelt monitoring [5], flood inundation mapping [6], and ship classifi-
cation and detection [7–10]. However, it is not easy to extract analysis results from SAR
observation big data. SAR images are essentially corrupted by the speckle noise caused
by the constructive or destructive interference of back-scattered microwave signals [11].
The existence of speckle noise leads to the degradation of image quality and makes it chal-
lenging to interpret SAR images visually and automatically. Hence, suppressing speckle
noise (i.e., despeckling) is an indispensable task in SAR image preprocessing.

To mitigate the speckle noise in SAR images, a large number of traditional methods
have been proposed, including filter-based (e.g., Lee [12] and Frost [13]), variational-
based (e.g., the AA model [14] and the SO model [15]), and nonlocal-based (e.g., the
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probabilistic patch-based algorithm (PPB) [16] and the SAR block-matching 3D algorithm
(SAR-BM3D) [17]). Most of these methods face several significant problems: (1) they
usually require a proper selection of the parameter settings, which largely depends on
subjective experience; (2) to a certain extent, their performance is scene-dependent. In other
words, speckle noise is smoothly removed in homogeneous regions (e.g., agricultural
fields), and detailed information (e.g., edges and textures) is lost in heterogeneous regions
(e.g., strong scatterers); (3) there are sometimes artefacts in flat areas, such as the ringing
near edges and isolated patterns [18]. The detailed analysis of these traditional methods
can be found in a review [18].

With the fast advancement of deep learning technology, convolutional neural net-
works (CNNs) have demonstrated superior computer vision performance, such as image
reconstruction [19], semantic segmentation [20], super-resolution [21], object detection [22],
and image classification [23] and identification [24]. Benefiting from its powerful feature
extraction capability, the CNN has also been employed to achieve image denoising [25].
Generally, CNN-based image denoising methods adopt supervised learning, where a large
amount of “Noisy2Clean” image pairs (i.e., noisy inputs and the corresponding clean
targets) are needed. Moreover, by minimizing a distance metric between noisy inputs and
clean targets, CNN models are trained and updated to output denoised images. How-
ever, considering applying supervised-learning-based denoising methods to SAR image
despeckling, a key problem arises: it is hard to acquire clean SAR images in real-world
conditions. Thus, there will not be sufficient clean SAR images that can be used as targets to
train the despeckling network. In the literature, there are mainly two strategies to address
this problem: using multitemporal SAR data [26,27] and synthetic speckled data [28–34],
which are introduced as follows:

(1) Multitemporal SAR data: Chierchia et al. [26] trained a 17-layer SAR despeckling
CNN (SAR-CNN) using multitemporal data from the same scene, where approximate
clean targets were obtained from multitemporal (multilook) SAR images. Similarly, Coz-
zolino et al. [27] picked out some region images without significant temporal changes
(25 dates). Speckled inputs were the first image of each object, and clean targets were
obtained from the next series of 25 images. However, due to the changes in different time
sequences and the scene registration, it was not entirely reliable to treat the multilook
images as the clean targets, leading to a suboptimal rejection of speckle noise;

(2) Synthetic speckled data: A more common strategy of deep-learning-based SAR
image despeckling methods is to construct synthetic speckled data for training. These meth-
ods all adopt supervised learning by using “Speckled2Clean” image pairs. In other words,
speckle-free single-channel grey optical images (e.g., UC Merced land-use dataset [35]) are
employed as clean targets, and speckled inputs are generated by adding speckle noise to
the corresponding single-channel grey optical images.

Specifically, image despeckling CNN (ID-CNN) [28] employs eight convolutional
layers along with the rectified linear unit (ReLU) activation function and the batch nor-
malization layers. In addition, a division residual layer with the skip connection is used
to output despeckled images, where the speckled inputs are divided by the estimated
speckle noise. The SAR dilated residual network (SAR-DRN) [29] implements a seven-
layer lightweight network with dilated convolutions, enlarging the receptive field while
keeping the filter size. Unlike ID-CNN, SAR-DRN employs residual learning. In other
words, the network outputs are the estimated speckle noise of speckled inputs rather
than despeckled images. Then, the loss function is calculated between the estimated
and the residual speckle noise. The residual speckle noise is obtained by subtracting the
clean targets from the corresponding speckled inputs. The multiscale recurrent network
(MSR-Net) [30] was presented with multiscale cascaded subnetworks. Each subnetwork
consists of an encoder, a decoder, and a convolutional long short-term memory unit. In ad-
dition, the multiscale recurrent and weight sharing strategies were adopted to increase
network capacity. The hybrid dilated residual attention network (HDRANet) [31] and
SAR-DRN both utilize dilated convolutions to enlarge the receptive field. Different from
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SAR-DRN, HDRANet proposes hybrid dilated convolution, which can avoid causing
gridding artefacts. The attention module via a residual architecture was also introduced
to improve network performance. In particular, the spatial and transform domain CNN
(STD-CNN) [32] fuses spatial and wavelet-based transform domain features for SAR image
despeckling with rich details and a global topology structure. A multiconnection net-
work incorporating wavelet features (MCN-WF) [33] also references the wavelet transform.
By using wavelet features, the loss function was redesigned to train a multiconnection
network based on dense connections. Considering the distribution characteristics of SAR
speckle noise, the SAR recursive deep CNN prior (SAR-RDCP) [34] combines the strong
mathematical basis of traditional variational models and the nonlinear end-to-end mapping
ability of deep CNN models. The whole SAR-RDCP model consists of two subblocks: a
data-fitting block and a predenoising residual channel attention block. By introducing a
novel despeckling gain loss, two subblocks are jointly optimized to achieve the overall
network training.

The advantage of using synthetic speckled data is that they can contain a large number
of “Speckled2Clean” image pairs. This advantage allows deep CNN models to be trained
stably without overfitting and to learn the complex nonlinear mapping relationships
between speckled inputs and clean targets. However, due to the difference in the imaging
mechanism, optical images have shown many differences from SAR images in terms of
grey-level distribution, spatial correlation, dynamics, power spectral density, etc. [18].
Many unique characteristics (e.g., scattering phenomena) of SAR images are neglected in
the training process. An illustration of the differences between optical and SAR images is
presented in Figure 1, provided by the Sen1-2 dataset [36]. Hence, it is not ideal to obtain
despeckled SAR images by training the network on synthetic speckled data in practical
situations. A domain gap problem has been exposed: the despeckling networks perform
well on the data, which are from a domain similar to the training data (i.e., synthetic
speckled images), but perform poorly on the testing data (i.e., real SAR images).

(a)(a) (b)(b) (c)(c)

Figure 1. Illustration of the differences between optical and SAR images. (a,b) are the original optical
image acquired by Sentinel-2 and the corresponding single-channel grey image. (c) is the SAR image
acquired by Sentinel-1. Though these images were acquired from the same scene, they are different in
their image characteristics, e.g., the grey-level distribution and the scattering phenomena.

To address the problem that supervised learning-based CNN methods need to require
“Noisy2Clean” image pairs to train denoising networks, Lehtinen et al. [37] proposed a
novel training strategy (named Noise2Noise). It demonstrated that denoised images could
be generated with the networks trained on “Noisy2Noisy” image pairs, consisting of noisy
inputs and noisy targets. They both contain the same underlying clean ground truth and
are corrupted by the independent and identical noise. Its basic idea is that the mean
squared error (MSE) loss function is minimized by the expected value of the targets. Hence,
the Noise2Noise strategy is suitable for the noisy images whose expected value is equal
to that of the underlying clean ground truth, for example the noisy images corrupted by
additive white Gaussian noise (AWGN). Inspired by this, Ma et al. [38] proposed a noisy
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reference-based SAR deep learning (NR-SAR-DL) filter, which used multitemporal SAR
images to train the despeckling network. These images (called Speckled2Speckled image
pairs) were acquired from the same scene by the same sensor. NR-SAR-DL has outstanding
despeckling performance on real multitemporal SAR data, especially in preserving point
targets and the radiometrics. However, though NR-SAR-DL integrates temporal stationar-
ity information into the loss function, its effectiveness is still affected by the training errors
caused by temporal variations.

When neither “Speckled2Clean” nor “Speckled2Speckled” image pairs are available,
training the CNN-based despeckling network becomes challenging. Recently, Quan et al. [39]
proposed a dropout-based scheme (named Self2Self) for image denoising with only single
noisy images. In the Self2Self strategy, a denoising CNN with dropout was trained on
the Bernoulli-sampled instances of noisy images. For the noisy images corrupted by the
AWGN, the denoising performance of Self2Self is comparable to that of “Noisy2Clean”,
which provides the possibility for just using real speckled SAR images to train a deep
despeckling network.

In this paper, we aim to solve such a problem: training a deep despeckling network
requires clean SAR ground truth images that are difficult to obtain in real-world conditions.
By solving this problem, the deep despeckling network can be trained on real SAR images
instead of synthetic speckled images. To this end, inspired by Self2Self, we propose an
advanced SAR image despeckling method by virtue of Bernoulli-sampling-based self-
supervised deep learning, namely SSD-SAR-BS. Our main contributions are summarized
as follows:

• To address the problem that no clean SAR images can be employed as targets to
train the deep despeckling network, we propose a Bernoulli-sampling-based self-
supervised despeckling training strategy, utilizing the known speckle noise model and
real speckled SAR images. The feasibility is proven with mathematical justification,
combining the characteristic of speckle noise in SAR images and the mean squared
error loss function;

• A multiscale despeckling network (MSDNet) was designed based on the traditional
UNet, where shallow and deep features are fused to recover despeckled SAR images.
Dense residual blocks are introduced to enhance the feature extracting ability. In ad-
dition, the dropout-based ensemble in the testing process is proposed, to avoid the
pixel loss problem caused by the Bernoulli sampling and to boost the despeckling
performance;

• We conducted qualitative and quantitative comparison experiments on synthetic
speckled and real SAR image data. The results showed that our proposed method
significantly suppressed the speckle noise while reliably preserving image features
over the state-of-the-art despeckling methods.

The rest of this paper is organized as follows. Section 2 introduces our proposed
method in detail. Section 3 describes the compared methods, experimental settings, and ex-
perimental results on synthetic speckled and real SAR image data. Section 4 discusses
the impacts of the several components of our proposed method. Section 5 summarizes
the paper.

2. The Proposed Method

In this section, firstly, we describe the basic idea of our proposed SSD-SAR-BS, where
only the speckle noise model and speckled SAR images are needed. Then, we introduce the
MSDNet to achieve despeckling and utilize dense residual blocks to enhance the network
performance. Lastly, we propose the dropout-based ensemble for testing. The overall
flowchart of our proposed SSD-SAR-BS is presented in Figure 2.
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Figure 2. Overall flowchart of our proposed SSD-SAR-BS.

2.1. Basic Idea of Our Proposed SSD-SAR-BS

We use Y and X to denote the observed speckled intensity SAR image and the corre-
sponding underlying speckle-free SAR image, respectively. The relationship between Y
and X can be characterized by a well-known multiplicative model [11]:

Y = X�N, (1)

where � denotes the Hadamard product (i.e., elementwise product) of two matrices.
N denotes the speckle noise and is considered to follow the independent and identically
distributed (i.i.d.) Gamma distribution with unit mean. The probability density function
Pr(·) of N can be defined as [11]:

Pr(N) =
LLNL−1e−LN

Γ(L)
, N ≥ 0, L ≥ 1, (2)

where Γ(·) denotes the Gamma function and L is the number of looks.
Our objective was to train a deep despeckling network, just using X as the training

data to reconstruct Y, that is X is invisible during the network training. As previously
mentioned, it is feasible to train a denoising network using Noise2Noise image pairs, which
contain the same underlying clean targets. Therefore, a natural idea is: if we can sample
two images for a given speckled image, we can use one of them as the input and the other
as the target. To do so, we propose a self-supervised SAR image despeckling method based
on Bernoulli sampling.

Firstly, for each speckled image, only a part of the pixels was used as the input, and the
remaining pixels were used as the target. Then, we hoped to generate two matrices as
the multiplication operators, whose sizes were the same as that of the original speckled
image. The speckled input–target image pairs were obtained by multiplying the original
fully speckled image by two matrices, respectively. Due to this reason, we employed
the Bernoulli distribution as the sampling method to generate the matrices with one or
zero values. Unlike the Bernoulli distribution, some other distributions (e.g., Gaussian
distribution) sample a random value between zero and one. If the other distributions
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(e.g., Gaussian distribution) are employed to generate two matrices as the multiplication
operators, a set of transformation operations needs to be performed before. Hence, the
Bernoulli distribution is a simpler and more direct sampling method in this work. Specif-
ically, for each speckled image with a size of W × H, we used two Bernoulli-sampled
matrices (i.e., B̂, B̃ ∈ {0, 1}W×H), which can be written as:

B̂w,h =

{
1, with probability p;
0, with probability 1− p,

(3)

B̃w,h =

{
0, if B̂w,h = 1;
1, if B̂w,h = 0,

(4)

where B̂w,h and B̃w,h denote the pixel values in B̂ and B̃, respectively. p ∈ (0, 1) denotes
the probability of the Bernoulli distribution. Then, the corresponding Bernoulli-sampled
speckled image pairs (Ŷ, Ỹ) can be generated:

(Ŷ, Ỹ) = (Y� B̂, Y� B̃), (5)

where Ŷ is the input of the despeckling network and Ỹ is the corresponding target. An il-
lustration of the Bernoulli-sampled speckled image pairs is presented in Figure 3.

(a) (b) (c) (d)

Figure 3. Illustration of the Bernoulli-sampled speckled image pairs. (a) Underlying clean image
X (unseen by our proposed SSD-SAR-BS). (b) Synthetic speckled image Y corrupted by four-look
speckle noise. (c,d) Speckled input and target images (Ŷ, Ỹ) generated by the Bernoulli sampling
with p = 0.3.

With the obtained Bernoulli-sampled speckled image pairs, we can train a deep-
learning-based despeckling network fθ(·) described in Section 2.2. θ denotes the parameters
(i.e., weights and biases) of fθ(·). Specifically, Ŷ is used as the input and Ỹ is used as the
target. The training process of fθ(·) is to find the optimized parameters θ that achieve the
smallest MSE loss function LMSE between the output–target image pairs ( fθ(Ŷ), Ỹ). Here,
to make LMSE only be measured by those pixels masked by Bernoulli sampling, the output–
target image pairs employed to calculate LMSE are rewritten as ( fθ(Ŷ)� B̃, Ỹ� B̃). Assume
that there is an available training dataset containing a large of image samples. The training
process of fθ(·) can be formulated as:

arg min
θ
{LMSE( fθ(Ŷ)� B̃, Ỹ� B̃)}

= arg min
θ
{ 1

M

M

∑
m=1

( fθ(Ŷ
(m)

)� B̃(m) − Ỹ(m) � B̃(m)
)2}

, (6)

where M is the number of image samples in the training dataset. Ŷ(m) and Ỹ(m) denote
the Bernoulli-sampled images of the m-th training image sample Y(m). B̃(m) denotes the
Bernoulli-sampled matrix of the m-th training image sample Y(m). Once the training
process is completed, we can use the well-trained network to obtain despeckled results.
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Next, we explain why this is feasible. It is well known that the MSE loss function is convex,
and then, to solve (6), we can derive:

dLMSE

d( fθ(Ŷ
(m)

)� B̃(m)
)
= 0

⇒ 2
M

M

∑
m=1

( fθ(Ŷ
(m)

)� B̃(m) − Ỹ(m) � B̃m
) = 0

⇒ 1
M

M

∑
m=1

( fθ(Ŷ
(m)

)� B̃(m)
) =

1
M

M

∑
m=1

(Ỹ(m) � B̃(m)
)

⇒E[ fθ(Ŷ)� B̃] = E[Ỹ� B̃]

, (7)

where E denotes the expectation operator. By combining (3)–(5), (7) can be rewritten as:

E[ fθ(Ŷ)� B̃] = E[Ỹ� B̃] = E[Y� B̃� B̃] = E[Y� B̃]. (8)

As defined in (1) and (2), the distribution of N is the unit mean. Hence, the expectation
of Y is the same as that of X, which leads to:

E[Y� B̃] = E[X�N� B̃] = E[X� B̃]. (9)

According to (8) and (9), we have:

E[ fθ(Ŷ)� B̃] = E[X� B̃]. (10)

Furthermore, we can further approximately simplify (10) to:

E[ fθ(Ŷ)] ≈ E[X]. (11)

This means that when LMSE obtains the smallest value (i.e., the despeckling network
parameters θ obtain the optimized values), we can obtain despeckled results by using the
well-trained network. This is particularly true when a large dataset is employed, in other
words M→ +∞.

2.2. Multiscale Despeckling Network
2.2.1. Main Network Architecture

We designed a multiscale despeckling network (MSDNet) as fθ(·) based on the tradi-
tional UNet, which adopts the symmetric encoder–decoder structure. This structure can
obtain deep features with different scales. At the same time, the downsampling operations
in the encoder part can make the network more lightweight. Our proposed MSDNet
consists of a preprocessing block (PB), three encoder blocks (EB), three decoder blocks (DB),
and an output block (OB). The architecture and the detailed configuration are presented in
Figure 4 and Table 1, respectively.

To extract the deep semantic features of speckled images with different scales, the input
SAR images are fed to the PB followed by three EBs. Each EB is made up of a downsampling
subblock and a dense residual subblock (DRB) described in Section 2.2.2. Downsampling
can enlarge the receptive field [40] and augment contextual information extraction, effec-
tively facilitating the recovery of SAR images. Furthermore, memory usage and calculation
can also be reduced by using downsampling. Here, different from the traditional UNet,
the 3 × 3 strided convolution with stride 2 and padding 1 was adopted to implement
downsampling with learnable parameters. Unlike pooling operations (e.g., max pooling)
in the traditional UNet, the strided convolution can achieve downsampling utilizing all
pixels in the sliding window rather than one pixel with the max value. Hence, replacing
max pooling in traditional UNet by the strided convolution in our network architecture can
enhance the interfeature dependencies and improve the network expressiveness ability [41].
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Therefore, we can obtain the deep semantic features with four different scales (i.e., W × H,
W
2 ×

H
2 , W

4 ×
H
4 , and W

8 ×
H
8 ).

EB-1

EB-2 DB-2

DB-1

PB

Input

64×64×1 64×64×128

32×32×256

16×16×512

8×8×1024

OB

64×64×256

16×16×1024

32×32×512

64×64×1

Output

EB-3 DB-3

Figure 4. Architecture of our proposed MSDNet.

Table 1. Detailed configuration of our proposed MSDNet.

Main Parts Subparts Configurations

PB

Preprocessing Conv (c = 64, k = 3, s = 1, p = 0) + PReLU
Conv (c = 128, k = 3, s = 1, p = 0) + PReLU

DRB × 2
Conv (c = 64, k = 3, s = 1, p = 0) + PReLU
Conv (c = 64, k = 3, s = 1, p = 0) + PReLU
Conv (c = 128, k = 3, s = 1, p = 0) + PReLU

EB-i (i = 1, 2, 3)

Downsampling Conv (c = 128 × 2i, k = 3, s = 2, p = 1) + PReLU

DRB × 2
Conv (c = 128 × 2i − 1, k = 3, s = 1, p = 0) + PReLU
Conv (c = 128 × 2i − 1, k = 3, s = 1, p = 0) + PReLU

Conv (c = 128 × 2i, k = 3, s = 1, p = 0) + PReLU

DB-i (i = 3, 2, 1)

Upsampling TConv (c = 128 × 2i − 1, k = 2, s = 2) + PReLU

DRB with dropout × 2
Dropout + Conv (c = 128 × 2i − 2, k = 3, s = 1, p = 0) + PReLU
Dropout + Conv (c = 128 × 2i − 2, k = 3, s = 1, p = 0) + PReLU
Dropout + Conv (c = 128 × 2i − 1, k = 3, s = 1, p = 0) + PReLU

OB
Dropout + Conv (c = 128, k = 3, s = 1, p = 0) + PReLU
Dropout + Conv (c = 64, k = 3, s = 1, p = 0) + PReLU

Dropout + Conv (c = 1, k = 3, s = 1, p = 0)
c: out channels, k: kernel size, s: stride, p: padding.

With the features with four different scales obtained by the aforementioned PB and
three PBs, three DBs and an OB are responsible for gradually recovering despeckled SAR
images. Each DB consists of an upsampling subblock and a DRB with dropout, described
in Section 2.2.2. Here, the transposed convolution (TConv) with kernel size 2 and stride 2
in the upsampling subblock is used to enlarge the feature scale. To fuse the shallow and
deep features, three skip connections are introduced between PB and OB, EB-1 and DB-1,
and EB-2 and DB-2, respectively. This is done by the channelwise concatenation, which can
help to reuse the features and exploit the network potential. The shallow features come
from the PB (W × H), EB-1 ( W

2 ×
H
2 ), and EB-2 ( W

4 ×
H
4 ). Moreover, they are passed to the

OB, DB-1, and DB-2 by the concatenation. The deep features come from EB-3 ( W
8 ×

H
8 ).

Finally, the OB is employed to convert the concatenated features into despeckled results.
Here, we provide an explanation about the parameter selection of Table 1. The kernel

size of all convolutions (except for TConv) was set to be 3 × 3, which can provide a good
tradeoff between network performance and memory footprint. Then, for the common
convolutions, to keep the size of the feature map of the input and the output of the
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convolution kernel consistent, the stride (s) and the padding (p) were set to 1 and 0,
respectively. For the strided convolutions, to achieve 2-times downsampling, in other
words, to make the size of the feature map change to half of the original ones, the stride
(s) and the padding (p) were set to 2 and 1, respectively. In particular, to achieve 2-times
upsampling, in other words, to make the size of the feature map change to the 2-times the
original ones, the kernel size (k) and the stride (s) of TConv were set to 2 and 2, respectively.
Furthermore, for the output channels of each convolution, in general, more channels of the
feature map can enhance the expressive ability of deep neural networks. However, due to
the GPU memory limitation, in this work, the number of the out channels was set to be a
multiple of 64, such as 64 and 128.

2.2.2. Dense Residual Block

To enhance feature extraction, we introduced the DRB in the subblocks of the MSDNet,
in other words, the PB, EBs, and DBs. Different from the subblocks of the traditional
UNet, the DRB combines the dense connection [42] and the residual skip connection [43],
as presented in Figure 5. The DRB consists of three convolutions (i.e., Wd,1, Wd,2, and Wd,r)
along with the parametric rectified linear units (PReLU) [44] (i.e., σd,1, σd,2, and σd,r). Let the
input of DRB be Fd−1. The output of the first convolution along with PReLU is expressed as:

Fd,1 = σd,1(Wd,1(Fd−1)). (12)

Then, Fd−1 and Fd,1 are concatenated to feed the second convolution by the dense
connection, which can be written as:

Fd,2 = σd,2(Wd,2([Fd−1, Fd,1])), (13)

where [Fd−1, Fd,1] refers to the concatenation of Fd−1 and Fd,1. Then, Fd−1, Fd,1, and Fd,2 are
concatenated to feed the last convolution, which can be expressed as:

Fd,r = σd,r(Wd,r([Fd−1, Fd,1, Fd,2])). (14)

Fd-1
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Figure 5. Architecture of the DRB.

Finally, a residual skip connection is employed to obtain the final output of the DRB.
Specifically, Fd−1 is used as the residual to be added with Fd,r, which can be written as:

Fd = Fd,r + Fd−1, (15)

where Fd is the final output of the DRB.

2.3. Dropout-Based Ensemble for Testing

Once the SSD-SAR-BS training process has been completed, we can employ the well-
trained MSDNet to achieve despeckling for a given speckled SAR image Y′. As described
in Section 2.1, the input of the MSDNet is the Bernoulli-sampled speckled SAR image Ŷ′

rather than the original full one Y′. The recovered despeckled SAR image may lead to
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a problem in the testing process: some pixels may be lost. However, this problem can
be solved by using the dropout-based [39,45] ensemble, as presented in Figure 2. Firstly,

we generated a set of Bernoulli-sampled images (i.e., Ŷ′(1), Ŷ′(2), · · · , Ŷ′(K)) for the same
speckled SAR image Y′, according to (3), (4), and (5). Here, the lost pixels of the used
Bernoulli-sampled images may be different in every sampling. We introduced a dropout
layer before each convolution of each DB, as presented in Table 1. Some units of each convo-
lution were randomly ignored in each forward pass. Due to the independent randomness
of dropout, we can view the well-trained MSDNet as a set of despeckling networks (i.e.,
f (1)θ (·), f (2)θ (·), · · · , f (K)θ (·)). Then, these Bernoulli-sampled speckled SAR images are fed to
the corresponding despeckling networks to generate the corresponding output results (i.e.,

f (1)θ (Ŷ′(1)), f (2)θ (Ŷ′(2)), · · · , f (K)θ (Ŷ′(K))). Finally, the predicted despeckled SAR image X′ is
obtained by averaging all output results, which can be described as:

X′w,h =
1
K

K

∑
k=1

f (k)θ (Ŷ′(k))w,h, 1 ≤ w ≤W, 1 ≤ h ≤ H. (16)

where K is the number of average times (i.e., the number of the generated Bernoulli-
sampled images) in the dropout-based ensemble. W and H denote the image size. X′w,h

and f (k)θ (Ŷ′(k))w,h denote the pixel values in X′ and f (k)θ (Ŷ′(k)), respectively. Because the
Bernoulli sampling and the dropout layers both have independent randomness, all pix-
els can be considered when the average number of times is sufficiently large. Hence,
the problem of pixels being lost can be solved, and the despeckling performance can be
effectively boosted.

3. Experimental Results and Analysis

In this section, to demonstrate the superiority of our proposed SSD-SAR-BS, we
conducted quantitative and visual comparison experiments, where several state-of-the-art
despeckling methods were used for comparison. Both synthetic speckled and real SAR
data were employed for the analysis.

3.1. Experimental Setup
3.1.1. Compared Methods

The following state-of-the-art despeckling methods were compared to our proposed
SSD-SAR-BS: PPB [16], SAR-BM3D [17], ID-CNN [28], SAR-DRN [29], and SAR-RDCP [34].
The first two are traditional despeckling methods, and the last three are deep-learning-
based despeckling methods. Specifically, PPB is based on patch matching, and SAR-BM3D
is based on 3D patch matching and wavelet domain filtering. ID-CNN, SAR-DRN, and SAR-
RDCP all adopt the deep CNN model to learn the mapping relationships between speckled
inputs and clean targets. SAR-RDCP combines the traditional variational model and
the deep CNN model. It is worth noting that ID-CNN, SAR-DRN, and SAR-RDCP can
only train the despeckling network on the synthetic speckled data rather than the real
SAR data, due to them requiring clean targets to achieve supervised learning. For all the
compared methods, the algorithm parameters were set as suggested in their corresponding
papers. Furthermore, to make a fair comparison, SAR-CNN [26] and some recent works
(e.g., NR-SAR-DL [38]) employing multitemporal data were not used, due to only single
speckled SAR images being required in our proposed SSD-SAR-BS. Meanwhile, their
training datasets are not publicly available.

3.1.2. Experimental Settings

The Bernoulli sampling probability p in (3) was fixed as 0.3. The Adam algorithm [46]
was employed as the gradient descent optimizer to update the network weights and biases,
with momentum β1 = 0.9, β2 = 0.999, ε = 10−8. The network was trained with 50 epochs
with a batch size of 64 at an initial learning rate of 10−4. After first 25 epochs, the learning
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rate was reduced by being multiplied by a descending factor of 0.1. The number of average
times K was set as 100 to output the predicted despeckled image in the testing process. Our
proposed method was implemented in the PyTorch framework [47] and run on an Intel
i9-10900K CPU and an NVIDIA GeForce GTX 3090 GPU.

3.2. Despeckling Experiments on Synthetic Speckled Data

For a fair comparison, in the synthetic speckled data despeckling experiments, all deep-
learning-based despeckling methods shared the same training dataset, which was built
using optical remote sensing images from the UC Merced land-use dataset [35]. From this
dataset, a total of 209,990 image patches with a size of 64× 64 were extracted as the speckle-
free target images. The corresponding speckled input images were generated according
to (1) and (2), where the number of looks was randomly selected from {1, 2, 4, 8}. It is
worth mentioning that our proposed SSD-SAR-BS did not see the speckle-free target images,
and only speckled input images were needed for training. In contrast, other deep-learning-
based methods (i.e., ID-CNN, SAR-DRN, and SAR-RDCP) all see the speckle-free target
images in the training process. Furthermore, for testing, four optical remote sensing images
from another dataset (i.e., the aerial image dataset (AID) [48]) were selected. They were
Airport, Beach, Parking, and School, respectively. The corresponding single-look speckled
input images were also generated according to (1) and (2).

With the speckle-free target images, two classic fully referenced metrics (i.e., the peak
signal-to-noise ratio (PSNR) and the structural similarity index (SSIM) [49]) were employed
for the evaluation. The PSNR is defined as:

PSNR = 10log10
2552

1
WH

W
∑

w=1

H
∑

h=1
(Xw,h − X′w,h)2

(17)

where X′ and X denote the despeckled image and the corresponding speckle-free image
with a size of W×H, respectively. X′w,h and Xw,h are the pixel value in X′ and X, respectively.
The larger PSNR value indicates the lower distortion of the despeckled images. The SSIM
is calculated as:

SSIM =
(2µXµX′ + C1)(2σXX′ + C2)

(µX
2 + µX′

2 + C1)(σX
2 + σX′

2 + C2)
(18)

where µX and µX′ are the mean values of X and X′, respectively; σX and σX′ are the standard
deviation values of X and X′, respectively; σXX′ represents the covariance value between X
and X′; and C1 and C2 are added as two constants to avoid instability when µX

2 + µX′
2 or

σX
2 + σX′

2 is close to zero. The larger SSIM value means better structural feature preserva-
tion. Except for the two fully referenced metrics (i.e., PSNR and SSIM), a nonreferenced
metric (i.e., the equivalent number of looks (ENL) [17]) was employed to evaluate the
speckle suppression performance, expressed as:

ENL =
(µ

X′HR)2

(σ
X′HR)2 (19)

where X′HR represents a homogeneous region patch of X′. µ
X′HR and σ

X′HR are the mean

value and standard deviation value of X′HR, respectively. The larger the ENL value,
the better the speckle noise reduction is.

Table 2 lists the quantitative evaluation results, with the best and second-best perfor-
mance marked in bold and underlined. We can see that, among the traditional despeckling
methods, SAR-BM3D was the one with better overall performance in the quantitative
evaluation. Furthermore, deep-learning-based despeckling methods (especially SAR-DRN
and SAR-RDCP) had a noticeable improvement compared to the traditional despeckling
methods. Compared to SAR-RDCP, SAR-DRN had larger PSNR values for Beach, Parking,
and School. On the contrary, the SSIM values of SAR-RDCP (i.e., Airport, Parking, and School)
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were larger than those of SAR-DRN. Generally speaking, it is difficult to maintain noise
smoothing (i.e., PSNR and ENL) and feature preservation (i.e., SSIM) at the same time.
However, our proposed SSD-SAR-BS gained about a 0.07–0.62 advancement in terms of
the PSNR, compared to SAR-DRN. At the same time, our proposed SSD-SAR-BS gained
about a 0.02–0.04 advancement in terms of the SSIM, compared to SAR-RDCP. Besides,
combining its larger ENL values, in summary, our proposed SSD-SAR-BS achieved the best
quantitative results in terms of the PSNR, SSIM, and ENL. This means that the results of our
proposed SSD-SAR-BS were closer to the original speckle-free target images, with better
structural feature preservation and better speckle noise suppression.

Table 2. Quantitative evaluation results on synthetic speckled data.

Data Index PPB SAR-BM3D ID-CNN SAR-DRN SAR-RDCP SSD-SAR-BS

PSNR 21.6044 ± 0.0797 22.4332 ± 0.0726 22.5192 ± 0.1544 23.6811 ± 0.1186 23.7348 ± 0.1291 24.3064 ± 0.1637
Airport SSIM 0.4421 ± 0.0033 0.5589 ± 0.0025 0.5567 ± 0.0012 0.6610 ± 0.0008 0.6666 ± 0.0028 0.7040 ± 0.0029

ENL 171.3710 ± 12.1654 296.7359 ± 22.8984 210.7900 ± 10.1910 431.0681 ± 33.3892 671.5572 ± 32.9589 1033.1749 ± 53.6550

PSNR 19.1143 ± 0.0904 20.1459 ± 0.0842 19.9878 ± 0.2748 20.4174 ± 0.1308 20.2166 ± 0.1325 20.4868 ± 0.0903
Beach SSIM 0.3014 ± 0.0048 0.4665 ± 0.0031 0.4370 ± 0.0057 0.5309 ± 0.0034 0.5184 ± 0.0017 0.5577 ± 0.0010

ENL 138.4539 ± 9.2195 256.1158 ± 39.5277 179.2292 ± 8.0433 339.4192 ± 16.4669 285.4422 ± 17.5407 648.0094 ± 61.1982

PSNR 19.2132 ± 0.0843 22.9632 ± 0.0779 23.7254 ± 0.1719 24.4793 ± 0.1316 24.4762 ± 0.1251 24.6219 ± 0.1126
Parking SSIM 0.5047 ± 0.0029 0.6599 ± 0.0021 0.6566 ± 0.0005 0.7107 ± 0.0003 0.7121 ± 0.0007 0.7306 ± 0.0027

ENL 139.1330 ± 9.4936 198.7999 ± 30.6818 102.3522 ± 6.0899 223.5714 ± 10.2016 220.4327 ± 14.9143 596.4893 ± 43.9951

PSNR 19.5109 ± 0.0890 20.9744 ± 0.0836 21.1025 ± 0.2659 21.6210 ± 0.1105 21.5683 ± 0.1467 21.9281 ± 0.1305
School SSIM 0.3891 ± 0.0037 0.5405 ± 0.0026 0.5398 ± 0.0066 0.5997 ± 0.0016 0.6018 ± 0.0028 0.6228 ± 0.0015

ENL 115.2169 ± 8.2786 246.6993 ± 38.0744 71.6737 ± 5.0797 225.4230 ± 12.7912 142.2418 ± 9.1001 342.7139 ± 17.3803

Except the quantitative evaluation, visual assessment is also necessary for comprehen-
sive analysis of despeckling performance. We present the one-look speckled input images,
the despeckling results obtained by the compared methods and our proposed SSD-SAR-BS,
and the original speckle-free target images in Figures 6–9. To give detailed contrasting re-
sults, we also provide the corresponding magnified results in Figure 10. The PPB removed
most speckle noise, while its results showed significant oversmoothing. In other words,
the detailed texture features in the results of PPB were also lost along with the speckle
noise. SAR-BM3D showed an acceptable tradeoff between speckle noise suppression and
detailed feature preservation. However, SAR-BM3D showed the blocking phenomenon.
The blocking artefacts made its results look mottled and unnatural, which can be easily
found in Figure 7c.

As shown in quantitative evaluation, the deep-learning-based methods obtained
clearer results compared to the traditional ones, especially for SAR-DRN and SAR-RDCP.
However, when compared to our proposed SSD-SAR-BS, their performance was still not
good enough. This can be explained according to two aspects: (1) Edge preservation
as marked in the red circles of Figures 10(1,3,4): The linear edge features were lost or
intermittent in the magnified results of SAR-DRN and SAR-RDCP. Meanwhile, they still
could be found or kept intact in the results of our proposed SSD-SAR-BS. (2) A dense
small point area in the magnified results of Beach (i.e., Figure 10(2)): dense small points
were incorrectly transformed to lines or blocks in the magnified results of SAR-DRN and
SAR-RDCP. This may be due to the visual similarity between dense small points and
speckle noise. SAR-DRN and SAR-RDCP cannot accurately separate dense point targets
and speckle noise. To remove speckle noise, dense small points were also innocently
removed in their despeckling results. Although it was still not perfect compared to the
speckle-free target (i.e., Figure 10(2-h)), the dense small points were retained with their
original visual form in the result of our proposed SSD-SAR-BS (i.e., Figure 10(2-g)). In other
words, they were points rather than lines or blocks.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 6. Despeckling results for the Airport image. (a) Speckled. (b) PPB. (c) SAR-BM3D. (d) ID-CNN. (e) SAR-DRN.
(f) SAR-RDCP. (g) Proposed SSD-SAR-BS. (h) Speckle-free reference.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 7. Despeckling results for the Beach image. (a) Speckled. (b) PPB. (c) SAR-BM3D. (d) ID-CNN. (e) SAR-DRN.
(f) SAR-RDCP. (g) Proposed SSD-SAR-BS. (h) Speckle-free reference.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 8. Despeckling results for the Parking image. (a) Speckled. (b) PPB. (c) SAR-BM3D. (d) ID-CNN. (e) SAR-DRN.
(f) SAR-RDCP. (g) Proposed SSD-SAR-BS. (h) Speckle-free reference.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 9. Despeckling results for the School image. (a) Speckled. (b) PPB. (c) SAR-BM3D. (d) ID-CNN. (e) SAR-DRN.
(f) SAR-RDCP. (g) Proposed SSD-SAR-BS. (h) Speckle-free reference.
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(1‐a) (1‐b) (1‐c) (1‐d) (1‐e) (1‐f) (1‐g) (1‐h)

(2‐a) (2‐b) (2‐c) (2‐d) (2‐e) (2‐f) (2‐g) (2‐h)

(3‐a) (3‐b) (3‐c) (3‐d) (3‐e) (3‐f) (3‐g) (3‐h)

(4‐a) (4‐b) (4‐c) (4‐d) (4‐e) (4‐f) (4‐g) (4‐h)

Figure 10. Magnified results for synthetic speckled images. In the subgraph number, (1) denotes Airport, (2) denotes Beach,
(3) denotes Parking, and (4) denotes School. (a) Speckled. (b) PPB. (c) SAR-BM3D. (d) ID-CNN. (e) SAR-DRN. (f) SAR-RDCP.
(g) Proposed SSD-SAR-BS. (h) Speckle-free reference.

3.3. Despeckling Experiments on Real-World SAR Data

In this section, the despeckling performance of our proposed SSD-SAR-BS is verified
using real SAR images. They are:

(1) Sentinel-1 [50]: This is a low-resolution (about 10 m) SAR system with the C-band,
provided by the Copernicus data hub of the European Space Agency (ESA), whose data
can be downloaded from https://scihub.copernicus.eu/ (accessed on 23 October 2020).
The download data used were single-look complex with interferometric wide swath (IWS)
mode. In the Sentinel-1 despeckling experiment, Table A1 gives the downloaded file name
list of the Sentinel-1 data used. Then, a total of 221,436 one-look (i.e., L = 1) image patches
with a size of 64 × 64 pixels were used to train our proposed SSD-SAR-BS. In addition,
we selected two one-look images (denoted as Sentinel-1 #1 and Sentinel-1 #2) with a size of
1024 × 1024 pixels. They were not included in the training data for the independent test.
There were many representative SAR features in the test images, such as homogeneous
region, detailed texture, point target, and strong edge;

(2) TerraSAR-X [51]. This is a high-resolution (about three meters) SAR system with
the X-band, provided by the TerraSAR-X ESA archive collection, whose data can be down-
loaded from https://tpm-ds.eo.esa.int/oads/access/collection/TerraSAR-X (accessed on
22 August 2020). The imaging mode of the download data used is StripMap (SM). In the
TerraSAR-X despeckling experiment, Table A2 gives the downloaded file name list of the
TerraSAR-X data used. Then, a total of 222,753 one-look (i.e., L = 1) image patches with
a size of 64 × 64 pixels were used to train our proposed SSD-SAR-BS. In addition, we
selected two one-look images (denoted as TerraSAR-X #1 and TerraSAR-X #2) with a size
of 1024 × 1024 pixels. Similarly, they were not included in the training data. Further-

https://scihub.copernicus.eu/
https://tpm-ds.eo.esa.int/oads/access/collection/TerraSAR-X
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more, there were many complicated features in the test images to examine the despeckling
performance, such as homogeneous regions, dense lines, and strong edges.

To make the despeckled results smoother, we added total variation (TV) regularization
LTV to the loss function, which is described as:

L = LMSE + λTVLTV, (20)

LTV =
1
M

M

∑
m=1

W−1

∑
w=1

H−1

∑
h=1

(| fθ(Ŷ
(m)

)w+1,h − fθ(Ŷ
(m)

)w,h|

+| fθ(Ŷ
(m)

)w,h+1 − fθ(Ŷ
(m)

)w,h|)

, (21)

where λTV is the tradeoff weight for the TV regularization. LTV minimizes the absolute
differences between neighbouring pixel values. To avoid detail loss, λTV was set to be far
less than 1, specifically, λTV = 0.0001.

Due to speckle-free (clean) SAR images not being able to be used as the reference,
the PSNR and SSIM were no longer applicable for the real SAR despeckling quantitative
evaluation. Except for the above ENL index, we employed another two nonreference
indexes. They are the coefficient of variation (Cx) [52] and the mean of ratio (MoR) [17],
calculated using the homogeneous region patch of despeckled results. Cx can estimate the
texture preservation performance and can be given as:

Cx =
σ

X′HR

µ
X′HR

, (22)

where the lower Cx value represents better texture preservation. The MoR can measure
how well the radiometric preservation is in the despeckled results, which is defined as:

MoR =
1

WH

W

∑
w=1

H

∑
h=1

YHR
w,h

X′HR
w,h

. (23)

For the ideal radiometric preservation, the MoR value should be 1.
Table 3 provides the quantitative comparison. Figures 11–14 present the corresponding

magnified despeckling results. From Table 3, we can see that the PPB had a strong speckle
noise reduction ability in homogeneous regions. However, it lost the most detailed features
of the heterogeneous regions presented in Figures 11–14b. The speckle noise removal ability
of SAR-BM3D was not as strong as that for the PPB, but it surpassed the PPB by a large
margin in terms of detailed feature preservation. Similar to the synthetic speckled dataset
experiment, a critical problem of SAR-BM3D is that its results presented the blocking
phenomenon. This phenomenon can be observed in Figures 11–13c. The mottled blocking
artefacts should not appear in the ideal despeckled results.

The performance of ID-CNN, SAR-DRN, and SAR-RDCP on real SAR images was not
as good as on synthetic speckled images. This can be confirmed in terms of speckle noise re-
duction in the homogeneous regions (seen in Table 3). Furthermore, from Figures 11–14d–f,
we can see that there were some chaotic line-like artefacts in their despeckled results.
These phenomena are called the domain gap problem. These methods adopted super-
vised learning, so their despeckling networks can only be trained using synthetic speckled
data from optical images. However, due to the differences in the imaging mechanisms,
SAR images have many characteristics that are not present in optical images, including
scattering characteristics. When employing the feature extraction capability learned from
synthetic speckled images on a different data domain (i.e., real SAR images), they showed
nonoptimal despeckling performance and generated some unnatural artefacts in their
despeckled results.
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(a) (b) (c) (d)

(e) (f) (g)

Figure 11. Magnified despeckling results for the Sentinel-1 #1 image. (a) Speckled. (b) PPB. (c) SAR-BM3D. (d) ID-CNN.
(e) SAR-DRN. (f) SAR-RDCP. (g) Proposed SSD-SAR-BS.

(a) (b) (c) (d)

(e) (f) (g)

Figure 12. Magnified despeckling results for the Sentinel-1 #2 image. (a) Speckled. (b) PPB. (c) SAR-BM3D. (d) ID-CNN.
(e) SAR-DRN. (f) SAR-RDCP. (g) Proposed SSD-SAR-BS.
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(a) (b) (c) (d)

(e) (f) (g)

Figure 13. Magnified despeckling results for the TerraSAR-X #1 image. (a) Speckled. (b) PPB. (c) SAR-BM3D. (d) ID-CNN.
(e) SAR-DRN. (f) SAR-RDCP. (g) Proposed SSD-SAR-BS.

(a) (b) (c) (d)

(e) (f) (g)

Figure 14. Magnified despeckling results for the TerraSAR-X #2 image. (a) Speckled. (b) PPB. (c) SAR-BM3D. (d) ID-CNN.
(e) SAR-DRN. (f) SAR-RDCP. (g) Proposed SSD-SAR-BS.
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Table 3. Quantitative evaluation results on real SAR data.

Data Image Index PPB SAR-BM3D ID-CNN SAR-DRN SAR-RDCP SSD-SAR-BS

Sentinel-1

ENL 17.6246 ± 1.1437 22.9777 ± 3.0547 17.8801 ± 1.1527 17.7781 ± 1.4860 15.4355 ± 1.1983 35.2740 ± 2.6669
#1 Cx 0.2382 ± 0.0081 0.2086 ± 0.0154 0.2365 ± 0.0080 0.2372 ± 0.2267 0.2545 ± 0.0105 0.1684 ± 0.0067

MoR 0.9880 ± 0.0004 1.0095 ± 0.0006 0.9844 ± 0.0012 0.9996 ± 0.0008 0.9947 ± 0.0009 1.0003 ± 0.0006
ENL 31.3902 ± 1.8247 35.2162 ± 3.1990 18.5404 ± 1.3791 18.6595 ± 1.4495 14.3300 ± 1.2413 42.0500 ± 3.5104

#2 Cx 0.1785 ± 0.0054 0.1685 ± 0.0082 0.2322 ± 0.0092 0.2315 ± 0.2219 0.2642 ± 0.0122 0.1542 ± 0.0069
MoR 0.9687 ± 0.0006 0.9959 ± 0.0019 0.9842 ± 0.0003 0.9889 ± 0.0009 0.9819 ± 0.0007 1.0021 ± 0.0003

TerraSAR-X

ENL 59.3150 ± 3.1960 45.4120 ± 3.9193 11.6018 ± 0.8807 8.2538 ± 0.5720 12.4337 ± 0.8996 68.9492 ± 4.8888
#1 Cx 0.1298 ± 0.0037 0.1484 ± 0.0068 0.2936 ± 0.0118 0.3481 ± 0.3354 0.2836 ± 0.0108 0.1204 ± 0.0045

MoR 0.9608 ± 0.0014 0.9803 ± 0.0013 0.9618 ± 0.0012 0.9514 ± 0.0002 0.9282 ± 0.0010 0.9828 ± 0.0008
ENL 57.7479 ± 2.9501 47.5173 ± 5.0632 15.6736 ± 0.9855 11.5313 ± 0.8143 10.9757 ± 0.8569 82.3089 ± 5.6541

#2 Cx 0.1316 ± 0.0035 0.1451 ± 0.0084 0.2526 ± 0.0083 0.2945 ± 0.2835 0.3018 ± 0.0126 0.1102 ± 0.0040
MoR 0.9736 ± 0.0018 0.9880 ± 0.0016 0.9600 ± 0.0005 0.9625 ± 0.0004 0.9590 ± 0.0011 1.0119 ± 0.0006

In contrast, our proposed SSD-SAR-BS learned the despeckling ability from real SAR
images, thereby fundamentally avoiding the domain gap problem. Specifically, it showed
good speckle noise suppression, texture preservation, and radiometric preservation of
homogeneous regions, according to the larger ENL values, lower Cx values, and MoR
values closer to one. This can also be verified in Figure 14g (the regions marked by
red circles). Besides, our proposed SSD-SAR-BS also avoided generating artefacts while
preserved the original features. Specifically, from Figures 12d–g, we can observe that our
proposed SSD-SAR-BS provided smooth homogeneous regions; in contrast, chaotic line-like
artefacts can be significantly found in the results of ID-CNN, SAR-DRN, and SAR-RDCP.
Meanwhile, the dense small points in red circles can also be clearly found in the result of
our proposed SSD-SAR-BS.

4. Discussion

As mentioned earlier, the Bernoulli sampling probability p was set to be 0.3, and the
dropout-based ensemble was used to boost the performance in our proposed SSD-SAR-BS.
To confirm the effectiveness of these settings, we provide a set of comparative experiments.
For the Bernoulli sampling probabilistic p, only 0.1, 0.3, and 0.5 were compared because
when the p was too large, most pixels of the input speckled images were lost and the
despeckling performance rapidly fell. For the objective evaluation, we present their de-
speckling performance on 100 synthetic speckled images from the AID dataset in terms of
the average PSNR and SSIM values, under different numbers of the average times K in the
dropout-based ensemble.

As shown in Figure 15, as K improves, the average PSNR and SSIM values increased
significantly, especially the average PSNR values where K was set from zero to twenty
and the average SSIM values where K was set from zero to forty. This was similar for the
different Bernoulli sampling probability p, in other words, p = 0.1, p = 0.3, and p = 0.5.
Moreover, from the magnified curves as shown in the right column of Figure 15, the average
PSNR and SSIM values of p = 0.3 were larger than those of p = 0.1 and p = 0.5. This was
because when p = 0.1, the randomness of Bernoulli sampling was not strong enough;
when p = 0.5, the preserved pixels were not enough to construct the despeckled images.
Hence, 0.3 was the superior value of Bernoulli sampling probability p, and the dropout-
based ensemble could effectively boost the despeckling performance of our proposed
SSD-SAR-BS.

We also list the inference runtimes of the compared and our proposed methods in
Table 4. All methods were implemented on the same system environment described in
Section 3.1.2. We employed the dropout-based ensemble in our proposed SSD-SAR-BS,
enabling the model to operate as two: (1) Accurate model (e.g., K = 100): This model was
more expensive due to it having more average times, providing superior speckle noise
suppression and detail preservation. (2) Fast model (e.g., K = 40): Facing more real-time
SAR image despeckling tasks, this model can improve the inference efficiency (reduce
the test runtime) by reducing the average times K. From Table 4, we can see that as the
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number of the average times K reduces, the runtime reduces significantly. Specifically,
when K = 40, the runtimes of images with 64 × 64 and 128 × 128 pixels were reduced to
about 0.25 and 0.75 s, respectively. The time consumption of this fast model was superior
to those of the traditional methods (i.e., PPB and SAR-BM3D). This was similar to other
deep-learning-based methods. In other words, after much time was needed to train the
deep neural network, the testing process was speedy in the deep-learning-based methods,
which is another advantage of our proposed SSD-SAR-BS.

Table 4. Runtime (seconds) comparison.

Image Size PPB SAR- ID- SAR- SAR- SSD-SAR-BS
(Pixels × Pixels) BM3D CNN DRN RDCP K = 40 K = 60 K = 80 K = 100

64 × 64 1.3955 0.6210 0.1089 0.1066 0.1167 0.2582 0.3751 0.4946 0.5433
128 × 128 3.0085 2.6615 0.1072 0.1059 0.1165 0.7562 1.2069 1.7837 2.2278
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Figure 15. PSNR and SSIM curves of different Bernoulli sampling probabilities p and different numbers of average times K.

5. Conclusions

In this paper, we proposed a novel method for SAR image despeckling, based on
self-supervised deep learning and Bernoulli sampling, called SSD-SAR-BS. Our proposed
method does not need clean reference images to train the deep despeckling network. Hence,
the network can be directly trained on real speckled SAR images. This overcomes the
domain gap problem in most of the existing deep-learning-based SAR image despeckling
methods; in other words, they adopt supervised learning and use synthetic speckled
images rather than real SAR images as the training data. Qualitative and quantitative
comparison of synthetic speckled and real SAR images verified the superior performance
of our proposed method, compared to the state-of-the-art methods. Our proposed method
can suppress most speckle noise and avoid generating artefacts, including the blocking
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artefacts caused by SAR-BM3D and the chaotic line-like artefacts caused by supervised
deep-learning-based methods trained on synthetic speckled images. In the future, we will
consider the combination of transfer learning and multitemporal SAR data (generating
approximate clean labels) for SAR despeckling. Furthermore, we plan to explore the
despeckling effect for some practical applications using SAR images, such as forest fire
burn detection.
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Appendix A

Table A1. File name list of the downloaded Sentinel-1 data.

File Name

S1A_IW_SLC__1SDV_20200905T213825_20200905T213852_034229_03FA38_D30D
S1A_IW_SLC__1SDV_20201003T061814_20201003T061842_034628_040844_46B4
S1A_IW_SLC__1SDV_20201005T193328_20201005T193356_034665_04099B_FC66
S1A_IW_SLC__1SDV_20201006T174956_20201006T175023_034679_040A12_D42A
S1A_IW_SLC__1SDV_20201007T122309_20201007T122339_034690_040A66_E864
S1A_IW_SLC__1SDV_20201009T095727_20201009T095754_034718_040B5E_6849
S1A_IW_SLC__1SDV_20201009T134427_20201009T134454_034720_040B72_5974
S1A_IW_SLC__1SDV_20201010T103359_20201010T103427_034733_040BE5_C884
S1A_IW_SLC__1SDV_20201011T225118_20201011T225144_034755_040CB3_DF67
S1A_IW_SLC__1SDV_20201012T084229_20201012T084247_034761_040CDF_D6DA
S1A_IW_SLC__1SDV_20201012T170031_20201012T170058_034766_040D08_5C39
S1A_IW_SLC__1SDV_20201012T170301_20201012T170328_034766_040D08_26A8
S1A_IW_SLC__1SDV_20201012T232833_20201012T232901_034770_040D2D_97F3
S1A_IW_SLC__1SDV_20201013T174039_20201013T174106_034781_040D94_28F8
S1A_IW_SLC__1SDV_20201014T004524_20201014T004552_034785_040DBB_F086
S1A_IW_SLC__1SDV_20201016T034517_20201016T034546_034816_040ED4_46C5
S1A_IW_SLC__1SDV_20201017T170619_20201017T170646_034839_040FAE_0D60
S1A_IW_SLC__1SDV_20201021T113553_20201021T113620_034894_041182_F0F4
S1A_IW_SLC__1SDV_20201022T025850_20201022T025919_034903_0411D0_0F57
S1A_IW_SLC__1SDV_20201022T103450_20201022T103517_034908_0411F7_2CCB

http://vision.ucmerced.edu/datasets
http://vision.ucmerced.edu/datasets
https://captain-whu.github.io/AID/
https://captain-whu.github.io/AID/
https://scihub.copernicus.eu/
https://tpm-ds.eo.esa.int/oads/access/collection/TerraSAR-X
https://tpm-ds.eo.esa.int/oads/access/collection/TerraSAR-X
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Table A2. File name list of the downloaded TerraSAR-X data.

File Name

TSX_OPER_SAR_SM_SSC_20110201T171615_N44-534_E009-047_0000_v0100.SIP
TSX_OPER_SAR_SM_SSC_20111209T231615_N13-756_E100-662_0000_v0100.SIP
TSX_OPER_SAR_SM_SSC_20151220T220958_N37-719_E119-096_0000_v0100.SIP
TSX_OPER_SAR_SM_SSC_20170208T051656_N53-844_E014-658_0000_v0100.SIP
TSX_OPER_SAR_SM_SSC_20170208T051704_N53-354_E014-517_0000_v0100.SIP
TSX_OPER_SAR_SM_SSC_20170525T033725_S25-913_E028-125_0000_v0100.SIP
TSX_OPER_SAR_SM_SSC_20180622T162414_N40-431_E021-741_0000_v0100.SIP
TSX_OPER_SAR_SM_SSC_20180912T055206_N52-209_E006-941_0000_v0100.SIP
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